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Abstract: Computational modeling and simulation have become invaluable tools for the biological sciences. Both aid in 

the formulation of new hypothesis and supplement traditional experimental research. Many different types of models us-

ing various mathematical formalisms can be created to represent any given biological system. Here we review a class of 

modeling techniques based on particle-based stochastic approaches. In these models, every reacting molecule is repre-

sented individually. Reactions between molecules occur in a probabilistic manner. Modeling problems caused by spatial 

heterogeneity and combinatorial complexity, features common to biochemical and cellular systems, are best addressed us-

ing Monte-Carlo single-particle methods. Several software tools implementing single-particle based modeling techniques 

are introduced and their various advantages and pitfalls discussed. 
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1. INTRODUCTION 

 Advances in Molecular Biology and the advent of High-
Throughput Biology and Bioinformatics have in recent years 
renewed interest in the branch of biology termed Systems 
Biology [1]. Systems Biology focuses on the interactions of 
biological entities within a biological system. Alongside the 
structural and functional interactions between the diverse 
elements, such as enzymes and metabolites in a biochemical 
pathway, or transcription factors and genes in a transcription 
regulatory network, a systems approach attempts to decipher 
the control-logic of the system which in turn determines the 
systems dynamics. The dynamics and interactions of indi-
vidual components give rise to emergent properties which 
only make sense in the context of the system as a whole [2]. 
These systems can consist of a large number of interacting 
entities [3, 4] and, as a consequence, mathematical modeling 
and computational simulation are invaluable tools for the 
biological sciences and Systems Biology in particular. 

 Computational simulations are a useful tool as it is fre-
quently the case that laboratory experiments only provide a 
snapshot of a system at any given time and do not fully cap-
ture the temporal aspect of the system. If changes over time 
are measured, these often only follow the change in concen-
tration of one entity. Yet even systems of few interacting 
components can give rise to complex behavior [5] which can 
be missed if not all entities are monitored. Apart from aiding 
in the comprehension of the complexity arising from large 
numbers of interactions, there are many other reasons why 
computational tools have become useful, if not necessary, in 
biological research. The complete control a researcher has 
over the model allows for manipulation which is difficult or 
impossible in vivo or in vitro experimental set-ups, such as 
alterations of diffusion speed of molecules [6]. In addition, 
models can generate new hypotheses which can anticipate 
biochemical characterization, as was the case, for example, 
with  the  non-cooperative ultrasensitivity predicted a decade 
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before the experimental discovery of the MAP kinase cas-
cades [7, 8]. Finally, models are also time- and cost-effective 
in comparison to laboratory experiments. Once a detailed 
model has been created, it can be re-used with only minor 
modifications in order to test new hypotheses and does not 
incur the costs of consumables [9, 10]. 

 Most kinetic models of biological processes treat the re-
acting components as population pools. These are either con-
tinuous concentrations or discrete populations. In either case, 
the components are an indistinguishable mass of identical 
elements. This inability to accurately depict single-particles 
gives rise to two main problems: (i) inability to represent 
spatially heterogeneous populations, and (ii) combinatorial 
explosion caused by molecular entities that can assume mul-
tiple distinct states, such as the phosphorylation states for a 
protein. Modeling problems caused by spatial heterogeneity 
and combinatorial complexity, features common to bio-
chemical and cellular systems are best addressed using these 
Monte-Carlo single-particle methods. We shall first describe 
the two most common approaches to population based mod-
eling. We will then describe in more detail the main prob-
lems associated with population based models and how par-
ticle-based models resolve these issues. In these models, 
every reacting molecule is represented individually. Reac-
tions between molecules occur in a probabilistic manner. 
Software tools implementing particle-based modeling tech-
niques are introduced along the way. 

