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Abstract. Computational models play an important role in framing
our existing knowledge. Such a formal framework is capable of testing
scientific hypotheses about biological systems. Increased numbers of an-
notated models are being developed in order to facilitate communication,
search, comparison, retrieval and validation. A key part of model descrip-
tion relies on consistent representation of information which has been
addressed through structured file formats and community guidelines. As
we move towards a more comprehensive representation of model-related
information, it becomes ever more important to understand how these
information are most easily integrated in order to satisfy complex use sce-
narios. Here, we review key model-related data and emerging methods for
facile integration and analysis. More effective approaches for knowledge
representation are essential to decrease the time and effort involved in
data integration and create new opportunities for model-based science.

1 Introduction

The number, size and complexity of computational models in biology are contin-
uously increasing. Consequently, efficient model reuse is fundamental to progress-
ing computational biology research [16, 23]. Scientists may search for models of
interest, aim to compare virtual experiments, or aim to build large network mod-
els. They may also seek to infer additional knowledge in a field, to archive their
works, or simply aim to make their work publicly available and reproducible
by others. Here the effectiveness of reusability depends on several factors in-
cluding the availability of models through the Web and open repositories; the
supplementary information explaining what the model encodes; and the level of
explanation provided about results associated to the models [28]. Open reposito-
ries such as BioModels Database [18] or the Physiome Model Repository PMR2
[30] grant researchers access to model code and associated meta-data. These
models and their components are generally provided in standard format and an-
notated with terms from shared vocabularies. Shared vocabularies may be lists
of allowed terms (a controlled vocabulary), hierarchically organized terminolo-
gies (a taxonomy) or more formally defined ontologies. Models are furthermore
equipped with links to external information.



Standardized model representation formats are the Systems Biology Markup
Language (SBML) [13], or CellML [20]. Their declarative nature makes models
independent of the code-level implementation. Model code is provided together
with links to reference publications and graphical representations of the mod-
els’ network structure. In few cases, standardized simulation descriptions are
available, and links to simulation tools capable of running the models are given.

Obviously, just making data digital – even if in standard formats – is not
sufficient for facile integration [15]. We argue that additional effort is required to
ensure full interoperability of knowledge put into and arising from computational
modeling and simulation.

2 State of the Art

Model repositories provide access to already published models in different stan-
dard formats and at different levels of granularity. They also provide model-
related information that may be mandatory to reuse a model, or helpful to
understand it. To date, no common platform exists to query models across these
repositories, e.g. searching for SBML and CellML models on the Cell Cycle. As
a consequence, model retrieval remains a tedious process. Not only that differ-
ent repositories have to be queried, it may even become necessary to compare
implementations of the same model in different resources.

Models in standard format are generally equipped with additional knowledge.
The abovementioned model representation formats use the Resource Description
Framework (RDF) [5] for annotation. Annotations are attached to model con-
stituents that represent objects in the biological world, mathematical concepts
such as mathematical equations, modeling concepts such as Michaelis-Menten
enzyme kinetics etc. Thus annotations link the computational model to the
knowledge stored externally in databases and knowledge bases. Prominent on-
tologies in the field are the Gene Ontology [2], the NCBI Taxonomy [29], and
the Systems Biology Ontology [7]. Annotated models form the basis for tasks
such as model comparison, merging, search, or display [19, 24].

However, the standardized representation of models is only the first step to-
wards reproducible e-science. A second and equally important aspect is that
the methods and simulation parameters used to generate numerical results re-
ported in a publication must also be adequately described [26]. SED-ML is being
developed as an XML-based exchange standard for capturing the necessary ele-
ments to reproduce simulation [27]. Simulation descriptions in SED-ML include
references to appropriate simulation algorithms from the Kinetic Simulation Al-
gorithm Ontology (KiSAO) [7]. The resulting behavior of a model in a particular
simulation experiment can then be formally described with annotations linking
to terms from the TErminology for the Description of DYnamics (TEDDY) [7].
Information about models is complemented by data from the literature (e.g.,
reference publications), graphical representations of models (e.g., in the Systems
Biology Graphical Notation (SBGN) [17]), or pointers to simulation results (e.g.,
in costly simulations). Further data relevant for model reuse include experimen-



tal data and setups that form the basis for a computational representation of
a biological system, initial assumptions and considerations during the modeling
process, or constraints of the model when reusing it. In this paper we focus on
the model-related data summarized in Table 1.

Type Format

publication text
model XML (SBML, CellML, NeuroML); RDF/OWL (SIO)
simulation XML (SED-ML); OWL (KiSAO)
results XML (NuML); RDF/OWL (SIO)
controlled vocabularies OBO, RDF/OWL
experimental data XML (MAGE-ML, PSI-MI, MzML);

RDF/OWL (Bio2RDF, SIO, OBI)

Table 1. Selection of model-related data and their availability in standard formats.

