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Abstract

Activation of CaMKII by calmodulin and the subsequent maintenance of constitutive activity through autophosphorylation
at threonine residue 286 (Thr286) are thought to play a major role in synaptic plasticity. One of the effects of
autophosphorylation at Thr286 is to increase the apparent affinity of CaMKII for calmodulin, a phenomenon known as
‘‘calmodulin trapping’’. It has previously been suggested that two binding sites for calmodulin exist on CaMKII, with high
and low affinities, respectively. We built structural models of calmodulin bound to both of these sites. Molecular dynamics
simulation showed that while binding of calmodulin to the supposed low-affinity binding site on CaMKII is compatible with
closing (and hence, inactivation) of the kinase, and could even favour it, binding to the high-affinity site is not. Stochastic
simulations of a biochemical model showed that the existence of two such binding sites, one of them accessible only in the
active, open conformation, would be sufficient to explain calmodulin trapping by CaMKII. We can explain the effect of
CaMKII autophosphorylation at Thr286 on calmodulin trapping: It stabilises the active state and therefore makes the high-
affinity binding site accessible. Crucially, a model with only one binding site where calmodulin binding and CaMKII
inactivation are strictly mutually exclusive cannot reproduce calmodulin trapping. One of the predictions of our study is that
calmodulin binding in itself is not sufficient for CaMKII activation, although high-affinity binding of calmodulin is.
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Introduction

Calcium/calmodulin-dependent kinase II (CaMKII) [1], a

highly abundant neuronal protein, has been implicated in learning

and memory. Knockout mice that cannot express the a isoform of

CaMKII show deficiencies in spatial learning [2] and also in

hippocampal long-term potentiation (LTP) [3]. Long-term poten-

tiation is an activity-dependent increase in synaptic strength [4]

that has long been associated with learning and memory [4,5]. On

a molecular level, the coincident activity of a pair of neurons

triggers a calcium signalling cascade that will lead to a

strengthening of the synaptic connection: Upon activation of

AMPA receptors by glutamate, the postsynaptic neuron is

depolarised, relieving the Mg2z block that inhibits NMDA

receptor function under basal conditions [6,7]. The resulting

calcium influx through the NMDA receptor leads to the activation

of CaMKII via calmodulin [8–10]. Active CaMKII enhances the

function of AMPA receptor channels by phosphorylating their

GluR1 subunit [11]. It also mediates an increase of AMPA

receptor delivery to the postsynaptic membrane [12]. The role of

CaMKII in postsynaptic calcium signalling and its abundance in

neurons support the view that CaMKII is a key protein in LTP

induction and learning.

The CaMKII holoenzyme is dodecameric, organised as a

hexamer of dimers [13] with the appearance of two stacked rings

[14]. Each subunit can adopt two distinct conformations: An

autoinhibited ‘‘closed’’ conformation, in which the active site is

bound to the auto-inhibitory helix [13], and an active ‘‘open’’

conformation, in which this interaction is disrupted. Calmodulin

stabilises CaMKII activity by binding to the inhibitory helix [15].

The open state of CaMKII is further stabilised by auto-

phosphorylation at threonine residue 286 (Thr286) [16], which

confers calmodulin-independent activity [17]. Phosphorylation at

Thr286 increases the apparent affinity of CaMKII for calmodulin

[18]. This is due to a decrease in the rate at which calmodulin

dissociates. A mechanistic explanation for this phenomenon, called

‘‘calmodulin trapping’’, is yet to be found. It has been suggested,

however, that the phenomenon of calmodulin trapping might be

related to the existence of two calmodulin binding sites on each

CaMKII subunit: one high-affinity binding site within residues

291–312 and one low-affinity binding site within residues 298–312

[19].

In order to better understand the molecular basis of calmodulin

trapping, we used a combination of structural modelling and

stochastic simulations of CaMKII regulation. We show here that

calmodulin binding in itself is not sufficient for CaMKII

activation, and that calmodulin trapping can be explained by

the existence of two binding sites.

Several models of various aspects of CaMKII function exist.

Some of these have not included calmodulin trapping at all,

because they were concerned with other aspects of CaMKII

function, such as frequency dependence [20] or bistability [21–
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23]. Models that did include calmodulin trapping (e.g. [24–27])

have modelled it explicitly, as an ad hoc change in calmodulin

affinity once a CaMKII subunit is phosphorylated. Our model is

the first one to offer a mechanistic explanation of calmodulin

trapping.

Results

To investigate whether binding of calmodulin to the presumed

high-affinity binding site was structurally plausible and to

investigate the effect that this would have on the CaMKII subunit,

we turned to structural modelling.

Closed and open conformations explored in the absence
of Calmodulin

We first investigated the range of conformations a single

CaMKII subunit can explore if it is allowed to open up, i.e. if the

linking region between the inhibitory helix and the rest of the

kinase domain is allowed some flexibility. We used a previously

published structure of the CaMKII kinase domain from C. elegans

CaMKII (PDB ID: 2BDW, chain A) [13] and performed

structural modelling where information about the four residues

that link the inhibitory helix to the active domain were left out. An

overlay of 100 structures is shown in Figure 1, and average root-

mean-square deviation (RMSD) for each residue is plotted in

Figure 2. In the absence of further constraints, the flexible linker

allows for considerable movement of the inhibitory helix with

respect to the kinase domain, ranging from structures which are

essentially closed, i. e. where the catalytic domain is masked by the

auto-inhibitory helix, to open structures, where the kinase domain

is accessible. This is consistent with a recent study by Hoffman et

al. who found that in the absence of calmodulin, CaMKII exists as

a conformeric equilibrium between structures where the auto-

inhibitory helix and the kinase domain interact and structures

where this interaction is disrupted [28].

Low-affinity binding of calmodulin does not interfere
with the closed conformation of CaMKII

To model the structure of calmodulin bound to the low-affinity

binding site of CaMKII, we used previously published structures of

the kinase domain of CaMKII (PDB ID: 2BDW, chain A) [13]

and of calmodulin bound to a fragment of the inhibitory helix of

CaMKII (PDB ID: 1CM1, chains A and B) [29] for structural

modelling and molecular dynamics simulations. The structural

model suggests that calmodulin binding to the low-affinity binding

site of CaMKII is compatible with closure of the CaMKII subunit

(see Figure 3, left panel). A PDB file of the resulting structure can

be found in Dataset S1.

To test whether low-affinity binding of calmodulin to CaMKII

might favour a more open structure, we gave the inhibitory helix

of CaMKII freedom to move by introducing a flexible linker

between the helix and the kinase domain. The model suggests that

even if the inhibitory helix is given freedom to move away from the

catalytic domain, the closed form is preferred (see Figure 3, right

panel). This may be due to an interaction between residues Asp51

and Asp59 in the calmodulin structure (PDB ID: 1CM1, chain A)

and Lys20 (in C. elegans, corresponding to Lys21 in mouse or rat) in

the catalytic domain of CaMKII (PDB ID: 2BDW, chain A). The

interaction is highlighted in Figure 4. A similar interaction

between calmodulin and the catalytic kinase domain has recently

been reported for calmodulin binding to death-associated protein

kinase (DAPK) [30]. In the absence of this interaction, low-affinity

binding of calmodulin would be compatible with further opening

of the CaMKII subunit. This would be the case, for instance, when

CaMKII is locked in the open conformation by autophosphory-

lation at Thr286. A structure of calmodulin bound to an open

conformation of CaMKIId has indeed been observed (PDB ID:

2WEL) [31].

Thus, the structural model suggests that calmodulin binding to

the low-affinity binding site on CaMKII can happen indepen-

dently of whether the CaMKII subunit is open or closed. This

would also mean that binding of calmodulin does not necessarily

stabilise the active conformation of CaMKII, at least as long as

calmodulin is bound to the low-affinity site.