2. POPULATION BASED MODELING 

2.1. Mass Action Kinetics Models 

 Many different types of kinetic models using various 
methodologies can be created to simulate any given biologi-
cal system. By far the most common methodology used to 
create models is based on Mass Action kinetics. The empiri-
cal law of Mass Action tells us that the rate at which a 
chemical reaction proceeds is proportional to the amount of 
reacting species [11]. The state of the model at any time is 
defined by the population of its molecular components at 
that time. The main assumptions of the model are that the 
reactants are well-mixed, that is spatially uniformly distrib-
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uted within a finite reaction volume, and that the chemical 
species are present in large numbers, allowing us to treat the 
populations of molecular species (pools) as concentrations 
varying on a continuous scale. The dynamical behaviour of 
the system can then be expressed using Ordinary Differential 
Equations (ODEs). Although both these assumptions often 
do not hold for living systems [12], ODEs do provide a use-
ful and powerful methodology for the analysis of some bio-
logical problems, such as the cell cycle control mechanism in 
budding yeast [13]. Using mostly ODEs, a model was cre-
ated which was able to explain to a large degree the pheno-
type of over 100 yeast cell cycle mutants, and allowed for 
prediction of new mutant combinations and estimation of 
biochemical rate constants. Additionally, many models of 
gene regulatory networks [14], metabolic networks [15] and 
signalling pathways [2] use ODEs. Although the resulting 
ODEs can be numerous and coupling between equations can 
make solving them analytically difficult, methods for solving 
ODEs numerically are well established and standard mathe-
matical software if often enough to run simulations based on 
Mass Action kinetics. 

2.2. Stochastic Kinetics Models 

 One distinguishing feature and frequent criticism of the 
use of Mass Action kinetics in biological modeling is the fact 
that these models are continuous and deterministic. The as-
sumption of Mass Action kinetics that molecules are present 
in large numbers allows us to treat them as continuous con-
centrations. The deterministic nature of ODEs used to calcu-
late the dynamics of the system imply that once the starting 
conditions for a system are known, it is possible to predict 
the systems state at any time. The same starting conditions 
will always yield the same result. Nature, however, is far 
from continuous or deterministic. Molecules are discrete 
entities and reactions are discrete events. Many important 
molecular entities exist only in small copy numbers, and 
these numbers change in discrete steps. The smaller the 
number of molecules involved the more important the fluc-
tuations about the mean value become. If copy numbers are 
small, ensemble averages result in a poor approximation of 
the process and fluctuations can have a discernible impact on 
the system. This is often the case in biological systems. In-
deed, many processes are influenced or governed by fluctua-
tions (see [16] and [17] for more detailed examples). Apart 
from the deviation from mean values exacerbated by small 
copy numbers, molecular events themselves are not determi-
nistic, as not every molecular collision leads to a molecular 
reaction between two potential reacting partners. For all in-
tent and purposes these events are probabilistic. If the mo-
lecular population pools are treated as discrete populations 
and Mass Action reaction rates are mapped onto probabili-
ties, one arrives at a stochastic formulation of chemical ki-
netics in the form of the chemical master equation (CME). 
Although analytically extremely difficult to solve, models 
based on the CME can be computationally simulated by us-
ing the algorithm presented by Gillespie [18], based on a 
kinetic Monte Carlo scheme originally developed by Bortz et 
al. [19]. The Gillespie algorithm, also known as the Stochas-
tic Simulation Algorithm (SSA), uses probabilities called 
reaction constants, derived from the chemical kinetics rate 
constants, that determine whether a reaction occurs. Briefly, 
the algorithm commences with initial conditions that specify 

the molecular population numbers and the reaction constants 
for each reaction these molecules can undergo. Random 
numbers then determine what length of time elapsed and 
what reaction occurred within that timespan. The molecular 
population numbers are then adjusted, alongside with the 
dependent probabilities, and the cycle re-commences. As 
such, the SSA is an event-driven algorithm. The SSA has 
been used extensively, most notably with gene regulatory 
networks [20]. It should be noted that, although models 
based on the CME take account of the discrete and random 
nature of chemical reactions, the reacting species are still 
described as populations with no distinction made between 
individual entities. The state of a model is generally de-
scribed by population number of all the species involved in 
the reaction network. Furthermore, the reacting entities are 
still considered spatially uniformly distributed. 

