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Metabolism is one of the attributes of life and supplies energy and building blocks

to organisms. Therefore, understanding metabolism is crucial for the understanding

of complex biological phenomena. Despite having been in the focus of research for

centuries, our picture of metabolism is still incomplete. Metabolomics, the systematic

analysis of all small molecules in a biological system, aims to close this gap. In order to

facilitate such investigations a blueprint of the metabolic network is required. Recently,

several metabolic network reconstructions for the model organism Caenorhabditis

elegans have been published, each having unique features. We have established the

WormJam Community to merge and reconcile these (and other unpublished models) into

a single consensus metabolic reconstruction. In a series of workshops and annotation

seminars this model was refined with manual correction of incorrect assignments,

metabolite structure and identifier curation as well as addition of new pathways. The

WormJam consensus metabolic reconstruction represents a rich data source not only for

in silico network-based approaches like flux balance analysis, but also for metabolomics,

as it includes a database of metabolites present in C. elegans, which can be used for

annotation. Here we present the process of model merging, correction and curation

and give a detailed overview of the model. In the future it is intended to expand the

model toward different tissues and put special emphasizes on lipid metabolism and

secondary metabolism including ascaroside metabolism in accordance to their central

role in C. elegans physiology.
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INTRODUCTION

Metabolism is a key mediator of the biological
processes underlying living organisms. Metabolic changes
are at the frontline of the cellular response to environmental or
physiological changes, and altered metabolism is a hallmark and
driver of the pathologies accompanying conditions such as aging
and cancer (Finkel, 2015). Nevertheless, our understanding of all
the complexities of metabolic processes in different conditions
remains incomplete. The model organism Caenorhabditis elegans
is emerging as a key resource for the study of metabolism in
multicellular organisms, as while it shares much of its central
metabolic pathways with humans, it is easy to culture in
laboratory conditions, can be grown in large populations of
isogenic individuals in order to study purely environmental
differences, and has a short life span enabling rapid longitudinal
data acquisition even across multiple generations (Tissenbaum,
2015; Maglioni and Ventura, 2016; Shen et al., 2018).

Metabolomics evaluates the metabolic state of a given
sample by measuring the concentrations of a large number of
small molecules simultaneously, allowing metabolic differences
between different conditions to be evaluated. Advances in
metabolomics involve the development of methods and
standards to more accurately detect, distinguish and quantify
small molecules from a broad range of pathways in increasingly
smaller quantities of sample material. In C. elegans the currently
detectable metabolome encompasses >1,000 distinct metabolites
(not counting lipids), but this is continuously evolving, and the
estimated size of the full metabolome under ordinary conditions
may be even > 10,000 distinct molecules based on recent
metabolomics work uncovering new metabolites (Artyukhin
et al., 2018).

Whole-genome metabolic reconstructions are in silico
representations of all the metabolic reactions in a given organism
as a network of metabolites and the reactions in which they
are produced or consumed, with associated genes. They are
representations of metabolic knowledge in a given organism
abstracted to the level of a single cell. These reconstructions
allow sophisticated mathematical analysis techniques to make
predictions about the dynamic intracellular fluxes under different
conditions. In particular, Flux Balance Analysis (FBA) and its
derivatives permit the use of whole-genome reconstructions
together with experimental molecular phenotypes and biological
objective functions in order to obtain optimal fluxes landscapes
at steady-states (O’Brien et al., 2015). One can then observe
how these landscapes evolve upon mutations and in different
environments, or to predict drug targets and biomarkers. For
C. elegans, several such metabolic reconstructions exist (Büchel
et al., 2013; Gebauer et al., 2016; Yilmaz and Walhout, 2016; Ma
et al., 2017) (see Figure 1). We have been working with the whole
community to reconcile and develop a single model, representing
the best consensus of known metabolism in C. elegans. This
community effort has been christened “WormJam” (Hastings
et al., 2017).

Metabolic reconstructions andmetabolomics characterization
in different organisms typically proceed independently; the
metabolites that are included in a metabolic reconstruction may

be different to themetabolites that can confidently be identified in
cutting-edge metabolomics investigations in that organism. This
is largely due to the different sources of technical complexity and
opportunities in the different types of investigation. The gap that
ensues between model and metabolomics is one of the specific
areas that we are aiming to address with the WormJam effort,
which includes participants both from the metabolomics and
metabolic modeling communities.

In this paper, we describe the work we have done to develop
and extend the consensus model, including merging pre-existing
models and curation of novel pathways for C. elegans, and the
work that is currently ongoing to bridge between the model and
the metabolites that can be detected with metabolomics.

MATERIALS AND METHODS

Reconciling Existing Models
Merging iCEL1273 and ElegCyc
The merging of these two previously published worm
reconstructions ElegCyc and iCEL1273 involved using databases
and standards for nomenclature. For genes, we first identified
a list of unique genes in each model. ElegCyc (Gebauer
et al., 2016) and iCEL1273 (Yilmaz and Walhout, 2016) used
different gene identifiers, so a table linking the different gene
identifiers for C. elegans was obtained (http://geneontology.org/
page/download-go-annotations). We chose to work with the
WormBase gene identifiers (WBGeneXXXXXXXX) for the sake
of their simplicity in parsing and formatting, and accompanying
ease of access to the online WormBase database (Lee et al.,
2018). If the gene was not found in gene mapping obtained from
the GO website, Kyoto Encyclopedia of Genes and Genomes
(KEGG) (Kanehisa et al., 2017) was queried to obtain gene
information. If duplicate gene entries were found because of
different naming conventions used in the model, we updated
the gene rules and gene-protein-reaction (GPR) association
matrix in the model. A gene-protein-reaction (GPR) matrix
is a Boolean matrix identifying genes associated to reaction,
a.k.a. gene rules. The gene rules are encoded in a text field
which describes two properties about the metabolic reactions:
(i) the gene products involved in catalyzing a given reaction,
and (ii) the relationship between the gene products involved
(isoenzymes—OR, multimers—AND).