Figure 1. Opening of a CaMKII subunit. Overlay of 100 model
structures created with MODELLER, where structural information was
omitted for the four residues linking the kinase domain of CaMKII with
the inhibitory helix. These four residues are shown in yellow. The
structure corresponding to the published structure of the kinase
domain (with the linker region intact, PDB ID: 2BDW, chain A) [13] is
shown in red.
doi:10.1371/journal.pone.0029406.g001

Figure 2. Opening of a CaMKII subunit: Mean RMSD per
residue. Average root-mean-square deviation (RMSD) per residue for
the structures shown in figure 1. RMSD values were computed using
Chimera [53].
doi:10.1371/journal.pone.0029406.g002

Mechanism for Calmodulin Trapping by CaMKII
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High-affinity binding of calmodulin requires opening of
CaMKII

In order to model calmodulin binding to the high-affinity

binding site on CaMKII, we modified the structure of calmodulin

bound to a fragment of the inhibitory helix of CaMKII (PDB ID:

1CM1, chains A and B) [29] by manually shifting the position of

calmodulin by one turn of the helix, corresponding to the

supposed position of the high-affinity binding site. We then used

this structure and the structure of the kinase domain of CaMKII

(PDB ID: 2BDW, chain A) [13] to create a combined structural

model. This approach, however, failed to give a valid structure

without overlaps. We concluded that calmodulin binding to the

proposed high-affinity binding site is impossible if CaMKII is in

the closed conformation.

To further test this hypothesis, we repeated our modelling

approach, this time omitting structural information pertaining

to the linker region between the inhibitory helix and the kinase

domain, so that the two domains were free to move with respect

to each other. Under these conditions we could indeed obtain

an overlap-free structure of the calmodulin-CaMKII complex

(see Figure 5). A PDB file of this structure is provided in Dataset

S2.

Figure 3. Models of Calmodulin bound to the low-affinity site of a CaMKII subunit. Left panel: Binding to a CaMKII subunit in a closed
conformation. Right panel: Binding to a CaMKII subunit with flexible linker. Although the linker region between inhibitory helix and catalytic domain
was flexible, the complex CaMKII-calmodulin still favoured a closed conformation of CaMKII. Calmodulin is shown in red, CaMKII in grey. The Thr286
autophosphorylation site is shown in teal, the region that links the catalytic domain to the autoinhibitory helix in yellow.
doi:10.1371/journal.pone.0029406.g003

Figure 4. Interactions between calmodulin and its low-affinity binding site on the kinase domain of CaMKII. Interacting residues are
shown as sticks. Calmodulin is shown in red and CaMKII in grey.
doi:10.1371/journal.pone.0029406.g004

Mechanism for Calmodulin Trapping by CaMKII
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It is interesting to note that this structure requires a considerable

degree of opening of the CaMKII subunit, thereby exposing the

autophosphorylation site at Thr286. Unlike in the model of

calmodulin binding to the low-affinity site, there seems to be no

interaction between calmodulin and the catalytic domain of

CaMKII, which allows CaMKII to adopt an open state and

facilitates substrate access to the catalytic site. In addition,

calmodulin binding to the high-affinity site seems to cause some

degree of local conformational change in the inhibitory helix.

Together, these results suggest that binding of calmodulin to the

low-affinity site is independent on whether CaMKII is open or

closed, but that binding to the high-affinity site requires opening of

CaMKII, and will therefore stabilise the active open state.

High-affinity binding includes residues crucial for
calmodulin trapping

Having obtained a structural model of calmodulin binding to an

open state of CaMKII, we examined whether this structure could be

relevant for calmodulin trapping. By using site-directed mutagen-

esis, Singla et al. [32] have shown residues Phe293 on CaMKII and

Glu120 and Met124 on calmodulin to be crucial for calmodulin

trapping by CaMKII. Indeed, in the high-affinity structure, Met124

on calmodulin makes contact with both Phe293 on CaMKII and

Glu120 on calmodulin (see Figure 6, left panel), a feature not found

in the low-affinity structure (see Figure 6, right panel).

This suggests that binding of calmodulin to the high-affinity site

on CaMKII may play an important role in calmodulin trapping.

Only one calmodulin binding site can be occupied at any
given time

The structural model also suggests that, although there might

well be two binding sites for calmodulin on each CaMKII subunit,

no more than one calmodulin molecule can be bound at any given

time. Figure 7 shows that there is considerable overlap between

the two binding sites. This means that the actual stoichiometry of

CaMKII binding to calmodulin is still at most one calmodulin

bound per subunit of CaMKII. Due to the proximity of the two

binding sites, however, calmodulin binding to the low-affinity site

will greatly increase the effective local concentration of calmodulin

around the high-affinity binding site, and vice versa. Thus, a

calmodulin molecule could effectively stay associated with a

CaMKII subunit, while ‘‘sliding’’ back and forth between the low-

affinity and the high-affinity binding site.

Thus, the two binding sites for calmodulin on CaMKII do not

allow more than one calmodulin molecule to bind at any given

time, but provide two modes of binding to CaMKII for a single

calmodulin molecule.

The structural model is compatible with a two-binding-
sites hypothesis

Taken together, the results suggest that the structural model of

calmodulin binding to CaMKII is indeed compatible with the

existence of two calmodulin binding sites on CaMKII, as

suggested by Tse et al. [19]. Binding to one of these sites (the

low-affinity site) would be compatible with closure and hence,

inactivity of the CaMKII subunit, while binding to the other (high-

affinity) site would require CaMKII to be open. The presumed

high-affinity binding event involves residues previously implied in

calmodulin trapping [32]. To test whether this two-binding-sites

model could explain calmodulin trapping by autophosphorylated

CaMKII, we set up a stochastic model of these interactions.

Figure 5. High-affinity binding of calmodulin to the open state
of CaMKII. Calmodulin is shown in red, CaMKII in grey and the
autophosphorylation site at Thr286 in teal.
doi:10.1371/journal.pone.0029406.g005

Figure 6. Residues crucial for calmodulin trapping. Left panel: In the high-affinity structure, residue Met124 on calmodulin (in red) makes
contact both with residue Glu120, also on calmodulin and with residue Phe293 on CaMKII (in grey). Right panel: In the low-affinity structure, these
contacts are missing.
doi:10.1371/journal.pone.0029406.g006

Mechanism for Calmodulin Trapping by CaMKII
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Stochastic simulations of calmodulin trapping by CaMKII
Using the results from structural modelling, we have designed a

rule-based model of calmodulin trapping by CaMKII. In this

model, CaMKII is represented as a hexamer. This is a

compromise between modelling CaMKII as a collection of

monomeric subunits and modelling CaMKII as a dodecameric

holoenzyme. A model in which CaMKII is represented as

unconnected monomeric subunits would be sufficient in order to

study the core mechanisms for calmodulin trapping (including the

two binding sites for calmodulin, opening and closing of the

subunit and the effect of Thr286 phosphorylation on calmodulin

affinity). However, it would make it harder to accurately describe

Thr286 autophosphorylation, which is a neighbour-sensitive

reaction between adjacent subunits on the same hexameric ring.

On the other hand, representing CaMKII as a full dodecamer

would make it necessary to include other kinds of neighbour-

sensitive interactions - many of them as yet poorly understood -

but would not provide any additional insights into the trapping

mechanism.

In our model, each subunit of CaMKII can be open or closed,

phosphorylated at threonine residues 286 and 306 and bound to

calmodulin on either the high-affinity or the low-affinity binding

site. The open form is assumed to be catalytically active. This

results in a model where each subunit has five binary state flags:

activity, phosphorylation at Thr286, phosphorylation at Thr306,

binding of calmodulin to either of the two sites and binding of

calmodulin to the high-affinity site. (The last two flags are set to 00

if no calmodulin is bound, 10 if calmodulin is bound to the low-

affinity site and 11 if calmodulin is bound to the high-affinity site.

