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The exploding number of computational models produced
by Systems Biologists over the last years is an invitation to
structure and exploit this new wealth of information.
Researchers would like to trace models relevant to specific
scientific questions, to explore their biological content,
to align and combine them, and to match them with
experimental data. To automate these processes, it is
essential to consider semantic annotations, which describe
their biological meaning. As a prerequisite for a wide range
of computational methods, we propose general and flexible
similarity measures for Systems Biology models computed
from semantic annotations. By using these measures and a
large extensible ontology, we implement a platform that can
retrieve, cluster, and align Systems Biology models and
experimental data sets. At present, its major application is
the search for relevant models in the BioModels Database,
starting from initial models, data sets, or lists of biological
concepts. Beyond similarity searches, the representation of
models by semantic feature vectors may pave the way for
visualisation, exploration, and statistical analysis of large
collections of models and corresponding data.
Molecular Systems Biology 7: 512; published online 19 July
2011; doi:10.1038/msb.2011.41
Subject Categories: metabolic and regulatory networks;

computational methods

Keywords: BioModels database; ontology; semanticSBML;

similarity measure

Introduction

The rise of Systems Biology as a mainstream field of research
triggered a fast accumulation of knowledge about cellular
networks, their biochemical details, and their dynamic
behaviour. Much of this complex information is condensed

in mathematical models, which statically or dynamically
describe the interconversion of biochemical compounds
within reaction networks. A wealth of models, picturing
various regions of the cellular networks, are available in
public repositories like the BioModels Database (Le Novère
et al, 2006) or JWS Online (Olivier and Snoep, 2004) in the
machine-readable format Systems Biology Markup Language
(SBML; Hucka et al, 2003). Meta-information on existing
databases can be found on websites like PathGuide (Bader
et al, 2006). The models in these repositories serve
as information sources and they may be reused, refined, and
combined for new research studies.

Continued research aiming for improved and complex
models, e.g., for biomedical purposes, makes it desirable to
change or combine models automatically with the help of
computers. Such an automatic processing would be easier if
published models and data were based on a common list of
well-defined elements with a fixed naming convention.
However, since models cover a growing number of entities
and describe processes by various levels of granularity, the
meaning of model elements is established on a case-by-case
basis by machine-readable annotations that link them to
entries in public web resources. Annotations may, for instance,
relate cell compartments to Gene Ontology entries (Ashburner
et al, 2000) and small chemical compounds to entries from
ChEBI (Degtyarenko et al, 2008). The MIRIAM initiative
(Le Novère et al, 2005) has proposed a standard format for
biochemical annotations, consisting of the URN of a web
resource, an ID for the referenced resource element, and a
biological qualifier stating a logical relation (e.g., ‘hasPart’)
between the model element and the resource entry. The use of
public web resources and ontologies like the Systems Biology
Ontology makes annotations unambiguous and facilitates
search, visualisation, and automated reasoning.

While building complex models, Systems Biologists need to
search for relevant models, to rank or classify them, and to
check how models differ, overlap, and complement each other
(Liebermeister, 2008; Krause et al, 2010). Furthermore, models
need to be validated and refined with experimental data,
which have to be retrieved and aligned to the models
beforehands. All these tasks call for automation and most of
them require quantitative similarity measures between models
and data sets, which should capture their biological meaning
and be computable fast and reliably. The situation is
comparable to the early days of bioinformatics, when
nucleotide sequences became harder and harder to compare
until filtering methods like FASTA and BLAST (Lipman and
Pearson, 1985; Altschul et al, 1990) led to a breakthrough.

A comparison of models can be based on various biological
or mathematical aspects, including the biological entities and
processes described, the mathematical formalism, details of
the equations and numerical values, or even the dynamic
behaviour. In particular, most Systems Biology models
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describe biological networks and can be depicted and treated
as networks themselves. The automatic comparison of
biological networks has been widely discussed in the
literature. In their review, Sharan and Ideker (2006) distin-
guish between three main groups of applications. (i) Network
alignment describes the process in which complete networks
(e.g., protein–protein interaction networks from different
species; Matthews et al, 2001) are compared in order to
unveil similar and different regions. (ii) Network integration
combines networks of different types to gain particular
information (e.g., enriched protein interconnection patterns;
Zhang et al, 2005). (iii) Network querying detects parts of a
large network that resemble a query motif (e.g., to search how
a metabolic pathway is conserved across species; Pinter et al,
2005). On the computational side, the alignment and the
querying problem can be tackled by similar algorithms,
which differ in how they compare network structures and
how they relate nodes. The alignment of structures has
evolved from simple paths (similar to sequence alignment)
(Kelley et al, 2003) and trees (Pinter et al, 2005) to general
graph structures (Yang and Sze, 2007). Depending on the
application, the comparison of nodes can be based on their
labels, on the relatedness of their annotations (e.g., their
EC numbers; Tohsato et al, 2000), or on their chemical
structures (Hattori et al, 2003). For a review on network
querying algorithms, the reader is referred to Fionda and
Palopoli (2011).