For metabolites, we identified a unique list of metabolites
using 3 different databases: BiGG (King et al., 2016), KEGG
(Kanehisa et al., 2017), and MetaNetX (Moretti et al., 2016).
For metabolite identifiers that were in the BiGG database
format, we extracted the following information: ID from the
Chemical Entities of Biological Interest (ChEBI) (Hastings
et al., 2013), KEGG Compound ID (Kanehisa et al., 2017),
MetaNetX ID (Moretti et al., 2016), charge, and formula. If
a metabolite identifier was in KEGG Compound format, we
extracted the following information: name, KEGG compound
id/drug id/glycan id, and compound formula. These data were
used to map the metabolite to its BiGG identifier and retrieve
additional information from BiGG. Information for metabolite
identifiers in MetaNetX format were extracted as was done
with the BiGG database, and we confirmed the information was
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FIGURE 1 | Overview of published C. elegans metabolic reconstructions and their relation to consensus models described in this manuscript.

consistent by performing a reversemapping. If neither KEGGnor
BiGG information was found, we performed a manual search.
Duplicate metabolite entries within the model were fixed by
removing one of the instances and resolving in-model meta
information and stoichiometry.

For reactions, we employed a script that does the following
steps to identify whether the reactions being compared are the
same. All used scripts are available from https://github.com/
LewisLabUCSD/celegans_reconciliation. We kept the reactions
belonging to the first model (R1 = 1893) and parsed through the
reactions in the second model (r2 ∈ [R1+1,RC] reactions). RC is
the total number of reactions including duplicates in both the
models. We performed the following steps on each reaction (r1
∈ [1,R1]) from the first model:

a. Check the stoichiometry of rth1 reaction with all reactions
(R1+1 to RC reactions) (See Figure 2B).

i. If the stoichiometry is the same, check gene-reaction
association of the reactions.

1. If the gene-reaction association is the same, remove the
reaction (r2) coming from the second model.

2. If the gene-reaction association is different, append the
gene rules in the first model using an OR rule and
add the relevant gene associations to the gene-reaction
association matrix of the first model, then remove the
reaction (r2) coming from the second model

ii. If the stoichiometry is different, move to r1+1th reaction.

b. Check the stoichiometry after removing protons to identify if
the reactions are the same but have different charge/element
balance (See Figure 2B).

i. Perform elemental balancing on both reactions to identify
the correct version.

ii. Repeat steps from (a) again.
iii. Ensure that in-model meta information is consistent. The

in-model reaction meta information is copied from the
source model of the reaction; for e.g., if RXNA (has correct
balancing) in the second model and is identified as a
duplicate of RXNB (has incorrect balancing) in the first
model, all in-model meta information will be set to the
reaction values from the second model.

Merging of CeCon and ElegCyc
To begin merging, ElegCyc was obtained in SBML format from
the Supplementary Information of Gebauer et al. (2016), and
an SBML format of CeCon (Ma et al., 2017) was exported
from Pathway Tools. The two models were then translated into
the MetaNetX format (Moretti et al., 2016), and imported into
MATLAB for merging. The COMMGEN toolbox (van Heck
et al., 2016) contains multiple algorithms for the semi-automated
merging of genome scale models, which were applied to the two
models. After completely merging the two models into a single
COMMGEN entity inMATLAB, the biomass reaction of ElegCyc
was set as the objective function for flux balance analysis testing
of the model’s validity, as CeCon, which was previously used for
the mapping of—omic data, does not contain a biomass reaction.

Next, the following steps were performed semi-automatically
through COMMGEN functions.

1. Merging of duplicate reactions
2. Merging of reactions with similar species
3. Removal of nested reactions
4. Alteration of invalid transport reactions
5. Removal of invalid external reactions
6. Checking of reactions with the same metabolites, but differing

stoichiometry
7. Merging of similar transport reactions
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FIGURE 2 | Initial reconciliation and merging of two previously published C. elegans reconstructions. (A) Genes from the two earlier reconstructions were compared

using Wormbase, and metabolites were compared using BiGG. Sizable differences were seen in the scope of the content of the two reconstructions, and so they

were curated and merged. (B) Duplicate reactions were identified and eliminated using the reaction formulae and information on charge and mass balances using the

BiGG and MetaNetX databases. The calculations were performed using the COBRA Toolbox in MATLAB. (C) Several databases were used to reconcile various

properties of the previous reconstructions. The filled boxes indicate the usage of the database, while color indicates the property reconciled.

8. Merging of duplicate reactions

In each function, COMMGEN suggested potential merge
candidates, and a decision was manually made whether to
merge the reactions or keep both based on literature and
databases such as KEGG (Kanehisa et al., 2017). After every
merge, the model was exported to COBRA Toolbox format,
and checked for viability by ensuring flux was able to be
carried through the merged model’s biomass reaction in a “free-
growth” simulation. If the merge was inviable, the change would
be reverted. At the end of this process, the resulting model,
named WormCon, was exported to SBML format, and further
merging was halted in favor of manual curation as part of
WormJam.

Metabolite Structure Curation
Chemical structures were associated with metabolites included in
the consensus reconstruction. For the bulk of the metabolites,
structures were found in ChEBI (Hastings et al., 2013). If no
structure was available in ChEBI, other databases, e.g., KEGG

(Kanehisa et al., 2017), Human Metabolome Database (HMDB)
(Wishart et al., 2018), Chemspider (Pence and Williams, 2010),
PubChem (Kim et al., 2016), and LipidMaps (Fahy et al., 2009)
were queried. Structures not available in any database were drawn
in MarvinSketch 18.1.0 (ChemAxon, Budapest, Hungary).

In certain cases, only charged or neutral structures were
available in the databases, so the corresponding missing structure
was then also drawn in MarvinSketch 18.1.0. All structures
missing in ChEBI were submitted via the batch submission tool to
assign new ChEBI identifiers (see Submission of New Structures).

Structural Similarity Calculation
Structural similarity between metabolites was calculated using
the Tanimoto similarity of chemical fingerprints as implemented
in JChem for Excel 18.5.0196 (ChemAxon, Budapest, Hungary)
in Microsoft Excel 2016. To define cut-offs for structural
similarity to identify potential reaction pairs, Tanimoto
similarities were calculated from known reaction pairs from the
WormJam consensus model.
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Secondary Identifier, MS/MS, and NMR
Spectra Search
The Chemical Translation Service (http://cts.fiehnlab.ucdavis.
edu/) from the Fiehn lab was used to retrieve secondary
identifiers from different databases (e.g., KEGG, HMDB,
LipidMaps) by the InChIKey if missing. All spectra from
MassBank of North America (MoNA, Download 10.June.2018)
were downloaded and sorted according to type: LC-MS, GC-MS,
CE-MS, in silico and others. InChIKey and SPLASH IDs for each
spectrum together with the compound name were isolated for
comparison against predicted metabolites (Wohlgemuth et al.,
2016). NMR spectra were downloaded from HMDB (Download
03.July.2018) and associated with the respective metabolite and
its InChIKey.