The combination 01 is impossible.) Autophosphorylation at

Thr286 is modelled as a neighbour-sensitive reaction, which can

only occur if both the subunit acting as the kinase and the subunit

acting as the substrate for the phosphorylation reaction are open.

Phosphorylation at Thr286 locks a subunit in the open state. In

our model, the corresponding dephosphorylation is mediated

protein phosphatase 1 (PP1). Phosphorylation at Thr306 is an

intra-subunit autophosphorylation and therefore depends on the

subunit in question being active. Phosphorylation at this residue,

however, does not interfere with closing of the subunit. Since both

the presumed high-affinity and low-affinity binding domains for

calmodulin contain residue Thr306, phosphorylation at this

residue and calmodulin binding are modelled to be mutually

exclusive. Following the results of the structural model presented

above, calmodulin binding to the high-affinity binding site

precludes closing of a CaMKII subunit, whereas binding to the

low-affinity site does not interfere with closing.

A diagram of the reaction scheme used in the stochastic model

can be found in Figure 8. A full list of reaction rules is given in

table 1.

The two-binding-sites model can reproduce trapping
To assess whether our model can reproduce the trapping of

calmodulin observed in vitro, we ran stochastic simulations on

both wildtype CaMKII and an in silico mutant version that cannot

be phosphorylated at Thr286. Following the experimental

procedure of Meyer et al. [18], the system was allowed to saturate

for thirty seconds, and calmodulin then inactivated, corresponding

to the withdrawal of calcium in the experimental setup. The ratio

between calmodulin and CaMKII concentration used for this

simulation was the same as used by Meyer et al. [18] (60 hexamers

of CaMKII for 450 molecules of calmodulin), and no phosphatase

was present. To ensure that the observed result is not just a

random effect, the same simulation was repeated ten times on

wildtype and mutant CaMKII. The simulations (see Figure 9)

show that although both versions of CaMKII were equally

saturated with calmodulin after thirty seconds, calmodulin

Figure 7. Interaction surfaces for low-affinity and high-affinity
binding. The interaction surfaces for calmodulin binding are projected
onto a CaMKII monomer. The low-affinity interaction surface is shown in
blue, the high-affinity interaction surface in green, and the overlap in
cyan. Interaction surfaces were computed using Chimera [53] with a 6 Å
cutoff.
doi:10.1371/journal.pone.0029406.g007

Figure 8. Model of calmodulin trapping by CaMKII. The model is
shown as an SBGN ER diagram [54]. For clarity, only one monomeric
subunit is shown. In the actual model, six such subunits form a ring, and
autophosphorylation at Thr286 of one subunit is dependent on the
neighbouring subunit being open.
doi:10.1371/journal.pone.0029406.g008

Mechanism for Calmodulin Trapping by CaMKII
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dissociation proceeded slower from the wildtype than from the

mutant, showing a trapping effect that is, indeed, due to different

apparent off rates.

Figure 10 shows examples of calmodulin binding behaviour at

the level of the individual subunit. From one of the ten simulation

runs above, we chose fifteen subunits at random out of all subunit

that undergo calmodulin binding during the course of the

simulation and plotted calmodulin binding and phosphorylation

over time. The Figure shows that calmodulin binding behaviour

varies widely across subunits. Note that since calmodulin was

inactivated after 30s, no new binding events are seen from then

on, so whether calmodulin is bound to a subunit depends entirely

on dissociation. While direct dissociation from the high-affinity site

does occur, movement of calmodulin from the high-affinity site to

the low-affinity site and back again is more frequent, especially in

phosphorylated subunits.

Taken together, this shows that the two-binding-sites model

presented here can reproduce calmodulin trapping without having

to postulate changes in microscopic association or dissociation

parameters upon phosphorylation of CaMKII. The existence of

these two binding sites for calmodulin is thus sufficient to explain

calmodulin trapping.

A one-binding-site model cannot reproduce trapping
Could calmodulin trapping be explained by an alternative

model? Our model relies on two key assumptions: First, that each

CaMKII subunit has two calmodulin binding sites and second,

that binding to the low-affinity binding site does not necessarily

entail CaMKII opening and thus, activation. This naturally raises

the question of whether a model that does not rely on these two

assumptions could also reproduce calmodulin trapping.

In order to address this issue, we constructed a model of

CaMKII with only one (high-affinity) calmodulin binding site. In

this model, calmodulin binding and closing of a CaMKII subunit

are mutually exclusive, meaning that calmodulin binding is

sufficient for CaMKII activation. All other reactions and

parameters are the same as in the model presented above.

Figure 11 (left panel) shows the pooled results of ten simulations on

wildtype CaMKII and on Thr286-to-alanine (T286A) mutant

CaMKII with this alternative model. As in the trapping simulation

Table 1. List of reactions for the model of calmodulin trapping by CaMKII.

Phosphorylation of CaMKII at Thr286 Substrate: CaMKII
Product: CaMKII
Sets flag on neighbour: +P286
Needs flag: +open
Needs flags on neighbour: +open 2P286

Dephosphorylation of CaMKII at Thr286 by PP1 Substrates: CaMKII, PP1
Products: CaMKII, PP1
Sets flag: 2P286
Needs flag: +P286

Phosphorylation of CaMKII at Thr306 Substrate: CaMKII
Product: CaMKII
Sets flag: +P306
Needs flags: +open 2P306 –calm

Dephosphorylation of CaMKII at Thr306 by PP1 Substrates: CaMKII, PP1
Products: CaMKII, PP1
Sets flag: 2P306
Needs flag: +P306

Calmodulin binding to CaMKII (low-affinity site) Substrates:CaMKII, calmodulin
Product: CaMKII
Sets flag: +calm
Needs flags: 2P306 -calm –ha

Calmodulin dissociating from CaMKII (low-affinity site) Substrate: CaMKII
Products: CaMKII, calmodulin
Sets flag: 2calm
Needs flags: +calm –ha

Calmodulin binding to CaMKII (high-affinity site) Substrates: CaMKII, calmodulin
Product: CaMKII
Sets flags: +calm +ha
Needs flags: +open 2P306 2calm 2ha

Calmodulin dissociating from CaMKII (high-affinity site) Substrate: CaMKII
Products: CaMKII, calmodulin
Sets flags: 2calm 2ha
Needs flags: +calm +ha

Opening of CaMKII (rapid equilibrium) Substrate: CaMKII
Product: CaMKII
Sets flag: +open
Probability: 1 if +P286 or +ha, 0.004 else

‘‘Sliding’’ of calmodulin to the high-affinity site
(rapid equilibrium)

Substrate: CaMKII
Product: CaMKII
Sets flag: +ha
Probability: 0.99997 if +open and +calm

List of reactions for the model of calmodulin trapping by CaMKII.
doi:10.1371/journal.pone.0029406.t001

Mechanism for Calmodulin Trapping by CaMKII
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presented above, CaMKII was first saturated with calmodulin

(here: at the beginning of the simulation in order to separate the

effect of Thr286 on calmodulin binding from its effect on

calmodulin dissociation) and all free calmodulin then withdrawn,

such that dissociation of calmodulin from CaMKII could be

monitored. The results show that this alternative model cannot

reproduce the change in apparent koff that characterises

calmodulin trapping. For comparison, the same simulation was

run with our two-binding-site model (Figure 11, right panel),

showing a clear difference between wildtype and mutant CaMKII.

Taken together, these results suggest that the existence of two

binding sites for calmodulin on a single CaMKII subunit is not

only sufficient, but might indeed be necessary for trapping. If only

one binding site is used in vivo, then another, yet unknown

mechanism must be in place to enable calmodulin trapping.