Research projects concerned with the integration of data for the life sciences
are manifold [1] and based on different technologies such as workflow systems,
semantic web technologies or graph-based approaches [21, 4]. Remarkably, these
projects focus on the experimental data itself and therefore have well identified
problems with integrating Bioinformatics data. More recently, the value of frame-
works for the integration and simulation of computational models in physiology
has been demonstrated [9]. The authors present a method to integrate models
of different scales based on ontology knowledge. Similarly, possibilities for the
integration of models with simulation descriptions have recently been outlined
[10]. Following up on these efforts, we argue that, similarly to the ISA project
[22] which integrates and makes interoperable resources linked to experimental
data, integration methods must now be developed for model-related information.
In this paper, we review some ongoing developments in computational biology.

3 Possibilities for the Integration of Model-related Data

Data integration is fundamental to improved interoperability of computational
models and may have different purposes: To transport a complete model from one
point to the other, e.g. in collaborative modeling projects, or when submitting
a model for publication in an open database. Another purpose is to integrate
the data to search it. One may want to limit a search to a particular set of
models that contain the parameter estimation step, or one may look for models
that are based on a specific set of experimental data. Finally, the integration
of model-related data allows to extend the current knowledge of a system using
inference. In the following, we describe three already developed approaches to
integrate model-related data: First, all data may be stored in one COMBINE
archive. Second, a graph database can be implemented to link all resources on
the storage level. Third, the data can be converted into linked RDF-data, as
exemplified for a great number of resources by the BIO2RDF project [3].



3.1 The COMBINE Archive

The initial idea of an archive to exchange model and simulation descriptions had
been proposed to support the use of SED-ML. Based on that idea, the COMBINE
archive provides researchers a single-file format for storing all model-related in-
formation (http://co.mbine.org/documents/archive). A single file is easier
to share among research partners, and it is easier to store. A COMBINE archive
is a zip-file containing the various documents necessary for the description of one
or several models and all associated data and procedures for running these mod-
els. For instance, a COMBINE archive may contain models in SBML, simulation
experiment descriptions in SED-ML, and graphical representations in SBGN-
ML. Furthermore the archive may include publications, figures, result data, an-
notation files and others. A manifest file, encoded in XML, lists the location
and type of each file within an archive. In the current version of the COMBINE
archive, all the files described must be included in the archive itself. However,
it is envisioned that in the future the manifest could list files located elsewhere,
using valid and resolvable URIs, following the IDENTIFIERS.org scheme [14].
The archive’s metadata file then contains clerical information about the various
files contained in the archive, and the archive itself. The use of the COMBINE
archive format is expected to improve the exchange of computational studies
of biological systems. For example, BioModels Database curators welcome the
submission of COMBINE archives instead of sole model code as archives help
to quickly reproduce the results that the model says to generate and thereby to
curate and publish the models in BioModels Database.

3.2 Graph-based Model Storage

An alternative way to integrate model-related information is through a graph-
based storage approach. The great amount of meta-information associated with
today’s models, and the fact that models represent network structures make
graph databases attractive for model storage [10]. NoSQL approaches have al-
ready been successfully used in other Life Science applications [25], for example
in projects like Bio4J (http://bio4j.com/) which is a graph-based database
for bio-ontologies. In the context of computational biology, a graph-based model
store can be built by transforming the model’s XML structure into a graph con-
sisting of nodes (for model constituents and annotations) and edges (relations
between the nodes). Edges may represent the link from a model entity to an an-
notation node, or the link of a model entity to another constituent (e.g., linking
an SBML species to an SBML reaction). Graph-representations of existing on-
tologies may either be imported (but then need to be updated regularly) or linked
to using unambiguous identifier schemes, such as the aforementioned IDENTI-
FIERS.org. In addition, Information Retrieval techniques can be implemented
on top of the graph-database to query model constituents and their annota-
tions. Available cross-links between ontology terms can be incorporated to build
a highly connected index which allows to generate ranked result lists of models
for a given query [11]. This search is based on annotations and thus independent



of the underlying model representation format. Interestingly, the graph repre-
sentation also enables structure-queries to search for subnetworks represented
by the nodes and edges in the model graph. A similar graph-representation of
simulation descriptions will foster linking model constituents and simulation ex-
periments [10]. Finally, both ontologies and SED-ML files may link to models of
different representation formats, thereby establishing further relationships be-
tween models and making them easier comparable. The flexible graph structure
allows for creating direct relationships between model constituents of any model,
for example stating that one constituent in an SBML model equals a constituent
in a CellML model.