Sharing of the Reconstruction and Manual
Curation
The first public release of the reconstruction, as described in the
current paper can be accessed from BioModels (Chelliah et al.,
2015) under the accession MODEL1807230002. To facilitate
community curation, the WormJam community uses a shared
Google Drive. All past reconstructions and versions of the
WormJam reconstruction are stored in standard computer-
readable and human-readable formats. To exchange and re-use
the models, they are provided in SBML (Hucka et al., 2003), both
Level 2 (Hucka et al., 2015) with COBRA-specific notes, and Level
3 (Hucka et al., 2018) with the Flux Balance Constraint package
(Olivier Brett and Bergmann Frank, 2018). For manual curation,
these models are converted into spreadsheets using a customized
SBtab format (Lubitz et al., 2016). Interested persons can join the
community by subscribing the WormJam Google group (https://
groups.google.com/forum/?hl=en#!forum/wormjam).

Curation of Metabolites From Literature
Metabolites detected in different C. elegans metabolomics
related publications have been manually curated by extracting
relevant information from text, tables, figures and Supplementary
Information if available. The most unambiguous structure
was curated based on details reported in the respective
publications. Structural representation in form of SMILES and
InChIs were curated together with identifiers from different
databases as well as PubMed IDs of the respective publication
(Supplementary Information Table 1).

RESULTS

Preexisting Reconstructions
Several C. elegansmetabolic reconstructions exist and are used as
basis for theWormJam consensusmodel. The first reconstruction
was published in 2013 in the frame of the Path2Models
project and was based on automatic reconstruction from KEGG
pathways, MetaCyc (Caspi et al., 2016) and a gap-filling step.
In 2016, ElegCyc (Gebauer et al., 2016) and iCEL1273 (Yilmaz
and Walhout, 2016) were published side-by-side. ElegCyc used
PathwayTools (Karp et al., 2016), while iCEL1273 is based on a
new workflow developed by the authors. Finally, in 2017 CeCon,

also based on PathwayTools, was published by Ma et al. (2017).
Table 1 summarizes key metrics of each model.

To generate a consensus model, different models have been
merged together in several stages. The paragraphs below describe
the merging process of two reconciliations, which were the basis
for the WormJam consensus model (Figure 1).

Initial Automated Model Merging
Merging of iCEL1273 and ElegCyc
The manual curation of the final WormJam model was preceded
by finding a consensus and merging two previously published
worm models iCEL1273 (Yilmaz and Walhout, 2016) and
ElegCyc (Gebauer et al., 2016). The details of these models
have been discussed in the previous section. The preliminary
merging process was conducted using MATLAB and the COBRA
Toolbox. Metabolic models describe a list of reactions which
transform chemical compounds (metabolites) using enzymes
(gene products). Therefore, we merged the metabolic models by
first finding unions of the genes, metabolites, and reactions across
all of the models.

Genes
We used the list of genes in the GO website (http://
geneontology.org/page/download-go-annotations) and KEGG
to map common gene names (nomenclature used in the models)
to WormBase gene identifiers. We chose to work with the
WormBase gene identifiers (WBGeneXXXXXXXX) for the sake
of their simplicity in parsing/formatting, and ease of access to
the online WormBase database (Lee et al., 2018). For details on
reconciliation of genes, please see sectionMaterials andMethods.
We were able to map 980 genes in ElegCyc to 974 unique genes
and 1292 genes in iCEL1273 to 1276 unique genes.

Metabolites
We used four databases: BiGG (King et al., 2016), ChEBI
(Hastings et al., 2013), KEGG (Kanehisa et al., 2017), and
MetaNetX (Moretti et al., 2016). The metabolite nomenclatures
in the models was converted to BiGG as it is the most widely used
in the field of metabolic modeling. We used these databases to
reconcile various metabolite properties such as charge, formula,
and in-model meta information. We were able to map and/or
process 1626 metabolites in ElegCyc and 1401 metabolites in
WormFlux.

Celecon Merge (See Figure 2A)
The above processing resulted in versions of ElegCyc and
iCEL1273 with annotations in the same format including their
in-model meta information (i.e., reaction notes, reaction
subsystems, reaction compartmentalization, metabolite
notes, metabolite charge, metabolite formula, metabolite
compartmentalization, database specific identifiers, and/or any
other supporting/cross-reference information). Identification
of metabolites (M) and genes (G) were followed by performing
a merge such that MC = M1 + M2, GC = G1 + G2, and RC =

R1 + R2. Here, subscript “1” or “2” represents first or second
model, respectively. After identification of duplicate sets of
metabolites/genes and combining their respective in-model meta
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TABLE 1 | Metrics of pre-existing reconstructions.

Name Compounds Reactions References Notes

BMID000000141468 3207 2272 Büchel et al., 2013 Automatic reconstruction from KEGG PATHWAYS, MetaCyc and gap-filling

ElegCyc axenic 2357 1893 Gebauer et al., 2016 Bacteria-free growth media

ElegCyc E. coli 2357 1921 Gebauer et al., 2016 E. coli OP50, E. coli biomass composition (Orth et al., 2011) serves as the growth media.

iCEL1273 1718 1985 Yilmaz and Walhout, 2016

CeCon 2166 2085 Ma et al., 2017

information, we were left with a model with 2355 metabolites
(MC) and 1537 genes (GC) and 3878 reactions (RC).

Reactions
Following the initial merge, we identified duplicate reactions
using steps described in the section Materials and Methods. We
used ElegCyc as the first model and iCEL1273 as the second
model. The above process was able to remove 611 reactions.
The biomass reactions from both the models were kept for
evaluation at a later stage. Therefore, the final merged model had
2355 metabolites (MCycCEL) and 1537 genes (GCycCEL) and 3267
reactions (R’CycCEL), with unique lists of gene, metabolites, and
reactions with their respective in-model meta information (See
Figure 2C).

Merging of CeCon and ElegCyc
WormCon is a consensus model resulting from the merge
of CeCon (Ma et al., 2017) and ElegCyc (Gebauer et al.,
2016) (Figure 3A). Both models were originally designed in
the Pathway Tools software (Karp et al., 2016), and later
exported to SBML format. An initial comparison was made
between the twomodels using various top-level metrics including
number of reactions and metabolites as a benchmark. These
metrics are generated by the Pathway Tools software, and a
comparison is shown in Figure 3A. The versions of ElegCyc
and CeCon used for merging contained 1193 and 1923 reactions
and 773 and 1394 metabolites, respectively. For merging, both
models were converted to the MetaNetX namespace, and then
combined in MATLAB 2015a using the COMMGEN tool, a
package allowing for semiautomatic merging of genome scale
models (van Heck et al., 2016). An initial consensus model
was automatically generated, then COMMGEN’s functions were
used to iteratively refine the model as shown in Figure 3B.
With the biomass reaction from ElegCyc set as the objective
(CeCon does not have a biomass reaction), duplicate reactions
were removed from the consensus model. The next two steps
were to compare reactions with similar species to determine
whether they were the same reaction, just differing by namespace
alterations, as well as the removal of nested reactions. Following
this, more reactions that could be duplicates were identified.
All iterations were performed sequentially, but this resulted
in the failing of the model as the merging of reactions vital
for the model’s function sometimes led to loss of model
viability.