Discussion

Assumptions underlying our model
The model presented above makes assumptions regarding both

the choice of initial conditions for simulations and the fundamental

mechanisms involved in calmodulin binding to CaMKII. Initial

conditions were chosen to match the conditions used in the

experimental paper that first reported calmodulin trapping [18].

This is why calmodulin concentration is saturating, the entire

population of calmodulin molecules is assumed to be active at the

beginning of the simulation and CaMKIIa is the only isoform

considered. This reflects the situation in the test tube, and

therefore, like an in vitro experiment, allows us to isolate and

explain the particular mechanism of calmodulin trapping. This is

also why the unit of analysis in our model is the hexameric ring,

because, given our current knowledge, this is best suited to study

calmodulin trapping: It includes the neighbour-sensitivity of

Thr286 autophosphorylation, but disregards possibly confounding

and as yet ill-understood effects of dodecameric assembly. In order

to understand the role that calmodulin trapping plays in

postsynaptic signalling and, ultimately, synaptic plasticity, it will

be necessary to place the model in a context that better mimics in

vivo conditions. This includes a more detailed representation of

calmodulin activation, CaMKII topology and subunit composi-

tion, accurate calcium dynamics, the presence of other proteins

and spine geometry.

Regarding the binding mechanisms, our model makes two

important assumptions: First, that there are two binding sites for

calmodulin on CaMKII and second, that binding to one of these

sites is compatible with closing of CaMKII, i. e. that calmodulin

binding is not sufficient for CaMKII activation. By measuring

calmodulin binding to CaMKII peptides of different lengths,

Waxham et al. [33] and Tse et al. [19] have made a plausible case

for the first assumption, though whether both binding sites are

actually used for calmodulin binding to full-length CaMKII in vivo

has not been experimentally confirmed so far. (Note, however, that

experimental work by Chin and Means [34] on full-length

CaMKII seems to be consistent with the existence of two

calmodulin binding sites, although the authors themselves do not

draw the same conclusion). The second assumption is somewhat

more controversial; in fact, most of the literature on CaMKII

implicitly or explicitly assumes that calmodulin binding is sufficient

for CaMKII activation (reviewed in [35]). The question therefore

arises whether both these assumptions are necessary in order to

reproduce trapping of calmodulin by CaMKII.

We therefore developed a corresponding one-binding-site

model, where calmodulin binding is incompatible with CaMKII

closing and therefore sufficient for CaMKII activation. This model

has only one (high-affinity) binding site, and the apparent CaMKII

affinity for calmodulin is slightly higher than for the wildtype in the

two-binding-site model. This is because there is no exchange and

no competition between high-affinity and low-affinity binding sites

in the one-binding-site model, such that all calmodulin binding is

concentrated on the high-affinity binding site. Crucially, this

model could not reproduce calmodulin trapping: The apparent

koff of calmodulin is the same for wildtype and T286A mutant

Figure 9. Several trapping simulations on wildtype and mutant CaMKII. Calmodulin is inactivated, mimicking calcium withdrawal after 30s.
The ratio of calmodulin to CaMKII concentration used in the simulation was the same as used in the experimental setup by Meyer et al. [18]. The
number of calmodulin-bound monomeric CaMKII subunits is plotted against time for each simulation run. The total number of CaMKII subunits in the
simulation was 360. Wildtype is shown in black, T286A mutant in red. Ten simulation runs are shown for each.
doi:10.1371/journal.pone.0029406.g009

Mechanism for Calmodulin Trapping by CaMKII
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CaMKII. This suggests that at least one of the two conditions

needs to be fulfilled in order for calmodulin trapping to happen:

the existence of two binding sites or the compatibility of

calmodulin binding and CaMKII inactivation.

Failure of a one-binding-site model to reproduce
calmodulin trapping

The failure of the alternative one-binding site model to

reproduce calmodulin trapping is perhaps not surprising: In the

wildtype, the higher number of open subunits due to Thr286

autophosphorylation will increase the apparent kon for calmodulin

binding (since more binding sites will be available), but this has no

influence on the apparent koff after calcium withdrawal. Consider

what happens to a calmodulin molecule bound to a CaMKII

subunit in a one-binding-site scenario. Once calmodulin has

dissociated from the only binding site, it is very quickly inactivated

due to the lack of calcium, and is therefore no longer available to

bind again. Importantly, this is independent of the autophospho-

rylation state of the subunit from which calmodulin has

dissociated, so there is no difference in apparent koff between

wildtype and T286A autophosphorylation mutants. In order to

reproduce trapping, a one-binding-site model would need to

include an ad hoc increase in calmodulin affinity for autopho-

sphorylated CaMKII, as has indeed been done in previous models

of CaMKII activation (e.g. [24–27]). This will reproduce the

effect, but without providing an explanation of the mechanism.

The full trapping model presented here overcomes the need for

an ad hoc increase in affinity by postulating the existence of an

additional binding site. In this case, not all of the calmodulin

dissociating from the high-affinity site is immediately inactivated

upon calcium withdrawal, but some of it merely ‘‘slides’’ to the

low-affinity binding site and thus remains on the same subunit. In

this case, autophosphorylation does matter: Phosphorylated

subunits remain open and calmodulin can therefore ‘‘slide back’’

to the high-affinity binding site. In contrast, unphosphorylated

subunits are likely to close, which makes re-binding to the high-

affinity site impossible. The existence of a second binding site is

thus important in order to retain calmodulin in the vicinity of the

Figure 10. Calmodulin trapping on the level of single subunits. Each individual panel represents a single subunit chosen at random from the
simulations from those subunits that bind calmodulin. The x-axis represents time, going from 0 to 300s. The three levels in the y-dimension represent
calmodulin binding, with no binding (lowest level), low-affinity binding (middle level) and high-affinity binding (highest level). Events of calmodulin
sliding back and forth between the high-affinity and the low-affinity binding sites appear as drops from the top level to the centre and back up. The
colour of the trace represents subunit phosphorylation at Thr286, with unphosphorylated subunits shown in black, and phosphorylated subunits in
red.
doi:10.1371/journal.pone.0029406.g010
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high-affinity binding site for a while after it has dissociated, rather

than releasing it completely.

By the same argument, binding to one of the binding sites has to

be compatible with closing of the CaMKII subunit. Otherwise, a

CaMKII subunit would only be able to close once calmodulin has

completely dissociated from it, which means that the additional

stabilisation of the open state by autophosphorylation at Thr286

has no effect on the apparent koff (although, again, it would have

an effect on apparent kon). Thus, a two-binding-sites model where

binding of calmodulin to one of the sites is compatible with the

CaMKII subunit closing seems to be necessary for calmodulin

trapping, unless some other yet unknown mechanism is involved.

It has been suggested that autophosphorylation at Thr286 could

induce a conformational change which increases calmodulin

affinity [28]. Interestingly, a key residue involved in this

conformational change, residue Phe293 [28,32] is specific to

high-affinity calmodulin binding in our model (see Figure 7). Our

view is that phosphorylation at Thr286 stabilises a conformation

conducive to calmodul in binding (rather than inducing such a

conformation), but this interpretation is, as far as we can see,

compatible with the structural data [28].

To summarise, the existence of two modes of calmodulin

binding to CaMKII seems to be compatible with a wealth of

existing experimental data. We show that this is both necessary

and sufficient to explain calmodulin trapping and provide the first

computational model in which calmodulin trapping arises as a

feature of the entire system, rather than being hard coded as an

explicit change in macroscopic parameters.