When comparing Systems Biology models, the network
structure may be less informative because the same system
may be described by alternative models at different levels
of granularity (Markevich et al, 2004). Graph reduction
techniques (Gay et al, 2010) can partially handle this problem,
but only if the networks are not too different. A more direct
way to find biologically similar models, especially for
searching and ranking (Henkel et al, 2010), is to compare
their semantic annotations using methods from information
retrieval (IR), as introduced in Box 1. However, the compar-
ison of semantic annotations involves two general challenges:
(i) annotations may describe the same chemical entity or
process, but point to entries in different web resources;
(ii) different web resource entries can share subtle biochemical
relationships (e.g., the molecular species ATP3þ referenced
in one model being a special case of—rather than identical
to—ATP referenced in another data set). To overcome this
problem, intra-ontology relationships and cross references for
a large number of relevant web resources have to be combined
in an integrative ontology, which can then be used to compare
entries from various resources.

Case study: semantic similarity measures
for SBML models

As an example case for the use of semantic annotations,
we present a system for retrieval, clustering, and alignment
of SBML models. It relies on a technical infrastructure for
handling biological concepts (BCs) and on semantics-based
similarity scores for models and data sets. We applied our
framework to models from BioModels Database, validated the
calculated model similarities with human expert knowledge,

and present a number of practical applications. Researchers
can use our online services at http://www.semanticsbml.org
to retrieve Systems Biology models resembling a given SBML
model or related to an experimental data set. Furthermore,
they can cluster models by their semantic similarities and
visually align their elements. The mathematical and technical
details are explained in parts below and extensively in the
Supplementary Appendix.

Challenges in the automatic comparison of
model elements

The biological meaning of SBML elements can be declared by
annotations according to the MIRIAM standard. Comparing
SBML elements comprising possibly many annotations imposes
even more challenges than the comparison of single annota-
tions: (i) the relationships between model elements and
resource entries, stated by qualifiers, may be complex (e.g.,
‘hasPart’ rather than a simple ‘is’); (ii) each model element may
contain several annotations, describing its different aspects;
(iii) annotations may be missing, unspecific, or simply wrong.

Information retrieval Information retrieval (IR) is a field of research
investigating how to find relevant documents, or parts of them, in a
document resource. Unlike queries in data retrieval, IR queries do not need
to follow a fixed format, but can be formulated in natural language and may
be fuzzy and incomplete. Since the aim is not to find exact matches, but
documents that are relevant for the user, the approaches of IR are often
probabilistic and are based on heuristic similarity scores, which summarise
the resemblance between the user’s request and a document in question.
Methods used in IR can differ in four central points. How are query and
documents represented (e.g., as sets of terms or as vectors; Salton,
1971)? How are terms interrelated? How are different terms weighted
(e.g., by the term frequency–inverse document frequency approach
(Jones, 1972) which compares the frequency of a term in one document
with the number of documents in which it appears)? And how is this
information combined using similarity measures (e.g., the cosine measure;
Salton and McGill, 1986)?

Semantic web The term ‘semantic web’ expresses the idea to add
explicit, computationally accessible semantic information to documents
in order to facilitate automated reasoning. The Resource Description
Framework employs triplets of the form (subject, predicate, and object).
A statement ‘glucose is a sugar’, for instance, could be expressed by a
triplet (‘glucose’, ‘is_a’, ‘sugar’), where each of the three items is taken from
a controlled vocabulary or an ontology. Standards for minimal information
in machine-readable formats, e.g., MIAME (Brazma et al, 2001) enable
computers to assess the content of a data set or model.