3.3 Semantic Web enabled Integration

With the World Wide Web as a ubiquitous platform for the publication and
dissemination of information, a key challenge is in how to use Internet technol-
ogy to facilitate the publication and discovery of structured, interlinked data. To
address this very issue, the World Wide Web Consortium (W3C) initiated the
Semantic Web effort for the representation, publication, integration and query
of data in standard formats. At the core of the effort lie technologies such as
RDF, RDF schema (RDFS), SPARQL query language, and the Web Ontology
Language (OWL). RDF offers a simple mechanism to i) identify and ii) describe
entities in terms of their types, attributes and relations to other entities. In the
context of computational biology, these entities are, for example, models, model
constituents, or result data. They are unambiguously identified by Internation-
alized Resource Identifiers (IRIs) which allows for de-referenceable web-based
identifiers (HTTP URIs). That is to say, when users paste the identifier in their
web browsers, they will get back information about the entity of interest. This
information is structured in a so-called triple or statement consisting of a sub-
ject, a predicate and an object or literal. Bio2RDF (http://bio2rdf.org/) is
an international project that uses Semantic Web technologies to provide a global
network of linked data for the life sciences [6]. Adopting a simple Web-friendly
naming convention with contributed open-source software, Bio2RDF currently
processes hundreds of thousands of user queries per month regarding billions
of statements about millions of entities from several dozen scientific databases.
This advanced research platform enables investigators to easily construct so-
phisticated queries that span genes, gene expression, genetic variation, proteins,
protein domains, interaction networks, pathways, and diseases. With the inclu-
sion of the Gene Ontology and BioPAX-formatted, computational models from
BioModels Database to Bio2RDF, it is now easy enough to craft a federated
query that for instances, determines the number of the biochemical reactions
that are involved in protein catabolic processes based on the structure of the
Gene Ontology (Table 2).

While most ontologies offer a simple taxonomy through a hierarchical orga-
nization of terms, OWL makes it possible to formally describe the attributes of
types and relations such that they can be used for automatic classification and
consistency checking. For instance, we might like to check that all those human



Gene Ontology Annotation No. of Reactions

protein catabolic process [go:0030163] 51
cellular protein catabolic process [go:0044257] 26
modification-dependent protein catabolic process [go:0019941] 1
beta-amyloid formation [go:0034205] 1
cyclin catabolic process [go:0008054] 1

Table 2. Finding biochemical reactions involved in protein catabolic processes
(BIO2RDF)

curated semantic annotations in the BioModels Database are actually correct.
One approach, termed the SBML Harvester [12], involves converting the RDF-
based semantic annotations into OWL ontologies and using a reasoner to uncover
any inconsistencies. Application to the BioModels Database yields an OWL on-
tology with more than 300,000 classes, 800,000 axioms and includes all referenced
ontologies: GO (functions, compartments, processes), ChEBI (molecules), Cell-
type Ontology (cell types), FMA (anatomy) and PATO (qualities). Reasoning
over the integrated ontology resulted in 27 inconsistent models, for which most
could be attributed to errors in the annotation. In two models, BIOMODELS
176 and 177, the semantic annotation incorrectly associated an ATPase reac-
tion with alpha-D-glucose-phosphate instead of the correct ATP species. More
recent work illustrates how the Semanticscience Integrated Ontology (SIO) can
act within the semantic web framework to integrate and validate biological data
and terminology, models, parameters, and simulation results through reasoning,
computational trend analysis and provenance [8]. Indeed, the semantic web of-
fers a more sophisticated solution for advanced knowledge representation and
discovery.

4 Conclusions

The repeated call for reproducible scientific results in Systems Biology leads to
increased presence of models in standard format. The existence of rich ontologies
of biomedical knowledge and reference systems furthermore form a basis for
ontology-based data integration. It is also a fact that computational models
cannot anymore be published on their own. One reason are stricter requirements
for reproducibility by the journals. Another reason is that models become more
and more complex, forming ever larger networks, which makes them harder to
understand by simply looking at them.

The integration of model-related data can be realized through unambiguous
model identifiers, e.g., the ones used for CellML exposures. Implicit links between
models are given in the model annotations and can be used for model search and
simulation descriptions using multiple models. However, alternative approaches
include the generation of generic schemes for the integrated management of
model-related data. These should also be explored, because they can be build
on elaborated methods from the research field of data integration.



Integration of model-related data should be independent of the underlying
model representation format. This requirement is fulfilled by all three approaches
introduced in this paper. The COMBINE archive creates a bundle of files neces-
sary to reproduce a result shown by a model. The shipping of a single (zip) file is
easier and guarantees that the information necessary for reproduction is always
complete. However, the information inside the archive is not interconnected with
external resources per se, but needs to be extracted and stored appropriately to
be queryable. A graph storage forms a network of interrelated nodes (models,
simulation descriptions, ontology terms). The edges between nodes allow to de-
fine flexible connections. The graph-based approach furthermore enables queries
regarding the structure of model data, and already existing Information Retrieval
techniques are easily applicable to the integrated network of models. Finally, the
semantic web approach to integrating ontological knowledge with model-related
data lies in the scalable federation of relevant information using web technology
coupled with powerful query answering using automated reasoning.
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