Binding of calmodulin to a closed structure of CaMKII
As described above, the trapping model proposed here requires

calmodulin being able to bind to closed forms of CaMKII, a

requirement which seems structurally plausible. This means that

binding of calmodulin to CaMKII as such is not sufficient for

CaMKII activation, although binding of calmodulin to the high-

affinity site is. But the structural model goes even further than that:

Not only does calmodulin binding to the low-affinity site seem

compatible with closing, but it even seems to favour the closed

conformation of CaMKII. This is because calmodulin, while

bound to the inhibitory helix, also interacts with a lysine residue in

the catalytic domain of CaMKII, thereby keeping those two

domains in close proximity. This is a key prediction of our model,

and one that has not been made elsewhere. Further investigations

will be necessary to shed light on the detailed mechanism and

functional role of such an interaction.

Detailed mechanism of calmodulin binding to CaMKII
Calmodulin has two calcium-binding lobes which are connected

by a flexible helix. Both lobes are involved in binding CaMKII.

We have previously published an allosteric model describing

calcium binding to calmodulin and the calcium-dependent

activation of CaMKII [36]. It has been suggested, however, that

calmodulin binding to CaMKII is a sequential process where one

lobe of calmodulin makes contact with CaMKII first, which then

facilitates binding of the second lobe [37–39]. Such a mechanism

would allow for a low-affinity binding mode (when only one lobe

of calmodulin is bound to CaMKII) and a high-affinity binding

mode (when both lobes are bound) to exist even in the absence of

two calmodulin binding sites. This raises the possibility that what

has been identified as a low-affinity and a high-affinity binding site

in the experiments by [19] could actually just reflect partial vs full

binding of calmodulin to CaMKII. However, the published

structure of calmodulin binding to what corresponds to the low-

affinity binding site on the CaMKII helix (PDB ID: 1CM1, chains

A and B) [29] is one of fully bound calmodulin, suggesting that two

calmodulin binding sites do indeed exist.

Our model has disregarded partial binding of calmodulin. The

first reason for this is the design of our structural model, which was

based on a starting structure of calmodulin fully bound to CaMKII

(PDB ID: 1CM1, chains A and B) [29], i.e. where calmodulin

‘‘wraps around’’ its target. Our molecular dynamics simulations

have not allowed for flexibility within the calmodulin molecule,

thus preventing us from picking up hypothetical structures of

calmodulin that is partly bound to CaMKII (and where,

presumably, the conformation of the flexible helix connecting

the two lobes would be quite different from the fully bound state).

Figure 11. Comparison of the two-binding-site model with a one-binding site model. For each of the models, we ran ten simulations with
wildtype CaMKII and ten simulations with the autophosphorylation deficient T286A mutant. All CaMKII molecules are open and fully saturated with
calmodulin to begin with, and calmodulin is withdrawn, mimicking calcium withdrawal, at the start of the simulation. The ratio of calmodulin to
CaMKII concentrations was the same as used in the experimental setup by Meyer et al. [18]. The number of calmodulin-bound monomeric CaMKII
subunits is plotted against time. Wildtype is shown in black, T286A mutant in red. There is no difference in slope between mutant and wildtype in the
one-binding-site model, whereas the two-binding-site model displays a clear difference between wildtype and mutant.
doi:10.1371/journal.pone.0029406.g011
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Second, we consider partial binding of only the N- or the C-lobe of

calmodulin to CaMKII as a transient initial state, which facilitates

(and therefore very often results in) full binding of both lobes.

Our model includes calmodulin ‘‘sliding’’ back and forth

between the low-affinity and the high-affinity binding sites. These

reactions are short-hands for a process or a combination of

processes which are not known in detail. For instance, it seems

reasonable to assume that since both binding sites are in close

proximity to each other, once a calmodulin molecule dissociates

from one of the sites, this drastically increases the local calmodulin

concentration around the other binding site, and thus the

probability of binding there. Similar mechanisms have been well

described for facilitated diffusion of proteins along a DNA strand

[40]. It is also conceivable that there might be some form of

conformational change of calmodulin bound to the low-affinity

site, which would allow it to move along the helix and bind to the

high-affinity site, as suggested by Tse et al. [19] or that a

conformational change in the CaMKII inhibitory helix might be

involve in the transition [28]. The two sliding reactions in our

model are summaries of these (and possibly other) processes

without including details about the exact mechanisms involved. As

Figure 10 illustrates, calmodulin sliding is indeed an important

mechanism in our simulations, by which a subunit can extend the

lifetime of its calmodulin-bound state, and calmodulin can change

back and forth between the low-affinity and the high-affinity site

several times before dissociation completely.

Potential experimental validation
While the structure of calmodulin bound to the low-affinity

binding site of CaMKII is known, the structure of calmodulin

bound to the high-affinity binding site is a prediction from our

model. The experimental determination of this structure - for

instance as a complex of calmodulin with a longer fragment of the

CaMKII autoinhibitory helix than in previous studies - could be

used to validate this model.

The model of calmodulin trapping predicts that calmodulin

binding is not per se sufficient for CaMKII activation. This is

another prediction that could be tested experimentally. This could

be done using monomeric T286A mutant CaMKII in order to

separate the effect of calmodulin binding from that of autophos-

phorylation and other inter-subunit interactions. In that scenario, by

quantifying both calmodulin binding and CaMKII activation, we

predict that there would be a small portion of CaMKII molecules

that are not active, even though bound to calmodulin. This portion

could be increased by additionally disrupting calmodulin binding to

the high-affinity (but not the low-affinity) binding site on CaMKII.

Conclusion
Calmodulin trapping upon CaMKII autophosphorylation

might have an important role in synaptic plasticity by fine-tuning

both CaMKII activity and calmodulin availability. We have

combined structural modelling and stochastic simulations into a

model that offers a detailed mechanistic explanation of calmodulin

trapping. The model relies on two main ideas: First, the existence

of two calmodulin binding sites on a given CaMKII subunit - an

assumption backed by biochemical studies and our own structural

work - and second, on the compatibility of calmodulin binding to

one of these sites with CaMKII inactivity. Crucially, our model

does not rely on any ad hoc assumptions about parameter changes

after CaMKII autophosphorylation. Instead, the change in

apparent koff upon autophosphorylation, i.e. calmodulin trapping,

is an emergent property that follows from the mechanisms of

calmodulin binding and CaMKII conformational change. Our

model thus offers a mechanistic explanation of calmodulin

trapping, rather than just reproducing the effect. It provides a

basis for further research in synaptic plasticity and memory, but

possibly also in other fields where CaMKII signalling plays a role,

including apoptosis (reviewed in [41,42]) and the cardiovascular

system (reviewed in [43]).

Methods

Structure of a CaMKII subunit bound to calmodulin
Structural models were developed using the MODELLER

software [44]. In order to obtain the structure of calmodulin-

bound CaMKII, we used as templates previously published

structures of the kinase domain of C. elegans CaMKII (PDB ID:

2BDW, chain A) [13] and of calmodulin bound to a fragment of

the inhibitory helix of bovine CaMKII (PDB ID: 1CM1, chains A

and B) [29]. The target sequence of calmodulin bound to the full

kinase domain of CaMKII was created by combining the

sequences of the two template PDB structures (chain A of

2BDW and chain A of 1CM1). The function automodel in

MODELLER was used in order to model the unknown structure

of the newly generated sequence, using the alignment file and the

known structures of 2BDW and 1CM1 as inputs. The initial result

featured two interlocking loops (residues 53–61 in the calmodulin

structure and residues 159–163 in the kinase domain structure). In

order to resolve this issue, loop refinement was performed using

the Discrete Optimized Protein Energy (DOPE) method [45] with

MODELLER. Out of 10 iterations, the structure with the minimal

molpdf score (139.06694) was selected for further refinement using

Amber 7 [46]. The ff94 force field was used and the molecule was

solvated in a WATBOX216 water box with a 2:2 nm cutoff using

tleap. We used Sander for energy minimisation (parameters used:

imin = 1, maxcyc = 100, cut = 300.0, igb = 2, saltcon = 0.2,

gbsa = 1, ntpr = 10, ntx = 1, ntb = 0). The result of the minimisa-

tion step was then used as an input for molecular dynamics using

sander (parameters used: ntb = 0, ntt = 1, tautp = 0.5, dtemp = 2.0,

nstlim = 5000, dt = 0.002, ntc = 2, ntf = 2, cut = 15, nsnb = 9999,

ntpr = 20, ntwx = 20, all other parameters set to the default value).