To resolve this issue, each stage of merging was performed,
then the new version of the model was converted back to
SBML, and tested to see if it could produce biomass, and

then saved separately if viable. This resulted in a functioning
metabolic model, called WormCon can carry flux incorporating
reactions from both original models in the process. WormCon
contains 2621 genes, 3148 metabolites and 3434 reactions, and
has been frozen in its current state for incorporation into the final
consensus model.

Curation of the Merged WormJam Model
Initial Manual Curation
The starting point for manual curation was the automatically
merged Celecon model, with information fromWormCon being
an additional source for manual curation (Figure 1). Initial
manual curation efforts included the further identification and
resolution of duplicate reactions that had not been automatically
removed (typically because of differences in gene annotation,
compartmental localization, or presence/absence of minor
cofactors). The charge and ChEBI annotation for metabolites
were checked, and duplicate metabolites were also removed
(which in some cases led to identification of a set of associated
duplicated reactions as well). The metabolic literature was
consulted to verify the presence of certain reactions, and in some
cases reactions known to be not taking place in C. elegans were
flagged for removal.

The manual curation effort then further proceeded to enhance
and extend the representation of specific aspects of biology not
previously included in any of the merged models. This includes
the correction of wrong annotations and reactions as well as the
addition of new pathways.

Correction of Pathways

Glycogen metabolism
Glycogen metabolism is key to regulate lifespan and healthspan
in C elegans (Seo et al., 2018). Glycogen is a branched,
unbounded, molecule formed by stochastic additions of UDP-
glucose molecules forming chains of glucose residues linked
by α(1,4) glycosidic bonds from which new chains of glucose
residues branch off by α(1,6) glycosidic bonds (Roach et al.,
2012). The synthesis is seeded by the protein glycogenin,
which also acts as a catalyst for the first glucose extensions.
Then glycogen synthase generates the α(1,4) bonds while the
glycogen branching enzyme forms α(1,6) bonds. The breakdown
of glycogen relies on the split of α(1,4) bonds by glycogen
phosphorylase, that produces glucose-1-phosphate and the
removal of α(1,6) bonds by the debranching enzyme that
produces glucose. Because of the combinatorics born out of
the branching and stochastic elongation, it is impossible to
model glycogen metabolism accurately and mechanistically.
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FIGURE 3 | Initial reconciliation and merging of two previously published C. elegans reconstructions. (A) Metrics obtained from the original Pathway Tools

reconstructions of CeCon (Ma et al., 2017) and ElegCyc (Gebauer et al., 2016) and final metrics of the merged model, called WormCon. Data sources for the

construction of CeCon and ElegCyc can be found in the original publications. (B) The iterative merging process used to generate the draft WormCon consensus

model.

More importantly, because of their complexity and the cycles
involved, the metabolism of glycogen in existing reconstructions
are often incorrect, consuming, and producing different amounts
of glucose residues. Instead, we opted for a phenomenological
model that consumes the correct amount of UDP glucose, forms
the correct ratio of α(1,4) and α(1,6) bonds, then produces
the correct ratio of glucose-1-phosphate and glucose. We also
removed the reactions relating to maltose metabolism, as they
are likely fossil reactions coming from bacterial metabolism
reconstructions. The final pathway is quite simple, with 6 forms
of glycogen, and 9 reactions. Each synthesis consumes 12 UDP-
glucose, and each breakdown produces 11 glucose-1-phosphate
and 1 glucose.

Biosynthesis and degradation of fatty acids and BCFA
C. elegans is known to produce monomethyl branched chain
fatty acids (BCFA) on its own (Perez and Van Gilst, 2008). The
different reconstructions only contained lump reactions for this
biosynthetic pathway summing up all individual steps into a
single reaction. In contrast, the biosynthesis of straight chain fatty

acids was represented inmuchmore detail. We havemodified the
reactions to the same level of detail, which represents always one
round of elongation. Likewise, fatty acid oxidation was adapted
to the same level of detail.

Sphingolipid metabolism
Sphingolipids in C. elegans were shown to contain branched
chain C17iso sphingoid bases (Chitwood et al., 1995; Zhu
et al., 2013; Hannich et al., 2017). However, due to homology
searches to human genes, the reconstructions contained C18
sphingolipids produced from condensation of palmitic acid with
serine. In contrast to this, C. elegans uses C15iso fatty acid which
is condensed with serine. We have corrected all sphingolipid
metabolites and pathways to contain now the C17iso sphingoid
base. Additionally, ceramides in C. elegans often contain 2-
hydroxy fatty acids.We have added pathways to produce all the 2-
hydroxy fatty acids shown to be present in the worm by Chitwood
et al., and added ceramide biosynthesis reactions for the normal
and 2-hydroxy fatty acids (Chitwood et al., 1995; Hannich et al.,
2017).
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Epigenetics Marks
The expression of C elegans genome has been shown to be
regulated by a range of epigenetics marks, deposited on histones,
DNA, or RNA. Some of these marks were present in the starting
reconstructions, albeit not always in the right compartment.
We fixed histone acetylation, methylation, demethylation, and
trimethylation, by adding missing reactions and fixing wrong
compartments as well as associated exchange reactions. Similarly,
we added a few epigenetic marks recently discovered. They
include DNAnuclear N6-deoxyadeninemethylation (Greer et al.,
2015), modulated by themethylase DAMT-1 and the demethylase
NMAD-1, and the ribosomal RNA Cytidine methylation by
NSUN5, which has been shown to modulate lifespan (Schosserer
et al., 2015). We also added methylation and demethylation
of mitochondrial N6-adenine, by tfbm-1 based on enzyme
homology and subcellular localization. Thesemodifications affect
different nucleotides and deoxynucleotide residues. We therefore
modified the biomass reactions to disentangle the individual
bases.