Similarities between ontology terms An ontology defines a set
of concepts and interconnects these concepts by various types of relation-
ships. Early similarity measures between ontology elements were defined
based on the hierarchy of ‘is_a’ relations and counted the number of edges
on the shortest path between two concepts (Rada et al, 1989). Other
measures defined the similarity by the highest information content among
the super-concepts subsuming both compared concepts (e.g., ‘animal’
subsuming the concepts ‘cat’ and ‘fish’). To compute information the
measures make use of the knowledge from a so-called corpus, e.g., a long
text, in which the appearance of different concepts can be counted (Resnik,
1995; Lin, 1998). If specialisations of a concept are rarely used, the
similarity between its subconcepts is increased. This idea has
also been used to reweight edges in an ontology, which can improve
the performance of edge-based methods (Jiang and Conrath, 1997).
The quality of different similarity measures and their combinations has
been rigorously assessed in Li et al (2003).

Box 1 Overview of key concepts for the calculation of
similarity measures between semantically enriched data
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Semantic annotations in BioModels database

To compare biological identifiers and to evaluate the relation-
ships between them efficiently, we developed the query
engine libSBAnnotation, which collects biochemical knowl-
edge from several public web resources and combines it in a
single ontology. Equivalent entries from different resources
are replaced by single ‘Biological Concepts’ (BCs), whereas
similar entries (e.g., ‘a-D-glucose’ versus ‘glucose’) are
represented by different BCs, but connected by ontology
relationships (e.g., ‘is_a’). Queries can be posed through a
programming interface or through a web service compliant to
the Representational State Transfer (REST) software architec-
ture style (Fielding, 2000).

The libSBAnnotation makes it easy to explore the semantic
annotations present in BioModels Database, the major public
collection of MIRIAM-compliant models (249 models in the
17th release from May 2010, which we use in the current
study). A comprehensive statistics for the most recent

BioModels release is provided at our online service. Approxi-
mately 69% of all compartments, species, and reactions are
annotated. They show about 1.7 annotations per annotated
element and almost all of them carry ‘isVersionOf’, ‘hasPart’,
or ‘is’ qualifiers. The annotations refer to a broad range of web
resources and the high abundance of Gene Ontology and
UniProt entries shows that the models contain more proteins
than small metabolites.

Figure 1 shows the prevalence of about 2000 BCs within
all 249 models in the form of an annotation matrix.
Positive matrix elements indicate which models (columns)
contain annotations referring to certain BCs (rows). The
numerical values may also state how often a BC appears
in a model and which qualifiers are used. The matrix
columns, called feature vectors, can be seen as the ‘anno-
tation fingerprints’ of models and may serve for simple
comparisons and visualisation by multivariate statistical
methods.

Figure 1 Annotation matrix. Semantic annotations link the elements of Systems Biology models to Biological Concepts from public web resources. The associations
between them can be represented by a matrix: positive entries (red) show that a model (column) contains an annotation pointing to a certain Biological Concept (row).
Left: annotation matrix for the BioModels Database, sorted by two-way agglomerative clustering. Right: close-up showing a number of MAP kinase models and Biological
Concepts. Matrix visualised by GenePattern (Reich et al, 2006).
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Similarity measures for BCs, annotations, and
models

The libSBAnnotation interconnects BCs by various semantic
relationships and thus forms an ontology. To express the direct
and indirect relationships between BCs by numbers, we
developed a series of similarity measures which resemble
the scores used in semantic text analysis. Based on the
similarities between individual BCs, we then define similarity
measures between entire models. We investigated two groups
of such measures and tested their performance in practical
applications.

1. Vector-based similarity measures are solely based on
the feature vectors, i.e., on the set of BCs referenced by a
model. Two feature vectors are compared by the cosine
coefficient and a special metric is used to acknowledge
that annotations can point to different, yet similar BCs (e.g.,
‘a-D-glucose’ versus ‘glucose’).

2. Structure-based similarity measures, in contrast, start with
a pairwise comparison of individual model elements and
combine the resulting similarities in more complex model
similarity scores. In the spirit of probabilistic reasoning,
one of these similarity measures can combine evidence
from several annotations, distinguish between missing
information (i.e., no element annotations) and negative
information (i.e., annotations pointing to different BCs),
and weight different combinations of biological qualifiers
and relationships between BCs.