Modelling CaMKII opening with a flexible helix
In order to model a potential open structure of CaMKII, the

structure of the kinase domain (PDB ID: 2BDW, chain A) [13] was

split into two parts: the autoinhibitory helix only and the rest of the

kinase domain. Structural information about the four residues that

link the two domains (Ser277 to His280 in the C. elegans sequence)

was omitted. This was done in order to allow those residues to

move freely in the course of the simulation, thereby allowing the

autoinhibitory helix to move away from the kinase domain. Using

the automodeller function of MODELLER, we iteratively

generated 100 structures using those two partial structures as an

input. The same two structures and the structure of calmodulin

bound to a fragment of the inhibitory helix (PDB ID: 1CM1,

chains A and B) were then used as templates for modelling the

structure of calmodulin bound to the low-affinity site of a

potentially open state of CaMKII. This was done using

MODELLER and loop refinement was again performed using

DOPE. Molecular dynamics was performed on the resulting

structure using Amber 7: tleap was used for solvation using the ff94

force field and a WATBOX216 water box with a 4:0 nm cutoff.

Sander was used for minimisation (parameters as above) and

molecular dynamics (parameters as above).

Structure of calmodulin bound to the high-affinity site
The fragment containing the high-affinity binding site used by

Tse et al. [19] is seven residues longer than the fragment
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containing the low-affinity binding site. We assumed the high-

affinity binding site to be towards the middle of these seven

residues, i.e. one turn further towards the inside of the CaMKII

inhibitory helix than the low-affinity binding site. Therefore the

structure of CaMKII bound to the low-affinity site used before

(PDB ID: 1CM1, chains A and B) was modified by manually

translating the inhibitory helix by one turn in PyMOL (http://

www.pymol.org). Note that this assumption was merely used to

find a starting point for simulations away from the established low-

affinity binding site. The identification of the precise residues that

contribute to the interaction was left to the molecular dynamics

simulations. Together with the structure of the kinase domain

(PDB ID: 2BDW, chain A), this was then used to create a putative

combined structure using the automodel function in MODEL-

LER, as described above. Again, tleap in Amber 7 was used for

solvation, this time with a larger solvent box (4:0 nm). Energy

minimisation and molecular dynamics were performed using

sander (parameters as described above). Binding of calmodulin to

the high-affinity site of a potentially open structure was modelled

using separate structures for the inhibitory helix and the rest of the

kinase domain, as described above. MODELLER was used to

generate an initial structure, which was used as an input for Amber

7: The structure was solvated using tleap (with a 5:0 nm water

box), and sander was used to run both minimisation and molecular

dynamics (parameters as above).

All figures of protein structures in this paper were created using

PyMOL [47].

Kinetics of calmodulin binding to the high-affinity
binding site

For biochemical modelling, we needed to determine parameters

describing calmodulin binding to the low-affinity binding site of

CaMKII, calmodulin binding to the high-affinity binding site and

‘‘sliding’’ of calmodulin from the high-affinity to the low-affinity

binding site and back. These latter reactions describe an unknown

underlying mechanism (or collection of mechanisms) by which

binding of a calmodulin molecule to one of the two binding sites

might facilitate subsequent binding to the other binding site on the

same CaMKII subunit.

The affinity of calmodulin for the low-affinity binding site was

5:9|10{6 M, corresponding to the low-affinity peptide used by

Tse et al. [19]. Meyer et al. have reported a forward rate of

0:5|108 M-1:s-1 for calmodulin binding to a phosphorylated

CaMKII dodecamer [18]. To compute a microscopic forward rate

for an individual subunit, we divided this number by 12 (the

number of subunits that make up a holoenzyme) and obtained a

rate of 4:2|106 M-1:s-1. This is close to the value of

3:2|106 M-1:s-1 reported by Tzortzopoulos and Török [48].

Just like the short fragment used by Tse et al. [19] corresponds

to the low-affinity binding site, we took the long fragment (291–

312) to correspond to the high-affinity binding site. This is also

backed up by earlier findings that have implied residues

contained in the longer fragment in high-affinity binding, notably

residues 293–295 and residues 296–298 [33]. It has also been

observed that binding of calmodulin to a similar fragment

(residues 290–314) mimicked calmodulin binding to the entire

phosphorylated kinase, suggesting that the entire high-affinity

binding domain is indeed contained in this fragment [49]. Since

access to the binding site is more constrained in the context of an

entire holoenzyme (compared to a relatively short fragment), we

expect the in vivo Kd for high-affinity binding of calmodulin to be

higher than that. The Kd of the long fragment thus provides a

lower limit. This Kd is given by Tse et al. as 7|10{14 M [19],

but Waxham et al. report a Kd of 2|10{13 M for the same

fragment [33].

Meyer et al. [18] report a Kd of 6|10{11 for calmodulin

binding to autonomous CaMKII. In our model, autonomous

CaMKII will not display subunit opening or closing, so the

apparent calmodulin dissociation constant is only a function of the

microscopic low-affinity and high-affinity dissociation constants.

Since the dissociation constant of the low-affinity binding site, as

reported above, is several orders of magnitude bigger than the

combined dissociation constant, we concluded that the low-affinity

binding site contributes very little to the overall affinity of the

fragment and that the low overall Kd is due almost entirely to the

high-affinity binding site. We therefore set the microscopic Kd for

the high-affinity binding site to 6|10{11 M. This is indeed higher

than the Kd values reported elsewhere for the long fragment

[19,33].

In terms of Gibbs free energies, the Kd for high-affinity binding

we chose corresponds to a (standardised) DG of {5:9|10{4 J/

mol, and the Kd for low-affinity binding to a DG of

{3:0|10{4 J/mol. Although the number of - partly hidden -

assumptions underlying energy calculation makes it difficult to

directly compare these values with the energies reported for the

protein complex in the molecular dynamics simulations, in both

cases the ratio between the high-affinity and the low-affinity

energy is similar.

We assumed that ‘‘sliding’’ of calmodulin from the low-affinity

site to the high-affinity site is intrinsically symmetrical, i. e. that

once dissociated from one binding site, the probability of binding

to the other binding site should be the same in either direction.

Therefore, the equilibrium constant for the sliding reaction (and

hence, the probability of sliding from one site to the other) should

be determined by the dissociation rates (and hence, the

dissociation constants) for both sites:

Ksliding~
Kdha

Kdla

ð1Þ

Using this equation, we concluded that calmodulin bound to the

low-affinity site will ‘‘slide’’ to the high-affinity binding site with a

probability of 0:99999.

Subunit opening and closing
In order to obtain an estimate of the opening probability of a

single CaMKII subunit, we used COPASI [50] and constructed a

model of calmodulin binding to a single CaMKII subunit which

could open or close based on the above parameters. The model

contains only ten reactions, six of which describe binding and

dissociation of calmodulin to the two binding sites on an

unoccupied CaMKII subunit (in the open state for the high-

affinity binding site, in both the open and the closed state for the

low-affinity binding site), two describe ‘‘sliding’’ of calmodulin

between the two binding sites and two describe opening and

closing of the CaMKII subunit. The full list of reactions is given in

Table S1.