2.3. Limitations of Population-Based Approaches 

2.3.1. Spatial Resolution 

 Population-based modeling techniques assume that all 
the reactive chemical species are contained in a well mixed 
reactor. While this is generally true in a test tube, biological 
systems exhibit much more complex spatial heterogeneity. 
For example, the cytoplasm of even the simplest cell con-
tains many distinct compartments, each with its own specific 
protein complement. Even within a single compartment, lo-
calization of molecules can be influenced in many different 
ways, such as by anchoring to structures like the plasma 
membrane or the cytoskeleton. The relative positioning of 
biological entities with respect to one another is fundamental 
for the proper working of many molecular biological systems 
and can give rise to quite complex behaviour. For example, 
enzymes acting in the same pathway are often found co-
localised, such as the enzymes of fatty acid biosynthesis or 
glycolysis [21, 22]. As the product of one reaction is the sub-
strate for the next reaction along the pathway, this co-
localisation increases substrate availability, and concomi-
tantly enhances catalytic activity, by giving rise to increased 
local concentration of substrates. Additionally, substrates are 
less likely to be captured by competing enzymes. This phe-
nomenon is often refered to as Substrate Channelling. [23]. 
Equally, signaling molecules are often confined to specific 
regions or found in close proximity to the proteins responsi-
ble for their activation, such as calcium/calmodulin-
dependent protein kinase II (CaMKII) and calmodulin asso-
ciation with the N-methyl-D-aspartate receptor at the mam-
malian glutamatergic synapse [24]. As calcium enters the 
cell through the receptor, there will be an elevated local con-
centration of calcium available to calmodulin, which in turn 
will be in close proximity to CaMKII. At times this co-
localisation creates supramolecular assemblies composed of 
many interacting partners; the postsynaptic density found 
just below the postsynaptic membrane of the glutamatergic 
synapse, which contains a large host of signaling proteins 
and their potential targets, is an example of such a structure 
[25, 26]. Co-localisation of signaling molecules is thought to 
prevent crosstalk and may aid protein interaction by concen-
trating potential partners in the same area [27]. Indeed local 
microdomains of signalling molecules have been shown to 
be important in some biological systems [28]. Equally diffu-
sion plays an important role in cellular processes. Molecules 
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move by diffusion and it is through the diffusion of signaling 
molecules that information gets relayed from one cellular 
location to another such as, for example, from plasma mem-
brane receptors to the nucleus. Indeed, using concepts bor-
rowed from Metabolic Control Analysis, Kholodenko et al. 
have shown that diffusion can exert a significant amount of 
control in a signaling pathway if the relative positions of 
signaling molecules are taken into account [29]. Co-local-
isation of molecules and effects dealing within the microdo-
main range cause problems for population based methods as 
these do not operate at a sufficent high spatial resolution. 
When spatial representation is introduced into population 
based methods, the well-stirred approximation is nonetheless 
applied locally, and the differential localisation of reactants 
still cannot be addressed, as molecular resolution is not 
available. Algorithms have been developed, derived from the 
SSA, in order to address the problem of spatial heterogeneity 
in reaction-diffusion systems [30]. Those methods, when 
employed by simulation software such as MesoRD [31] and 
SmartCell [32], allow us to tackle some issues of spatial het-
erogeneity, but cannot be used if molecular resolution is re-
quired. Spatial dimensions can be added to Mass Action 
based approaches, turning the ODEs into corresponding par-
tial differential equations (PDEs), though these are hard to 
solve in comparison to the ODEs. Finally, as reactive species 
are treated as populations rather than as individual mole-
cules, there is no way of addressing the geometry of compo-
nents and the effects arising from this geometry. Yet geome-
try of molecular entities is often important when considering 
their function. Microtubules are an excellent example. Not 
only do microtubules have a specific geometry, but their 
polarity arises from the geometry of their tubulin compo-
nents. Recent reviews describe in detail the numerous meth-
ods employed by modeling software to deal with spatial rep-
resentation and associated diffusion [33, 34], including solu-
tions for incorporating space into population-based methods. 