New Pathways
Different aspects of the worm’s metabolism were not covered
by previous metabolic models. These pathways and reactions
cover C. elegans specific metabolic pathways that cannot be
inferred from any homology to human genes. We have added
two C. elegans specific pathways to the model which represent
important aspects of the worm’s biology.

Maradolipids
Maradolipids, chemically 6,6’ diacyltrehaloses, have been
identified in dauer larvae of C. elegans (Penkov et al., 2010). It is
suggested that they are required for desiccation tolerance in the
dauer stage. Although the exact biosynthetic pathway and genes
are not known yet, a potential reaction sequence was added
to the reconstruction. Lysomaradolipids, containing only one
fatty acid have been described. Therefore, we suggest a stepwise
acylation of the two 6 and 6’ position of trehalose using fatty
acids CoAs as substrates.

Ascaroside biosynthesis
Ascarosides are important molecules in the biology of
C. elegans and serve as messenger molecules in worm to
worm communication. For example, different ascarosides
are responsible for the entry into the dauer stage upon
overcrowding, larval dispersion, and male attraction (Izrayelit
et al., 2012; Srinivasan et al., 2012; von Reuss et al., 2012; Panda
et al., 2017).

They are produced from long chain (LC) and very long chain
(VLC) fatty acids, which are either ω- or ω-1-hydroxylated
and attached to ascarylose. In several rounds of peroxisomal β-
oxidation, involving the genes acox-1 (WBGene00008564),maoc-
1 (WBGene00017123), dhs-28 (WBGene00000991), and daf-22
(WBGene00013284), these long chain ascarosides are broken
down in the form of CoA thioesters to shorter versions (von
Reuss et al., 2012).

All metabolic reconstructions developed so far did not contain
this biosynthetic pathway, as no corresponding human pathway

exists. We have added this pathway by manually curating data
from different publications. In a similar fashion, structures
of ascaroside-CoA thioesters where drawn and their charged
version (−4) was used to construct the peroxisomal β-oxidation
pathway. Additionally, hydrolysis reactions to free the individual
ascarosides have been added together with export reactions for
the extracellular export.

Our current knowledge on the biosynthesis of ascarosides is
limited. The involvement of acox-1,maoc-1, dhs-28, and daf-22 in
the biosynthesis has been established, whichwork together for the
peroxisomal beta-oxidation of long and very long chain fatty acid
versions of ascarosides. Experiments using axenic media have
shown that C. elegans is still able to produce ascarosides without
the presence of bacteria. Therefore, ascarylose biosynthetic
genes must be present in C. elegans. The exact biosynthetic
pathway is not known yet, there are some hints that ascaroside
biosynthesis is distinct from the dTDP-rhamnose biosynthesis
(Feng et al., 2016). Furthermore, no ascarosyl transferase in
C. elegans is known. Therefore, a lump reaction generating
ascarylose from glucose and adding ω- or ω-1-hydroxyl fatty
acids to the sugar moiety was added to the model. Additionally,
export reactions from the cytosol to extracellular space were
added for the secretion of these molecules. At the current stage
only, biosynthetic reactions for basic ascarosides are included.
Modified ascarosides have to be added in future versions.

Current Status of the Wormjam Consensus
Reconstruction
At present, the WormJam reconstruction encompasses 2833
metabolic compounds distributed across four different
compartments—cytosol, mitochondrion, nucleus, and
extracellular —, representing 1629 unique chemical species
after removing duplicates across compartments. It features 3632
reactions associated with 1524 genes and participated in 70
pathways.

Once the manual curation effort had been completed, the
model was rebuilt into computable format from the manually
curated spreadsheets in SBtab format for evaluation. Each
reaction in the model was tested with respect to its ability to
carry flux, and each metabolite whether it could be produced.
It is typical for large-scale metabolic models to include some
percentage of reactions that cannot carry flux and metabolites
that cannot be synthesized. However, it is important that all key
pathways are fully functional and biomass can be generated as
expected from all cellular precursors. The WormJam model on
initial post-curation build contained 1050 reactions that could
not carry flux, including the assembly of the primary biomass.
However, this was largely due to a few minor errors in key
pathways, which were quickly resolved. The current version of
the model contains 685 blocked reactions.

Curation of Metabolite Structures
Representation of Metabolite Structures in WormJam
The correct representation of metabolite structures is a key
issue, since structures represent the most unique identifier
for a given molecule. The problem of correct structural
representation in metabolic models are two-fold. Firstly, charged
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molecular structures (and their formulas) representing the major
microspecies at a given pH (mostly 7.3 in the cytosol) are
required for stoichiometrically correct model representation.
This approach is also chemically accurate, since acetate is not
acetic acid, they are two different molecules and therefore cannot
have the same identifier. However, metabolomics scientists who
would like to map their results to metabolic pathways in
the model are accustomed to working with neutral formulas
and molecules, and directly using charged formulas from the
metabolic model to calculate m/z ratios of different adducts leads
to incorrect results. In the WormJam consensus model we are
using ChEBI as primary source for the structures of charged
and uncharged molecules for structural identification. ChEBI
represents a rich data source with established chemical ontology
relationships to link charged and uncharged variants of different
molecules. Therefore, it is essential to also supply the correct
neutral form of a molecule that can be used in metabolomics for
annotation of signals.

We have added chemical structures encoded as InChIs for
each metabolite, where possible. Several metabolites represent
generic structures, e.g., “Ceramide” containing an R group for
different acyl chain lengths. In such cases we report only the
formula containing the R group.

In several cases either the neutral or charged version of
the molecules were missing in ChEBI. These have been drawn
manually in MarvinSketch 18.1.0 and structures were submitted
via the batch submission tool to ChEBI. In total we have
submitted >500 new metabolite structures either from the
model or the curation of metabolites from literature (see
below: Curation of metabolites from C. elegans metabolomics
studies).

Metabolites Detected in C. elegans

(Metabolomics) Studies
Curation of Metabolites From C. elegans

Metabolomics Studies
To get an impression which metabolites have been detected so
far in C. elegans using different metabolomics techniques and
how they map onto the metabolic pathways in the WormJam
model, we curated metabolites from over 40 publications. This
list is not complete and will be extended in future but represents
a starting point to investigate how far our consensus model and
metabolomics are diverging.

Metabolites were extracted from the text, figures, and
supplementary tables if present (see Supplementary Table 1).
The information found, and the level of curation differs in
the different articles, ranging from pure names (e.g., leucine)
to reporting of metabolite identifiers (e.g., KEGG numbers).
To standardize the manual curation of all the publications,
we have taken the closest, most probable matching structure
from database (mostly from ChEBI). Reporting of ions was
normalized to neutral forms, for example acetate was normalized
to acetic acid. We used generic structures (e.g., leucine instead
of L-leucine) for metabolites where no stereochemistry was
reported. In total 1223 unique metabolites were curated for
which a structure could be added. Additionally several lipids

with generic lipid identifiers such as PC(40:5) were also collected.
The total number was 1622 metabolites and lipids detected in 43
publications.