The calmodulin concentration used in this model was 10{5 M

and the concentration of CaMKII peptide was 10{4 M,

corresponding to the experimental concentrations used by Tse

et al. [19]. We started the simulations with all of the peptide in the

unbound state.

This model was used to optimise the probability of CaMKII

opening. As an objective function, we used the apparent combined

Kd for a single subunit:
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Kdcombined
~

(½open�z½closed�)½CaM�
½closed{CaM�laz½open{CaM�laz½open{CaM�ha

ð2Þ

This value has been reported by Tzortzopoulos and Török [48]

to be 4|10{8 M for calmodulin binding to CaMKII with a

T286A mutation. This was chosen in order to isolate the effects of

calmodulin binding and opening/closing only, without having to

account for autophosphorylation. The Genetic Algorithm SR

optimisation function in COPASI [50] was run ten times, with

ten randomly chosen initial values. We used the default settings for

the Genetic Algorithm SR function (200 generations, a population size

of 20 and random number generator 1, all other values set to

zero). The resulting value for the opening probability was 0:002.

All other parameters were taken from the literature. A full list is

given in table 2.

Stochastic simulations
Stochastic simulations were performed using StochSim [51].

The total duration of the simulation was 300 s.The software was

allowed to optimise the time increment, with data being read out

every millisecond. We used a total of 360 CaMKII subunits,

corresponding to the number of CaMKII subunits typically found

in a postsynaptic density [52], in order to facilitate future

simulations under physiological conditions. Both the number of

calmodulin molecules (450) and the total reaction volume

(5|10{14 l) were chosen to preserve the concentrations and

CaMKII-to-calmodulin ratio used in the experiments performed

by Meyer et al. [18].

For the two-binding-site wildtype model, all CaMKII subunits

were closed, unphosphorylated and not bound to calmodulin at

the outset of the simulation. Calmodulin was present at the

beginning, but removed after 30 s to mimic calcium withdrawal.

The complete StochSim input files for this model are given in

Dataset S3. The T286A mutation was implemented by setting the

Thr286 autophosphorylation rate to zero in a model otherwise

identical to that for the wildtype.

The one-binding-site model was the same as the two-binding-

site model, except that the reaction describing calmodulin binding

to the low-affinity site and the rapid equilibrium governing

calmodulin ‘‘sliding’’ from the low-affinity to the high-affinity site

were removed. Everything else (including the definition of the state

flags) was kept as it was. In the one-binding site scenario, Thr286

phosphorylation also had a marked effect on the apparent on rate

of calmodulin binding. In order to separate this effect from the

actual trapping effect (the change in off rate), the initial calmodulin

binding phase was not explicitly modelled. Instead, all 360
CaMKII subunits were open, calmodulin-bound and (for wildtype

CaMKII) phosphorylated at Thr286 at the outset of the

simulation, and calmodulin was withdrawn from the beginning

of the simulation. Simulations were run for 300 s, with an

automatically optimised time step, as above. Again, the T286A

mutant differed from the wildtype by the Thr286 autophospho-

rylation rate being set to zero.

To allow for direct comparison between the two-binding-site and

one-binding-site models, simulations of the two-binding-site models

were run under the same conditions as for the one-binding-site

model, i. e. with all CaMKII calmodulin-bound at the outset and

calmodulin withdrawn at the beginning of the simulation.

Ten StochSim simulation runs were performed for each of the

models. All simulations were run on a Centos 5.4 Linux LSF

Cluster containing 350 nodes with 32GB RAM or more each. The

longest simulations took a few hours to complete.

Supporting Information

Table S1 We used a simple model of a single CaMKII
subunit which could open, close and bind to calmodulin
to determine the opening probability of CaMKII using
the parameter search facility of COPASI [50]. The full list

of reactions of this model is given in this table.

(PDF)

Table 2. List of parameters for the model of calmodulin trapping.

Parameter value reference

kf for CaMKII phosphorylation at residue 286 30s{1 [55]

kf for dephosphorylation of CaMKII at residue 286 by PP1 1:6|10{7 s{1 computed from [56]

kf for CaMKII phosphorylation at residue 306 0:55s{1 [55]

kf for dephosphorylation of CaMKII at residue 306 by PP1 1:6|10{7 s{1 computed from [56]

Kd for calmodulin binding to the low-affinity site of CaMKII 5:9|10{6 M [19]

kf for calmodulin binding to the low-affinity site of CaMKII 4:2|106 M{1s{1 [18]

kb for calmodulin binding to the low-affinity site of CaMKII 24:8s{1 Kd |kf

Kd for calmodulin binding to the high-affinity site of CaMKII 6|10{11 M this study

kf for calmodulin binding to the high-affinity site of CaMKII 4:2|106 M{1s{1 [18]

kb for calmodulin binding to the high-affinity site of CaMKII 2:5|10{4 s{1 Kd |kf

probability of spontaneous CaMKII opening 0:002 this study

probability of calmodulin sliding to the high-affinity site 0:99999 this study

total number of CaMKII subunits used for simulation 360 total number of CaMKII subunits in the PSD [52]

total number of calmodulin molecules used for simulation 450 this study

reaction volume used for simulation 5|10{14 l this study

List of parameters for the model of calmodulin trapping.
doi:10.1371/journal.pone.0029406.t002
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Dataset S1 Structural model of calmodulin binding to
the low-affinity binding site on a closed subunit of
CaMKII.
(TXT)

Dataset S2 Structural model of calmodulin binding to
the high-affinity binding site on a CaMKII subunit. When

the inhibitory helix of CaMKII is allowed some flexibility, it moves

away from the catalytic domain to accommodate for calmodulin

binding to the high-affinity binding site. This exposes the catalytic

site and the Thr286 autophosphorylation site.

(TXT)

Dataset S3 This dataset is a text file containing the
input files for simulation with StochSim. Different parts of

the model and the simulation are defined in section that must be

copied to different files, as follows: STCHSTC.INI: Controls the

parameters of the simulation, such as the time interval, the total

simulation duration and the names of input and output files.

MESSAGE.INI: List of StochSim error messages for trouble-

shooting should the simulation exit. COMPLEX.INI: Contains

information about the different components of the model and their

initial concentrations. REACTION.INI: Contains all reactions,

specifying substrates, products, and forward and backward

reaction rates. MS_1.INI: Contains information pertaining to

the state flags of CaMKII and to how these are affected by

reactions and rapid equilibria. NS_1.INI Contains information

about neighbour-sensitive reactions (in this case, only Thr286

phosphorylation). ARRAY.INI: Defines the geometry and com-

position of arrays (in this case, 60 hexamers of CaMKII).

DYNAMIC.INI: Contains information about parameter values

that change over time, used here to set the concentration of active

calmodulin to zero after 30 seconds.

(TXT)

Author Contributions

Conceived and designed the experiments: MIS NL. Performed the

experiments: MIS DPM. Analyzed the data: MIS. Contributed reagents/

materials/analysis tools: MIS. Wrote the paper: MIS NL.

References

1. Bennett MK, Erondu NE, Kennedy MB (1983) Purification and characteriza-

tion of a calmodulindependent protein kinase that is highly concentrated in
brain. J Biol Chem 258: 12735–12744.

2. Silva AJ, Paylor R, Wehner JM, Tonegawa S (1992) Impaired spatial learning in

alpha-calciumcalmodulin kinase II mutant mice. Science 257: 206–211.

3. Silva AJ, Stevens CF, Tonegawa S, Wang Y (1992) Deficient hippocampal long-

term potentiation in alpha-calcium-calmodulin kinase II mutant mice. Science
257: 201–206.