For a practical test, we evaluated all similarity measures with
benchmark models from BioModels Database, the largest
public collection of curated SBML models. After manually
classifying the models by the biochemical pathways described,
we clustered them all by each of the measures (similar to
Figure 1) and compared the clusters with the predefined
classification. A detailed evaluation can be found in the
Supplementary Appendix.

The vector-based similarity measures have a number of
advantages: first of all, they performed well in the comparison
and are easy to compute. Moreover, being solely based on sets
of annotations, these annotation measures not only apply to
kinetic or structural SBML models, but also to annotated
‘omics’ data or any type of data associated with a list of BCs.
Therefore, they are used in our online tools and will be
explained below. More details and descriptions of other
similarity measures are given in the Supplementary Appendix.

Similarity between BCs
Similarity measures for ontology elements have been
discussed in the literature from a theoretical (Lin, 1998) and
a practical point of view (Resnik, 1995; Budanitsky and Hirst,
2001; Li et al, 2003) and have been implemented in software
tools (Lord et al, 2003). They are usually computed from the
distance between entries in the relationship graph, their most
specific common ancestor, and a corpus, a collection of text or
data in which the appearance frequencies of ontology terms
can be counted. Following Li et al, we define a similarity
s between BCs m and n taking into account three factors:
(i) their weighted distance (f1) in the ontology forest, (ii) their

depths (f2) (distance from a root), and (iii) their rarity (f3) in
BioModels Database. The three factors are combined by the
formula

sBCðm; nÞ ¼ f1ðm; nÞf2ðm; nÞ�f3ðmÞ�f3ðnÞ:
The factor f1 yields a high similarity if two BCs are connected
by a short relationship path

f1ðm; nÞ ¼ max
p2P

Y

r2p

frtsðrÞ;

where pAP is a possible path of relation arrows (r) between
the two BCs and frts scores each relation type by a value
between 0 and 1 (see Supplementary Appendix for numerical
values). If there is no path between the BCs, f1 is set to 0.
A sensitivity analysis in the Supplementary Appendix shows that
the choice of numerical values for frts has only little effect on
the model retrieval results. Since too few benchmark examples
are available to optimise these parameters reliably, we use
ad hoc values chosen before testing any of the measures.

BCs that are deeper in the relationship graph are usually
more precise because they comprise fewer subconcepts
(e.g.,‘D-glucopyranose’ being a subconcept of ‘carbohydrate’).
Accordingly, if two pairs of BCs are connected by a similar
path, the pair with the lower depth (e.g., ‘carbohydrate’
and ‘sugar’) should be less similar than the more specific pair
(e.g., ‘D-glucopyranose’ and ‘a-D-glucose’). This is imple-
mented by the exponent

f2ðm; nÞ ¼
2

dðmÞ þ dðnÞ þ 2
;

where d(m) is the path length of ‘is_a’ relationships between an
ontology element m and its root.

Since some BCs (e.g., ATP) appear very often in BioModels
Database, a semantic density factor f3 can be introduced to
downweight them in the similarity measure. For each BC m,
it reads

f3ðmÞ ¼ 1�
logðcc

m þ 1Þ
log cO

;

where cm is the number of occurrences of m in BioModels
Database, cc

m ¼ cm þ
P

x2childrenðmÞ c
c
x is the number of m and all

its ‘is_a’ specialisations, and cO ¼ 1þ
P
8x:cx40 ðcx þ 1Þ is a

normalisation term. However, the term f3 did not seem to
improve the results in our evaluation. This agrees with the
findings of Li et al (2003), who concluded that the use of an
‘information factor’ in text analysis decreases the quality of
their similarity measure. Because of this and because the
frequency of individual annotations is already part of our null
model for computing P-values, we omitted this term from
the online model search.