Different analytical techniques (and combinations thereof)
were used for analysis of the worm metabolome. Most studies
used NMR (14 publications) or NMR in combination with
GC- or LC-MS (3 and 6 publications, respectively), followed
by LC-MS (9 publications) and GC-MS (5 publications)
alone. Furthermore, for lipid analysis, shotgun lipidomics was
employed several times. Several metabolites were detected with
different techniques, which might increases the confidence
of the different identifications. Thirty seven percent of the
metabolite structures were detected at least twice, <5% ten
times and more. Glutamic acid (CHEBI:18237) and Glycine
(CHEBI:15428) were the most frequently detected metabolites,
with each being detected 30 times. However, multiple detection
and identification have to be handled with great care, since
confidence scores or experiments for identification were not
always given. It might also happen that wrong annotations spread
across several papers once it has been assumed to be positively
identified.

Comparison of “in silico” and Measured Metabolites
To get an impression of the coverage of the C. elegans
metabolome across all included publications, we compared
the percentage of metabolites that have been detected in any
publication with the metabolite structures present in the
WormJam model. Since the structures reported in the curated
publications might not reflect the actual stereochemistry,
or the used analysis method cannot correctly determine the
stereochemical configuration, we compared the first part of
the InChI only, which represents the atom connectivity layer.
This yields in total 992 unique entities for the WormJam
model and 1140 for the literature curated metabolites.
These metabolites were mostly derived from the following
metabolite classes: amino acids, fatty acids, central carbon
metabolism, lipids, and secondary metabolites like bile acids
and ascarosides. A detailed list of curated metabolites can be
found in Supplementary Information Table 1. This approach
also merges some different structures into a single entity
(e.g., β-D-galactose 6-phosphate, NBSCHQHZLSJFNQ-
FPRJBGLDSA-N, CHEBI:41076 and β-D-glucose 6-phosphate,
NBSCHQHZLSJFNQ-VFUOTHLCSA-N, CHEBI:17719), but
allows a fairer comparison of the predicted and detected
metabolites by ignoring stereochemistry. Three hundred eighty-
two metabolite entities overlapped between the model and the
detected metabolites (Figure 4A). Common metabolite entities
include organic acids, amino acids, fatty acids, nucleotides,
cofactors and several ascarosides.

Interestingly, 758 of the detected entities have no counterpart
in the model. We closely examined several of the metabolites.
To identify potential connection points to metabolic pathways
or metabolites of similar structures in the WormJam model,
we used chemical similarity between predicted and detected
metabolites not found in the model. Tanimoto similarity was
used as measure of chemical similarity (Nobeli et al., 2003).
High Tanimoto similarities are found between highly similar
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FIGURE 4 | (A) Overlap of unique metabolite entities (first part of InChIKey) between the WormJam model and metabolites curated from literature (B) Histogram of

Tanimoto similarities between all possible metabolite pairs in the WormJam model (red) and metabolites connected by a biochemical reaction (blue) (C) Heatmap of

Tanimoto similarities between metabolites detected but not in the model (rows) and metabolites from the WormJam model (columns). Color scale is blue for 0 to red

for 1. Whereas, 1 refers to a high structural similarity. The large red cluster contains mostly fatty acids and ascarosides. (D) Tanimoto similarity between guanosine and

1-Methylguanosine and 1,7-Dimethylguanosine (both detected but not in the model). These metabolites have high structural similarity indicating a potential relation as

substrates and products in biochemical reactions. Both the methylated and dimethylated from are derived from RNA bound modified nucleotides, which are released

upon degradation. (E) Structural similarity between bile acids from the model (cholic acid, glycocholic, and taurocholic acid) and glycodeoxycholic and

taurodeoxycholic acid detected in different studies.
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chemical structures. Therefore, neighbors in metabolic pathways
should show high similarity values. To identify a good cut-
off value for the Tanimoto similarity, we first calculated this
value for all substrate-product pairs in all reactions of the
WormJam model removing hub metabolites like water, ATP,
CoA etc. A background dataset with all combinatorial possible
metabolite pairs was calculated to determine which values are
most informative. Figure 4B shows the histograms for both
distributions. Based on this data we decided to use a cut-off
>0.4. The pairs contained several generic similarities, e.g., fatty
acids are similar to other fatty acids. A large cluster was occupied
by fatty acids, sugars and several ascarosides (Figure 4C).
Several examples are presented in the following paragraphs
related to specific aspects of metabolism or the biology of
C. elegans. This also includes examples where identifications are
in contrast to the current knowledge of C. elegans metabolism
and more experiments for verification of falsification need to be
performed.

One example is the detection of creatine and creatinine.
Three of the studies have reported creatine and four creatinine
using different analytical methods. No evidence for the use of
creatine and creatinine in C. elegans exists. The worm uses
arginine instead of creatine as phosphagen. C. elegans harbors
a putative ortholog of the human mitochondrial creatine kinase
CKMT2 (W10C8.5, WBGene00021128), however this might
also act as arginine kinase. This enzyme was expressed at
a higher rate, together with muscle related proteins, in daf-
2 worms (Depuydt et al., 2013), but no ortho- or homologs
for the enzymes required for the biosynthesis of creatine
have been identified. Creatine and creatinine might have been
misidentified.

Several small organic acids have been identified in the
exometabolome of C. elegans. These acids, including e.g.,
isovaleric acid or 3-hydroxyisovaleric acid are breakdown
products of branched chain amino acids and have been measured
in the exometabolome of mitochondrial mutants or anoxic
conditions. In the WormJammodel, they are only present bound
to CoA, despite several carnitine derivatives of these organic
acids being detected experimentally. Since these organic acids are
produced in the mitochondria they also have to be transported,
which is achieved by the carnitine transport system. Small
hydroxy organic acids are excreted by long-lived mitochondrial
mutants (Butler et al., 2010, 2013).