4. Bliss TV, Lømo T (1973) Long-lasting potentiation of synaptic transmission in

the dentate area of the anaesthetized rabbit following stimulation of the
perforant path. J Physiol 232: 331–356.

5. Whitlock JR, Heynen AJ, Shuler MG, Bear MF (2006) Learning induces long-
term potentiation in the hippocampus. Science 313: 1093–1097.

6. Mayer ML, Westbrook GL (1985) The action of N-methyl-D-aspartic acid on

mouse spinal neurones in culture. J Physiol 361: 65–90.

7. Mayer ML, Westbrook GL (1987) Permeation and block of N-methyl-D-aspartic

acid receptor channels by divalent cations in mouse cultured central neurones.

J Physiol 394: 501–527.

8. Lisman J, Schulman H, Cline H (2002) The molecular basis of CaMKII function

in synaptic and behavioural memory. Nat Rev Neurosci 3: 175–190.

9. Schulman H, Greengard P (1978) Ca2+-dependent protein phosphorylation

system in membranes from various tissues, and its activation by ‘‘calcium-

dependent regulator’’. Proc Natl Acad Sci USA 75: 5432–5436.

10. Schulman H, Greengard P (1978) Stimulation of brain membrane protein

phosphorylation by calcium and an endogenous heat-stable protein. Nature 271:
478–479.

11. Lee HK, Barbarosie M, Kameyama K, Bear MF, Huganir RL (2000)

Regulation of distinct AMPA receptor phosphorylation sites during bidirectional
synaptic plasticity. Nature 405: 955–959.

12. Hayashi Y, Shi SH, Esteban JA, Piccini A, Poncer JC, et al. (2000) Driving
AMPA receptors into synapses by LTP and CaMKII: requirement for GluR1

and PDZ domain interaction. Science 287: 2262–2267.

13. Rosenberg OS, Deindl S, Sung RJ, Nairn AC, Kuriyan J (2005) Structure of the
autoinhibited kinase domain of CaMKII and SAXS analysis of the holoenzyme.

Cell 123: 849–860.

14. Kolodziej SJ, Hudmon A, Waxham MN, Stoops JK (2000) Three-dimensional
reconstructions of calcium/calmodulin-dependent (CaM) kinase II alpha and

truncated CaM kinase II alpha reveal a unique organization for its structural
core and functional domains. J Biol Chem 275: 14354–14359.

15. Hanley RM, Means AR, Kemp BE, Shenolikar S (1988) Mapping of

calmodulin-binding domain of Ca2+/calmodulin-dependent protein kinase II
from rat brain. Biochem Biophys Res Commun 152: 122–128.

16. Payne ME, Fong YL, Ono T, Colbran RJ, Kemp BE, et al. (1988) Calcium/
calmodulin-dependent protein kinase II. Characterization of distinct calmodulin

binding and inhibitory domains. J Biol Chem 263: 7190–7195.

17. Hanson PI, Meyer T, Stryer L, Schulman H (1994) Dual role of calmodulin in
autophosphorylation of multifunctional CaM kinase may underlie decoding of

calcium signals. Neuron 12: 943–956.

18. Meyer T, Hanson PI, Stryer L, Schulman H (1992) Calmodulin trapping by

calcium-calmodulindependent protein kinase. Science 256: 1199–1202.

19. Tse JKY, Giannetti AM, Bradshaw JM (2007) Thermodynamics of calmodulin
trapping by Ca2+/calmodulin-dependent protein kinase II: subpicomolar Kd

determined using competition titration calorimetry. Biochemistry 46:
4017–4027.

20. Dosemeci A, Albers RW (1996) A mechanism for synaptic frequency detection

through autophosphorylation of CaM kinase II. Biophys J 70: 2493–2501.

21. Zhabotinsky AM (2000) Bistability in the Ca(2+)/calmodulin-dependent protein

kinasephosphatase system. Biophys J 79: 2211–2221.

22. Lisman JE, Zhabotinsky AM (2001) A model of synaptic memory: a CaMKII/
PP1 switch that potentiates transmission by organizing an AMPA receptor

anchoring assembly. Neuron 31: 191–201.

23. Miller P, Zhabotinsky AM, Lisman JE, Wang XJ (2005) The stability of a

stochastic camkii switch: dependence on the number of enzyme molecules and

protein turnover. PLoS Biol 3: e107.

24. Holmes WR (2000) Models of calmodulin trapping and CaM kinase II activation
in a dendritic spine. J Comput Neurosci 8: 65–85.

25. Okamoto H, Ichikawa K (2000) A model for molecular mechanisms of synaptic
competition for a finite resource. BioSystems 55: 65–71.

26. Kubota Y, Bower JM (2001) Transient versus asymptotic dynamics of
CaM kinase II: possible roles of phosphatase. J Comput Neurosci 11: 263–

279.

27. Zeng SY, Holmes WR (2010) The effect of noise on CaMKII activation in a

dendritic spine during LTP induction. J Neurophysiol 103: 1798–1808.

28. Hoffman L, Stein RA, Colbran RJ, Mchaourab HS (2011) Conformational

changes underlying calcium/calmodulin-dependent protein kinase II activation.
EMBO J 30: 1251–1262.

29. Wall ME, Clarage JB, Phillips GN (1997) Motions of calmodulin characterized
using both Bragg and diffuse X-ray scattering. Structure 5: 1599–1612.

30. de Diego I, Kuper J, Bakalova N, Kursula P, Wilmanns M (2010) Molecular
basis of the deathassociated protein kinase-calcium/calmodulin regulator

complex. Sci Signal 3: ra6.

31. Rellos P, Pike ACW, Niesen FH, Salah E, Lee WH, et al. (2010) Structure of the

CaMKIIdelta/Calmodulin Complex Reveals the Molecular Mechanism of
CaMKII Kinase Activation. PLoS Biol 8: e1000426.

32. Singla SI, Hudmon A, Goldberg JM, Smith JL, Schulman H (2001) Molecular
characterization of calmodulin trapping by calcium/calmodulin-dependent

protein kinase II. J Biol Chem 276: 29353–29360.

33. Waxham MN, Tsai AL, Putkey JA (1998) A mechanism for calmodulin (CaM)

trapping by CaMkinase II defined by a family of CaM-binding peptides. J Biol
Chem 273: 17579–17584.

34. Chin D, Means AR (2002) Mechanisms for regulation of calmodulin kinase
IIalpha by Ca(2+)/calmodulin and autophosphorylation of threonine 286.

Biochemistry 41: 14001–14009.

35. Yamauchi T (2005) Neuronal Ca2+/calmodulin-dependent protein kinase II–

discovery, progress in a quarter of a century, and perspective: implication for
learning and memory. Biol Pharm Bull 28: 1342–1354.
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44. Šali A, Blundell TL (1993) Comparative protein modelling by satisfaction of

spatial restraints. J Mol Biol 234: 779–815.
45. Shen MY, Sali A (2006) Statistical potential for assessment and prediction of

protein structures. Protein Sci 15: 2507–2524.
46. Case D, Pearlman D, Caldwell J, Cheatham III T, Wang J, et al. (2002)

AMBER 7. University of California, San Francisco.

47. DeLano Scientific LLC (2009) The PyMOL molecular graphics system, version
1.2r1.

48. Tzortzopoulos A, Török K (2004) Mechanism of the T286A-mutant
alphaCaMKII interactions with Ca2+/calmodulin and ATP. Biochemistry 43:

6404–6414.

49. Putkey JA, Waxham MN (1996) A peptide model for calmodulin trapping by

calcium/calmodulindependent protein kinase II. J Biol Chem 271:
29619–29623.

50. Hoops S, Sahle S, Gauges R, Lee C, Pahle J, et al. (2006) COPASI–a COmplex

PAthway SImulator. Bioinformatics 22: 3067–3074.
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