Vector-based model similarity
The elements of an SBML model, such as cellular compart-
ments, molecular species, or biochemical reactions, can be
annotated with links to various web resources. Given a general
list of BCs, each model or data set M can be represented by a
feature vector nM with components niM¼1 if the ith BC appears
in an annotation in model M and niM¼0 otherwise. Similarities
between two models M and N can be defined by functions of
their feature vectors. From the various measures used in IR, we
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chose the cosine of the angle between the feature vectors
(van Rijsbergen, 1979; Salton and McGill, 1986). Despite its
simplicity, this cosine coefficient allows for reasonable
comparisons between models. However, it cannot detect
the resemblance between similar, but slightly different BCs
(e.g., CHEBI:17634 for D-glucose and CHEBI:17925 for
a-D-glucose). To capture such biochemical similarities, we
replace the scalar product by a quadratic form based on the
similarity matrix S for the BCs (Sij¼sBC(m, n), where m is the
ith and n is the jth BC):

sMoðM; NÞ ¼ vT
MSvNffiffiffiffiffiffiffiffiffiffiffiffiffiffi

vT
MSvM

p ffiffiffiffiffiffiffiffiffiffiffiffiffi
vT

NSvN

p :

Since the feature vectors and the similarities sBC(m, n) are non-
negative, this formula yields non-negative model similarities
even if the similarity matrix is not positive definite. For
positive-definite matrices S, the formula can be interpreted in
terms of transformed feature vectors as proposed in the topic-
based vector space model (TVSM; Becker and Kuropka, 2003).

Implementation and data
The query engine libSBAnnotation and all described methods
were implemented in Python. The code is freely available at
http://sourceforge.net/projects/semanticsbml. Online tools
for similarity calculations, model retrieval, clustering based
on the TVSM similarities, and alignment based on greedy
pairing, as well as a public REST API for programmatic access
are provided at http://www.semanticsbml.org.

Model search

Ranked retrieval of SBML models from BioModels
database
Model similarities can be used to find models or data sets
referring to a given query model or a list of BCs. As a practical

application, we have implemented a similarity search
for models from BioModels Database (Figures 2 and 3). The
retrieved models are ranked by similarity scores, where high
scores indicate that query model and retrieved model share a
large fraction of similar annotations. To discard models
describing unrelated pathways, we filter out low-scoring
search results by a statistical significance test. Our null
hypothesis states that BCs appear in the models independently
and with the same BC-specific frequencies as in BioModels
Database. Accordingly, low P-values indicate that the query
model and a retrieved model share a set of common BCs that is
unlikely to appear just by chance, which suggests that they
describe the same biological pathways.

Given the similarity score s of a certain retrieved model, the
P-value states how probable it is to obtain an equal or higher
similarity score from a random model. For the calculation, we
randomly sample feature vectors in which each BC appears
with the probability (bþ 1)/(Bþ 1), where b is the number of
models referring to this BC and B is the total number of models.
We generate N¼998 such random models, check how many of
them show higher similarities to the query model than our
actual retrieved model. From this number n, the P-value is
estimated by the Bayesian estimator /PS¼(nþ 1)/(Nþ 2)
with a uniform prior for the P-value. For practical reasons, we
also compute a second P-value for the model overlap nT

MnN,
which can be computed without the need for random
sampling. Analytically calculating P-values for other similarity
scores turned out to be too slow for efficient online searches.
More details on the methods can be found in the Supplemen-
tary Appendix.

Search for models related to an experimental result
A model search may begin with a list of genes involved in a
certain biological process. As an example (see Figure 2),
we considered a microarray study on gene regulation during

Figure 2 Model search based on a microarray study. The experiment (Klevecz et al, 2004) revealed differential gene expression during metabolic oscillations in yeast,
which are coupled with bursts in DNA replication. Using the list of differentially expressed genes as a query, we obtained models of the affected pathways. The retrieved
models describe methionine or more general amino-acid metabolism (BioModels 66, 212, 68, 15, 190, 213, and 18), sulphur metabolism (90), ubiquitination (105),
and the DNA polymerase (15), and thus cover three of the six functional categories of the query genes. Bar lengths and colours show the vector-based model similarity
scores.
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metabolic oscillations in the yeast S. cerevisiae. The experi-
mental data of Klevecz et al (2004) show that the observed
oscillations are coupled with bursts in DNA replication.
Differentially expressed genes tend to be involved in sulphur
and methionine metabolism and in the production of
ubiquitine proteasomes, ribosomes, and the DNA polymerase.
To retrieve models related to this gene set, we described the
genes by MIRIAM-compliant annotations and started a search
for relevant models. The retrieval returned models of
methionine and sulphur metabolism, a model of the ubiquitine
proteasome system, and a model containing a DNA polymer-
isation reaction (see Figure 2). Although the functional
categories of the query genes were not explicitly used in the
query, they perfectly agree with the search results. Similar
model searches could start from any list of metabolites, genes,
or proteins. Further examples and practical hints for the
annotation and retrieval process can be found on our website.