2.3.2. Combinatorial Explosion 

 A population-based model generally includes as many 
populations as there are reacting molecular species. Yet 
many molecular species can assume different states [36]. 
These states could correspond to, for example, post-
translational modifications, ligand occupation or conforma-
tion states. Additionally, molecules can aggregate to form 
molecular complexes. Each state and complex is treated as a 
distinct molecular species and demands its own population 
pool. This can lead to the problem of combinatorial com-
plexity in the form of an explosion of distinct chemical spe-
cies, and a concomitant explosion of chemical reactions. An 
example will illustrate this point: Let us say a biological sys-
tem consists of two chemical species, A and B. Species A 
reacts with species B in a bimolecular reaction. Further let us 
assume there are 500 molecules of species A and 100 mole-
cules of species B. If species A possesses 10 phosphorylation 
sites, a modest number compared to some biological mole-
cules [37], the total number of different molecular states it 
can assume is 2

10
 = 1024. Therefore, population-based mod-

els would need to create 1024 population pools for species 
A, alone. However, we mentioned that there are only 500 
molecules of species A. Clearly, using computational re-
sources to handle 1024 distinct populations, when the total 
number of actual molecules cannot exceed 500 presents a 

waste of computational power. The number of individual 
reactions that need to be modelled also increases rapidly. If 
there are only species A and B which interact, and neither 
possesses a phosphorylation site, only one reaction needs to 
be considered: 

A + B 

If species A however possesses one phosphorylation site, the 
number of reactions climbs to 3: 

A + B 

AP + B 

A  AP 

 Table 1 illustrates the growth of states (each of which 
capable of reacting with B) and state conversion reactions for 
this simple system. The number of states grows exponen-
tially. The situation becomes even more wasteful if species B 
can also assume multiple states. If, for example, A can as-
sumes nA states and B can assume nB states, the number of 
potential bimolecular reactions is 2

nA 1
 x 2

nB 1
. This can also 

lead to a waste in computational resources if not every state 
of B affects its reaction with A. A number of attempts have 
been made to tackle this problem for population-based meth-
ods [38, 39]. 

Table 1. Explosion of States and Increase in Number of Reac-

tions with Respect to States 

 

Number of Fea-

tures 
Number of 

States 
Number of State Converson 

Reactions 

0 1 0 

1 2 1 

2 4 4 

3 8 12 

4 16 32 

5 32 80 

7 128 448 

8 254 1025 

n 2n n2n-1 

3. PARTICLE-BASED STOCHASTIC APPROACHES 

 We can broadly classify molecular biological models into 
three categories: macroscopic, mesoscopic and microscopic. 
Microscopic models encompass Molecular Dynamics (MD) 
simulations. MD simulations use Newtonian laws to deter-
mine the dynamics of groups of atoms. In general, these are 
computationally expensive and, as a consequence, MD can 
only capture the dynamics of a few molecules at best. At the 
other end of the scale, macroscopic models focus on the dy-
namics of populations. As mentioned above, they are often 
based on chemical kinetics and utilised mostly ODEs. Parti-
cle-based modelling falls under the classification of meso-
scopic modelling. Unlike macroscopic models, mesoscopic 
models treat biological entities, such as proteins, as individ-
ual objects. They do not attempt to model the dynamics of 
every atom within a molecule, but instead centre on the 
molecule as a whole. Most quantum-physical details are ei-
ther assumed to take on average values or are ignored for the 
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sake of simplicity. As every particle of interest is considered 
in particle-based models, the state of the model is given by 
the collective states of all the particles in the model. The 
focus on individual entities allows for the observation of the 
behaviour of individual particles within the ensemble and 
how individual particles contribute to the behaviour of the 
system. For reaction diffusion systems, such as a signal 
transduction pathway or a metabolic pathway, many particle-
based models are derivatives of the Smoluchowski model for 
reaction-diffusion systems. In effect, the Smoluchowski 
model describes a solution of interacting chemical particles 
as spheres which move by Brownian motion until two 
spheres come within a certain distance of each other causing 
them to react. The general applicability of this model led to 
the development of a number of general particle-based simu-
lation software. Most programs use Brownian dynamics al-
gorithms to simulate the Brownian motion of the particles of 
interest, and implement their own algorithms to handle the 
simulation of reactions. Most of the algorithms used to simu-
late reaction events are Monte Carlo algorithms, i.e. they use 
random numbers when computing an outcome, which take 
into account experimentally measured reaction rates when 
calculating reaction probabilities. Some of the general bio-
chemical network simulators that implement the above 
framework are MCell [40], Smoldyn [41] and ChemCell 
[42]. 