Interestingly, several fatty acids were not present in the model,
plus fatty acid ethanolamides. Both play important roles in the
biology of C. elegans. Fatty acids represent building blocks of
lipids and are also linked to production of secondary messengers
and signaling molecules. Related to this class of metabolites,
several new ascarosides are contained in the list of metabolites
curated from literature. These ascarosides contain very long fatty
acid side chains, which are currently not covered in the consensus
model. Also, the respective fatty acids (>C26) are not present
in the model. Currently, only two publications have detected a
C30:0 fatty acid (Gao A. et al., 2017; Gao A. W. et al., 2017).
There is growing evidence that the biosynthesis of ascarosides
is more complex than previously expected (Zhou et al., 2018).
So far, only peroxisomal beta-oxidation of simple ascarosides is

covered in the model. Several individual lipid species have been
reported.

Several modified nucleotides have been detected in
one particular study, including 1-Methylguanosine, 1,7-
Dimethylguanosine, 1-Methylinosine, 5-Methylcytidine, and
N6-Carbamoyl-L-threonyladenosine. These nucleotides are
found in RNA and represent degradation products if found in
free form. These modified bases have been measured by LC-MS
from RNA samples in C. elegans (van Delft et al., 2017). These
modifications play important roles in fine tuning RNA function,
e.g., tRNA contains several modified nucleotides. Additionally,
the production of these modified nucleotides consumes distinct
other metabolites, e.g., SAM, and therefore represents an
important sink for methyl groups. Therefore, they will need to
be added in future versions of the model (Figure 4D).

Two bile acids, taurodeoxycholic, and glycodeoxycholic acid
have been detected, but are not included in the WormJam
model. The currently best-studied bile acid-like structures are
the dafachronic acids (Mahanti et al., 2014; Aguilaniu et al.,
2016). However, recent investigations from two WormJam
labs have shown that more steroid derived molecules exist in
C. elegans than previously expected (Frank Schoeder, personal
communication, Figure 4E).

Metabolites that are found in the WormJam model but not
detected containmostly CoA derivatives of different molecules or
molecules that are not stable enough for detection or only have a
short half-life.

Public Availability of MS/MS and NMR Spectra and

Reference Standards
Correct identification of metabolites from non-targeted
metabolomics plays an important role for biological
interpretation and relies on the availability of reference
standards and reference spectral libraries. Therefore, we checked
the availability of tandem MS spectra in MassBank of North
America (http://mona.fiehnlab.ucdavis.edu/). Spectra were
sorted into LC-MS, GC-MS, CE-MS, in silico and others (no
method available in metadata). Metabolites from the WormJam
model were used for the search.

We used the InChIKey as search criteria. First, the complete
InChIKey was used to identify perfect matches. Two hundred
eighty-eightmetabolites matched exactly to LC-MS spectra, while
230 were found to have at least one GC-MS related entry in
MoNA. Between the two 199 were overlapping. Metabolites for
which reference tandemMS spectra are available are mostly from
central metabolic pathways and for which reference materials are
readily available.

Likewise, we checked for the public availability of NMR
spectra. We downloaded all NMR spectra files from HMDB and
isolated the HMDB IDs and added the fitting InChIKeys, which
were used as search criteria for the WormJam metabolites. In
total 81 metabolites had one or more NMR spectra associated in
HMDB.

We were next interested which metabolites are publicly
available as reference standards for future metabolomics
experiments. We queried the catalog of Sigma-Aldrich/Merck,
Cayman Chemicals, and other vendors and checked for
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availability of substances. Four hundred forty metabolites are
available from Sigma-Aldrich/Merck and 131 from additional
chemical vendors. For most metabolites for which MS/MS
and NMR data is available, a reference standard is also
available. Poorly covered areas are different: mostly secondary
metabolites, e.g., ascarosides. The Schroeder lab has synthesized
a range of reference standards for this substance class, which
are also available upon request (Frank Schroeder, personal
communication). However, for future metabolite annotation and
identification in C. elegans, reference spectra will be required in
the public domain.

Concentrations of Metabolites in Worms
Although many metabolites have been detected, so far only a few
papers report absolute concentrations of known substances. One
particular example is presented by GaoA.W. et al. (2017). Results
for analysis of fatty acids and amino acids are an exception as
they were expressed in nmol/mg of protein. Concentrations from
different labs, however might not be directly comparable with
each other due to differences in worm cultivation (e.g., different
peptone/tryptone). However, a concentration range in which a
metabolite might be expected can be derived from this. The
curation of this valuable information will becomemore andmore
important. Following the example of the human metabolome
database, which reports metabolite concentrations in different
biofluids for healthy and diseased individuals, concentrations
linked with the genotype and phenotype of a worm experiment
shall be stored centrally. WormBase represent the ideal candidate
for storing this kind of data.

OUTLOOK

Overview of the WormJam Reconstruction
While the current WormJam reconstruction is a good consensus
between existing efforts, and the most accurate C. elegans
metabolic model to date, the task is by no means completed. The
accuracy of the metabolic reconstructions is not uniform across
biochemistry. For example, the metabolism of carbohydrates and
peptides is well-described, but the coverage of nucleic acids and
lipids can be improved. The number of different compartments
is limited, and in particular some organelles featuring very
specific biochemistry, such as lysosomes and peroxisomes, are
not explicitly represented. Moreover, C. elegans is a multi-
cellular organism interacting with a complex environment, and
its cellular metabolism cannot be understood in isolation.

Integration With Diet and Omics Data
The typical cultivation of C. elegans involves maintenance on
three possible Escherichia coli strains OP50, HB101, and HT115.
Dietary (bacterial/axenic) and nutritional changes have been
known to alter health, lifespan (Fontana and Partridge, 2015) and
drug efficacy in nematodes. For example, several recent studies in
C. elegans have shown that nematodes fed with different bacterial
strains respond differently to cancer drugs (García-González
et al., 2017; Scott et al., 2017). Another recent study showed that
serotonin-increased feeding resulted in increased synthesis of
aging-related proteins (Gomez-Amaro et al., 2015). In contrast,

in its natural environment, C. elegans harbors a rich community
of bacterial commensals that are distinct from its environmental
microbiota indicating a certain level of host selection of bacteria
(Dirksen et al., 2016; Schulenburg and Félix, 2017; Zhang et al.,
2017). Similar to the microbiota in higher animals, bacteria
can have fitness-modulating effects on the nematode including
improved growth compared to cultivation on E. coli OP50
(Dirksen et al., 2016; Samuel et al., 2016) and a protection against
pathogens (Montalvo-Katz et al., 2013). Based on genomic
sequences, we have recently started to reconstruct genome-scale
metabolic networks of more than hundred bacterial strains found
in association with C. elegans (Obeng et al., in preparation).
Thus, integration of diet is of particular relevance with respect
to the utilization of C. elegans on E. coli OP50 as a model
system for microbiome host-interactions in the context of the
influence of the microbiome on the efficacy of pharmaceutic
therapies (Cabreiro et al., 2013; Scott et al., 2017). We expect
that this resource along with the consensus reconstruction of
the C. elegans metabolism presented in this work and easy
experimental amenability will provide a central cornerstone for
the establishment of C. elegans as a workhorse in the study of
host-microbiome interactions.