Search results for a signal transduction model
The result of a model search starting from an MAP kinase
cascade model, BioModel 9 (Huang and Ferrell, 1996), is
shown in Figure 3. The topmost 15 models in the list describe
either MAP kinase cascades or parts of them. While the models
11, 14, and 10 are as detailed as the query model, the models of
Markevich (26–31) represent only the activation of MAPK, but
in more detail, and the models 84, 116, 32, 149, and 33 contain
additional proteins around the MAP kinase cascade. All
similarities are highly significant (estimated P-values around
10�3). Models further down in the list share some general
annotations with the query model, for instance, Gene
Ontology terms for protein phosphorylation and dephosphor-
ylation, but they rarely describe MAP kinase cascades.
Depending on the frequency of the common annotations, the

retrieved models may still appear significant, but they show
much lower similarity scores than the first 15 hits.

Model clustering

Unsupervised clustering is one of the prominent applications
of similarity measures. As an example, we clustered the first 10
models from Figure 3 by agglomerative clustering using
vector-based similarities. As shown in Figure 4, the two model
groups describing either the complete MAP kinase cascade
(9, 10, 11, and 14) or MAPK activation (26–31) are clearly
distinguished. Furthermore, the models 11 and 14, which stem
from the same publication (Levchenko et al, 2000), show the
highest similarity among the complete MAP kinase cascades,
whereas model 10, the only model with enzymatic reactions
represented with Michaelis–Menten-like kinetics, appears
most distant to all others. Among the MAPK activation
models, the clustering clearly distinguishes between models
containing effective enzymatic rate laws (27, 29, and 31) and
the ones containing elementary reaction steps (26, 28, and 30).
The reason for this distinction is not the structural difference
between the models, but the fact that many elementary
reactions in these models (in contrast to the enzymatic ones)
were annotated with Gene Ontology terms for enzyme binding
or dissociation.

Model alignment

One of the key challenges in automated model merging is to
match equivalent elements from two models. To realise such a
model alignment, we employed a greedy pairing: the two
elements with the highest pairwise similarity are successively
matched until all remaining similarities fall below a certain
threshold. At our website, the user can visually align

Figure 3 Results of a semantic model search in BioModels Database. Starting from the kinase cascade model of Huang and Ferrell (1996), a ranked list of similar
models was retrieved automatically. The first 15 models contain complete kinase cascades or parts of them. The top hit is the query model itself.
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annotated SBML models or data sets to similar models from
BioModels Database. An example, the visual alignment
between the MAP kinase cascade models, BioModel 84 and
BioModel 9, is shown in Figure 5. Although both models share
the same general structure, the Huang model shows the
phosphorylation states of the MAP kinases in much higher
resolution. Structure-based alignment methods could not
detect the similarity between these models without heavily
increasing the ‘fuzziness’ (number of node insertions/
deletions/mismatches) of their matching, which in turn leads
to a low specificity.

As a further application, we used model alignments to tile
the metabolic network of the yeast S. cerevisiae with kinetic
models available in BioModels Database. By iteratively
aligning kinetic models to the yeast consensus metabolic
network (Herrgård et al, 2008), we could cover about 15% of
the network with eight kinetic models (most of which
described the metabolism of other organisms), whereas
all other models contributed only few additional elements
(see the Supplementary Appendix for details). This automatic
comparison shows that existing kinetic models would by far
not suffice to build a comprehensive model of yeast
metabolism. In the future, the same method could help to
find white spots in the cellular networks that might deserve
further modelling efforts.

Discussion

The construction of large Systems Biology models in a bottom-
up style requires models that are easy to reuse. Public model
repositories, standard formats, and annotation schemes have
already been established, and the wealth of information stored
in models is ready to be processed by computer programmes.
While interconversion of annotations is mainly a matter of
technology, defining suitable similarities between models is a
more delicate task. The reason is that similarity measures
are not given a priori, but need to reflect specific human
intentions and expectations in order to be useful for practical
applications.

Computational models can resemble each other in two
complementary ways: first, they may describe similar biolo-
gical systems; and second, in case they do, they may describe
them using a similar level of granularity, similar formulas,
or similar quantitative values. In the present approach, we

focused on the first aspect, which is fully captured by the
biological annotations. The technical challenges mentioned
above were solved by interconnecting model annotations and
BCs, by assigning quantitative weights to the biological
qualifiers and relationships between BCs, and by condensing
all information within the similarity measures.