 The MCell program [40], which was originally devel-
oped to model the neuromuscular junction [43], is a general 
simulator of biochemical reaction networks that takes ac-
count of positional information. Biological entities within 
MCell fall into two categories: freely diffusing ligand mole-
cules and stationary effector molecules, such as receptors. 
Only the effector molecules are capable of undergoing reac-
tions and as such simulated reactions occur at surfaces 
within the MCell software. The ligand molecules diffuse 
using a Brownian Dynamics algorithm. MCell keeps track of 
any interaction between the ligand molecules and the effec-
tor tiles. If a ligand molecule and an effector site do come 
into contact, the program uses probabilities to determine the 
chance of a reaction occurring. 

 Similar to MCell in the free diffusion of molecules in a 
3D simulation volume is the simulation software Smoldyn 
[41]. Although molecules do not take up volume, each mole-
cule within a Smoldyn simulation has an identity and a loca-
tion in space. The state of the system is entirely determined 
by the 3D locations of all the molecules. The molecules dif-
fuse through the simulation volume using a 3D random walk 
algorithm. Smoldyn, unlike MCell, is capable of simulating 
reactions in solution. 

 Within the above mentioned programs, simulated mole-
cules are propagated in the simulation volume over a series 
of fixed time-steps. At the end of every time-step the pro-
grams check whether a reaction event has occurred. In order 
to capture every collision event, and hence possible reaction, 
small time-steps are required. A recently published method, 
Green’s Function Reaction Dynamics (GFRD) [44], offers 
an attractive alternative to the Brownian Dynamics approach. 
In analogy to the SSA, GFRD is an event-driven algorithm, 
in which the next reaction is determined stochastically 
alongside the time which is required to pass to yield the reac-
tion, and the entire system is advanced by this time interval. 

This can significantly improve on the Brownian Dynamics 
approach with respect to speed [44]. 

3.1. Spatial Resolution 

 Since the particle state can include positional informa-
tion, for example in a coordinate system, it is possible to 
determine all particles positions, or even orientations, with 
respect to each other. This enables the simulation of subtle 
spatial interactions, such as local concentration and diffusion 
effects. As an example Shimizu and Bray used the single-
particle simulation software StochSim, to investigate one of 
the most studied cellular signalling systems, the chemotactic 
response of Escherichia coli. This system relies on the exis-
tence of a lattice of membrane receptors [45]. Their results 
fit better with experimentally observed results than a similar 
simulation which did not take account of local effect [46], 
The previously mentioned general reaction network simula-
tors MCell and Smoldyn have also been used to great effect 
when investigating spatially heterogeneous models. Prob-
lems that were addressed using MCell include modeling of 
glutamate spill-over leading to activation of extra-synaptic 
receptors and buffered diffusion effects due to trapping of 
neurotransmitter by receptors at the glutamatergic synapse 
[9], or variability in the size of postsynaptic potentials 
caused by release of glutamate from different sites in the 
active zone and effects of glutamate receptor positioning in 
the postsynaptic density on receptor opening times [10]. 
These simulations required knowledge of the relative posi-
tions of diffusing particles (glutamate) and effector sites (re-
ceptors) and would have been difficult to do using non-
single particle methods. Smoldyn has been used to model the 
diffusion of phosphorylated CheY (CheYp) through the cy-
toplasm in bacterial chemotaxis and its interaction with the 
phosphatase CheZ [47]. Realistic 3D modeling allowed for a 
detailed diffusion trace of individual CheY protein mole-
cules moving through the cytoplasm and of the examination 
of the change in lifetime and cytosolic distribution of CheYp 
for different cytological distributions of CheZ. Further, the 
effect of molecular crowding on the CheYp gradient was 
investigated. Again, none of these simulations would have 
been possible without taking into account 3D space. 

 The geometry of reacting components can also be incor-
porated using particle-based models. Nédélec [48] used a 
particle-based model to investigate the interations generated 
by motor proteins between antiparallel microtubules. The 
model includes the polarity inherent in microtubules and 
their motor proteins and the simulation was capable of re-
producing structures similar to those seen in mitotic spindles. 