Biological variability is imminent when an organism is
partitioned into different contexts such as environment,
mutation, or cell-type/tissue/organ/life stage. Omics data
capture these variations in a gamut of biological molecules
(Narayan et al., 2016; Cao et al., 2017; Gao A. W. et al., 2017)
and thus can be used to generate context-specific models.
One of the previous metabolic reconstructions (Gebauer et al.,
2016), integrated transcriptomic data to study aging using two
previously published algorithms (Shlomi et al., 2008; Zur et al.,
2010; Jensen and Papin, 2011). However, there are an array
of different algorithms which include but are not limited to
mCADRE (Wang et al., 2012), FASTCORE (Vlassis et al., 2014;
Pacheco et al., 2016), INIT (Agren et al., 2012), and CORDA
(Schultz and Qutub, 2016). The general methodology of these
algorithms involves applying constraints on the metabolic
network by binarizing the omics data (Richelle et al., 2018).
Though there is no clear verdict on which algorithm is most
accurate representation of context-specificity (Shlomi et al.,
2008; Jensen and Papin, 2011), the need to include a diverse set
of omics data to construct context-specific models is apparent.
The WormJam model is being curated by taking into account
the list of metabolites that have been detected in C. elegans, thus
facilitating incorporation of context-specific metabolomics data
to provide systemic insights.

Expanding the Breadth of Understanding
of the C. elegans Metabolome
The refinement of a community network reconstruction of
C. elegans now provides a context to more comprehensively map
out the metabolome. Several further developments will allow
us to further grasp this in its full detail. First, the field should
strive for better and uniform annotation of metabolites. Efforts
such as the WormJam curation will help in this regard, but the
actual problem will only be solved once annotation pipelines
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that are developed in individual institutes will be shared,
compared and become publicly available. Second, improving
metabolomics techniques for C. elegans will improve detection
and annotation of metabolites. One example is the annotation
of isobaric and isomeric compounds. As for now, these
compounds are often difficult to separate using the most widely
used metabolomics platforms. Combining conventional mass
spectrometry techniques with additional separation techniques
such as ion mobility and NMR spectroscopy will allow the
identification of such compounds, and aid in improving the
annotation. Third, validation: the rapid expansion of the
technical arsenal for metabolomics in C. elegans calls for caution
when it comes to validating methods between labs. Although
routine in clinical environments, the same standards should be
adopted in a basic research environment. Dense data sets such
as those emerging from a metabolomics screen—often involving
>1,000 unique metabolites—make it challenging to establish the
limit of detection/quantification and assay variability, but this
should nevertheless be the ambition to move the field forward.
Finally, in addition to the steady state metabolomics protocols it
will be important to develop tools to investigate the dynamics of
metabolism. Since metabolism is highly dynamic and adaptable,
the analyses should reflect this to prevent biased data based on
only a single snapshot. Stable isotope tracing allows for such
interpretation. Exposing C. elegans to for instance 13C-labeled
metabolic substrates at various time points, in combination
with analytical MS, standard NMR; or hyperpolarized NMR
spectroscopy (Fan and Lane, 2011; Plainchont et al., 2018) will
enable the detection of downstream and intermediate products
and reconstruction of the metabolic flux distribution. While this
strategy is now widely adopted in mammalian cell-based models,
only a few papers describe similar efforts in C. elegans (Vergano
et al., 2014).

A further important point in the future will be the reporting
of confidence in metabolite identification. For our curation
we did not include any quality metrics of the metabolite
annotation/identification supplied by the authors. However, it
will be important to make judgements about the quality of the
data. A particular example is found in structures that have not
been shown in C. elegans before (e.g., creatine and creatinine
detected in many different publications). Here identifications
might be not correct. Different levels of identification have been
proposed by the Metabolomics Standard Initiative (MSI), which
should be used to report confidence (Sumner et al., 2007; Haug
et al., 2013; Rocca-Serra et al., 2015). Also deposition of data,
including identified metabolites and their link to the respective
organism, e.g., in Metabolights (Haug et al., 2013), will foster the
automatic reconstruction ofmodel organismmetabolomes (Salek
et al., 2017).

Lipids and Lipid Metabolism
Lipids represent a major bottleneck in metabolic models in
general, not only in the C. elegans model. Lipids cover a
large combinatorial space with different fatty acid combinations
possible, which is hard to be represented accurately in a
stoichiometric model. In addition, C. elegans harbors several

peculiarities regarding its lipidmetabolism (Witting and Schmitt-
Kopplin, 2016). First, it can produce, or acquire from its diet,
the full range of saturated, MUFAs, PUFAs as well as odd-
branched-chain fatty acids on its own and uses them in all lipid
classes. Second, it contains several specific lipid classes like the
Maradolipids (Mar) (Penkov et al., 2010), long chain ascarosides
and phosphoethanolamine glucosylceramides (PEGCs) (Boland
et al., 2017). With the curation of the merged model we
have undertaken the first steps toward a better representation.
However, major parts are still missing, e.g., better biomass
compositions for constraint-based modeling including detailed
fatty acid profiles for individual lipid classes. Furthermore, even if
detailed biosynthesis pathways for each individual lipid could be
integrated into the model, there would still be a huge discrepancy
between detailed structure in the model and the annotation and
identification capabilities of current lipid analysis methods. With
standard lipidomics analysis usually neither the position nor the
stereochemistry of double bonds can accurately be identified.
Therefore, new ways for modeling, but also for the analysis of
lipids need to be investigated to make it possible in the future to
incorporate lipidomics data.

CONCLUSION

We have shown that there is discrepancy between the model
metabolites and metabolites detected by different metabolomics
approaches. Specific metabolites from the WormJam model have
not been detected so far. Although several are simply not stable
enough or have a high turnover rate will be probably never be
detected, others might be not accessible with current approaches
to low concentrations. On the other side, many detected and
reported metabolites could not be found in the model. This is
of major interest, since either the identifications are wrong or
the model is incomplete. Several examples shown in this paper
highlight that we might actually miss several aspects in the
metabolism and biology of C. elegans. Based on some of our
findings the community as whole can now start to explore new
metabolic pathways or links to other aspects and their link to
metabolism (e.g., epigenetics).
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