The second aspect, which concerns model formulation,
network structure, mathematical statements, and numerical
values, was ignored here. Of course, the similarity measures
could be extended to compare enzymatic rate laws (e.g., by
evaluating annotations with Systems Biology Ontology identi-
fiers) or mathematical formulae. However, similarity scores for
mathematical statements or network structures would
strongly depend on specific model formalisms, while the
comparison of annotations is not even limited to Systems
Biology models, but may apply to models from other fields and
even experimental data sets or annotated scientific literature
(Cheung et al, 2010).

Another reason for semantic comparisons is that biologists
typically search for models describing a certain biochemical
process, irrespective of the mathematical details. A paper such
as Markevich et al (2004), for instance, represents the same
biochemical process (MAPK phosphorylation) by six different
mathematical structures and, therefore, different reaction
networks. Annotations make it easy to recognise the similarity
between these models, while network-based model simila-
rities would emphasise their differences.

Like many other classification tasks, model retrieval
crucially depends on a sensible choice of the null model used
for computing the P-values. Since the null model is used to
distinguish between meaningless and meaningful similarities,
it needs to be chosen as carefully as the similarity measure
itself. In general, it should capture the typical properties of
models that are not specifically interesting as search results.
In the present approach, the main aim was to find models that
specifically share annotations with a query model. Unspecific
BCs, especially those that are very frequent, are likely to lead to
spurious similaritiy values. Our null model was tailored to
reproduce exactly this effect in order to tag the resulting low
similarities as insignificant. In the future, larger model
databases and more specific search tasks may raise the need
for advanced null models, specifically constructed to match
and exclude unintended search results.

The comparison of SBML models by semantic annotations
works well in practise and may pave the way to promising

Figure 4 Clustering of computational models. The MAP kinase models retrieved from BioModels Database (see Figure 3) contain subgroups that are successfully
detected by the clustering. Despite their different network structures, the models of Markevich (26–31), describing the same biological pathway, show high pairwise
similarities (40.82). Dendrogram drawn by DendroUPGMA (Garcia-Vallve et al, 1999).
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applications. By transforming and normalising the semantic
feature vectors, similarities can be rewritten in terms
of Euclidean distances, which makes them amenable to
multivariate methods such as Kohonen maps, biclustering,
principal and independent component analysis (Pearson,
1901; Comon, 1994), non-negative matrix factorisations
(Lee and Seung, 1999), classification by support
vector machines, and search for prototype models. These
methods, in turn, may have various practical applications
in the visualisation and statistical analysis of large
model sets.

As depicted in Figure 6, automated searches for models and
experimental data can be helpful in early and later stages of the
modelling process. Existing models can provide information
about additional reactions, enzymatic rate laws, and para-
meter values, or suggest alternative descriptions of biochem-
ical processes. More complex searches using positive and
negative weights for the individual features, e.g., for models
that contain certain annotations and lack certain others, could
help to extend existing models by additional pathways. Finally,
the possibility to start the retrieval process from ‘omics’ data
opens up new applications, including pathway enrichment

analyses, comparison between experimental data and simula-
tion results, or automated model parameter fitting and model
selection.

Figure 5 Visual alignment between computational models. An MAP kinase model (BioModel 84; Hornberg et al, 2005) (blue) is aligned with the more detailed
BioModel 9 (Huang and Ferrell, 1996) (red). The reaction networks represent chemical species (circles) and reactions (squares) connected by reactant (green) and
product edges (red). Orange edges connect elements between models if their similarity scores exceed a threshold value of 0.25.

Figure 6 Semantic model comparison can be useful during hypotheses
generation, modelling, experimental verification, and model refinement. Given a
model or an experimental data set, similar models or data can be found in
repositories and be used to extend existing models, refine them using data, and
finally select the most appropriate model. Models and data sets of interest can
further be mapped, aligned, combined, and classified or displayed by clustering.
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Conclusion

As models and data in Systems Biology are rapidly accumulat-
ing, automatic searches for models or data sets and pairwise
alignments between them become increasingly important. For
efficient searches, models and data have to adhere to standard
formats, contain reliable biological annotations, and be stored
in central, publicly accessible repositories. Public databases
already provide a significant number of well-annotated models
and data, and model comparison may promote various
applications, allowing to exploit an otherwise hardly mana-
geable amount of knowledge. Facilitating the reuse of models
and data, such comparisons may become a basic method
in computational Systems Biology, just as tools like BLAST
(Altschul et al, 1990) became to scientists dealing with
sequence data.