 Meredys, a mesoscopic simulator currently being devel-
oped in our laboratory, incorporates a particles geometric 
information. Based on the the Abstracted Protein Simulator 
(APS) software [49] written by Dan Mossop and Fred How-
ell, it represents biological entities as single particles, 
spheres or cylinders, or as compound objects formed from 
the two. Every basic particle can have a number of binding 
sites associated with it. Particles and compound objects dif-
fuse through the simulation volume using a 3D random walk 
algorithm. Bonds between particles are broken and created as 
determined by the user-defined rules. A collision detection 
algorithm establishes whether particles come sufficiently 
close to allow bond formation. Although conceptually sim-
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ple, the use of rules to determine binding allows for creation 
of quite complex models. Currently Meredys is used in our 
laboratory to model the movement of -amino-3-hydroxy-5-
methyl-4-isoxazol propionic acid (AMPA) subtype of gluta-
mate receptors in the post-synaptic membrane, as was ob-
served in glutamatergic neurons [50]. Evidently, positional 
information is key to these investigations and single-particle 
modeling will allow modeling of local concentration effects 
produced by mobile receptor, glutamate and cytoplasmic 
signaling molecules. 

3.2. Combinatorial Explosion 

 With single particle modeling every molecule has an 
identity, so the number of distinct populations is limited by 
the number of molecules. Superfluous species pools are 
avoided. In a recent paper by Pettigrew and Resat [51], the 
computational efficiency of two Stochastic kinetic simula-
tion algorithms where compared: a variant of the population-
based SSA and the StochSim algorithm [52, 53]. The authors 
conclude that the SSA outperforms the StochSim algorithm 
as the models species population increases, however the 
StochSim algorithm performs much better when the species 
population remains small, but the network connectivity (in 
terms of simulated phosphorylation sites) increases. The sin-
gle-particle based biological simulator StochSim represents 
each biological entity by one software object. The simulated 
molecules in Stochsim are capable of being in more than one 
state. These states are maintained by a vector of binary flags. 
Before any reaction is attempted, the algorithm inspects the 
current state of the reacting molecules, as determined by the 
binary flags, and modifies any flags representing fast reac-
tions, based on a probability. These include, for example 
ligand-binding or conformational transition flags and other 
operations which occur at a speed greater than uni-
/bimolecular reactions. The state of the molecule effects the 
reaction probability of the that molecules possible reactions. 
For example, a flag representing a phosphorylation state, can 
make possible, or completely disallow, a bimolecular reac-
tion. Although StochSim can be used as a general biological 
simulator, it has been developed specifically to model fea-
tures of chemotaxis in E. coli. It lends itself particularly well 
to this problem set due to its ability of representing many 
distinct states of individual molecules. For example, the as-
partate receptor in E. coli possesses four methylation states, 
as well as binding sites for ligands and several protein inter-
action partners. Using StochSim for the simulations of the 
aspartate response pathway in E. coli, Shimizu et al. exam-
ined the effect of receptor coupling on the range of signal 
response and gain and compared results to experimental ob-
servations [46]. 

4. CONCLUSION 

 Computational modeling of biological systems is becom-
ing an ever more important part of biological research. Ki-
netic models of biological reaction networks can be created 
using a variety of methodologies. The majority of models 
created to date use ODE to model populations of chemical 
species. In this review we attempted to show that when mod-
els are created to address the effect of spatial heterogeneity 
on biological function, or if the network is composed of a 
small number of molecules with high connectivity, mesos-

cale models of biological systems, where individual biologi-
cal entities are represented, can overcome modeling pitfalls 
that other, population-based modeling techniques are prone 
to. Although the paucity of quantitative data is a clear bottle-
neck and often frustrates attempts of building accurate mo-
lecular models, it should not detract from well thought-
through efforts. Basic models can be extended as more bio-
logical data is aquired. Indeed, often these models are essen-
tial in guiding traditional experiments to yield new insight. 
Many software tools already exist that function as general 
biological simulators and permit the modeling of many bio-
logical phenomena using single-particle methods. It is likely 
that modeling software will become a routine part of the bi-
ologists toolbox within the foreseeable future. Single particle 
based modeling techniques offer users the ability to create 
some of the most realistic models of biological systems and 
as such it is imperative that development and improvement 
of particel-based simulation software continues. 
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