Supplementary information

Supplementary information is available at the Molecular
Systems Biology website (www.nature.com/msb).

Acknowledgements
We are grateful to Dagmar Waltemath and Ron Henkel for lively
discussions and helpful comments on the manuscript. This work was
supported by the British Biotechnology and Biological Sciences
Research Council [BB/F010516/1] (to NLN), the International Max
Planck Research School for Computational Biology and Scientific
Computing, the German Research Foundation [CRC 618], the BMBF
SysMO Project Translucent2 [contract number 0315786A], and the
European Commission [BaSysBio, grant number LSHG-CT-2006-
037469] (to EK).

Author contributions: WL, MS, and FK designed research; MS and FK
implemented methods; MS analysed data; and MS, WL, FK, NLN, and
EK wrote the paper.

Conflict of interest
The authors declare that they have no conflict of interest.

References

Altschul S, Gish W, Miller W, Myers E, Lipman D (1990) Basic local
alignment search tool. J Mol Biol 215: 403–410

Ashburner M, Ball C, Blake J, Botstein D, Butler H, Cherry J, Davis A,
Dolinski K, Dwight S, Eppig J, Harris MA, Hill DP, Issel-Tarver L,
Kasarskis A, Lewis S, Matese JC, Richardson JE, Ringwald M,
Rubin GM, Sherlock G (2000) Gene ontology: tool for the
unification of biology. Nat Genet 25: 25–29

Bader G, Cary M, Sander C (2006) Pathguide: a pathway resource list.
Nucleic Acids Res 34: D504

Becker J, Kuropka D (2003) Topic-based vector space model.
In: Proceedings of the Sixth International Conference on Business
Information Systems, pp 7–12

Brazma A, Hingamp P, Quackenbush J, Sherlock G, Spellman P,
Stoeckert C, Aach J, Ansorge W, Ball C, Causton H, Gaasterland T,
Glenisson P, Holstege FC, Kim IF, Markowitz V, Matese JC,
Parkinson H, Robinson A, Sarkans U, Schulze-Kremer S et al
(2001) Minimum information about a microarray experiment
(MIAME)–toward standards for microarray data. Nat Genet 29:
365–371

Budanitsky A, Hirst G (2001) Semantic distance in WordNet: an
experimental, application-oriented evaluation of five measures.
In: Workshop on WordNet and Other Lexical Resources, Vol. 2

Cheung K, Samwald M, Auerbach R, Gerstein M (2010) Structured
digital tables on the Semantic Web: toward a structured digital
literature. Mol Syst Biol 6: 403

Comon P (1994) Independent component analysis, a new concept?
Signal Process 36: 287–314

Degtyarenko K, de Matos P, Ennis M, Hastings J, Zbinden M,
McNaught A, Alcantara R, Darsow M, Guedj M, Ashburner M
(2008) ChEBI: a database and ontology for chemical entities of
biological interest. Nucleic Acids Res 36: D344

Fielding R (2000) Architectural styles and the design of network-based
software architectures. Ph.D. thesis, Irvine: University of California

Fionda V, Palopoli L (2011) Biological network querying techniques:
analysis and comparison. J Comput Biol 18: 595–625

Garcia-Vallve S, Palau J, Romeu A (1999) Horizontal gene transfer in
glycosyl hydrolases inferred from codon usage in Escherichia
coli and Bacillus subtilis. Mol Biol Evol 16: 1125

Gay S, Soliman S, Fages F (2010) A graphical method for reducing and
relating models in systems biology. Bioinformatics 26: i575

Hattori M, Okuno Y, Goto S, Kanehisa M (2003) Development of a
chemical structure comparison method for integrated analysis
of chemical and genomic information in the metabolic pathways.
J Am Chem Soc 125: 11853–11865

Henkel R, Endler L, Le Novère N, Peters A, Waltemath D (2010) Ranked
retrieval of computational biology models. BMC Bioinformatics
11: 423
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