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Appendix

Abstract

In this supplementary appendix, we first describe the libSBAnnotation, a system
for interconnecting and exploiting information from various biological databases. The
information is stored in an ontology and can be used to compute semantic similarities
between Biological Concepts, model elements, and entire models. We develop a number
of similarity measures and discuss how the statistic significance of the model similar-
ities can be assessed. The similarity measures are evaluated with benchmark models
representing predefined categories, which serve as a gold standard. As an application,
we align kinetic models to a large metabolic network.
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1 libSBAnnotation - a query engine for biochemical an-
notations

When defining similarities between biochemical annotations, a basic requirement is to resolve
and relate biological names and identifiers from public web resources. For this purpose, we
developed the library libSBAnnotation1. Upon first invocation, entries describing biochem-
ical compounds, reactions, genes, cellular compartments, and organisms are collected from
various web resources (see Table 1) and equivalent resource entries are internally represented
by “Biological Concepts” (BCs), which are linked to the original identifiers.

In contrast to the existing tools libAnnotationSBML [10], Saint [8], and BridgeDB [11],
libSBAnnotation does not only provide cross-linking information or internal relations of
the different web resources, but processes this information and resolves inconsistencies, e.g.
cross-references between entities that are described to a different level of detail. The Biolog-
ical Concepts are organised in several hierarchies via “is a” relationships and interconnected
by various other relationships extracted from the original resources. The resulting ontology
allows users to compare entries from different web resources and to connect model elements
by chains of biological relations even if this information could not be drawn from the in-
dividual web resources themselves. By enumerating the possible paths between ontology
elements and evaluating the relations along these paths, similarities between elements can
be defined (see section 6). The speed of libSBAnnotation queries depends on the maximum
path length set for detecting indirect element relations. If many web resources are captured,
it may be necessary to reduce the maximal path length in order to make queries reasonably
fast.

When starting libSBAnnotation for the first time, the user can choose the web resources
to be supported and the level of detail to which information is extracted. A reasonable
selection covers more than 95% of the annotations in BioModels Database and uses 1.1 GB
of RAM. Since the maximal amount of data available would consume more than 15 GB,
an additional RESTful web service, to be accessed from different programming languages,
is provided at www.semanticsbml.org. Apart from the gain of computational speed by
having local copies of the web resources, a further difference between libSBAnnotation and
libAnnotationSBML or Saint is its general applicability beyond the scope of SBML models.
Finally, a fuzzy name search allows users to retrieve BCs with a defined literal error tolerance.

2 Similarity measures for Biological Concepts and MIRIAM
annotations

In order to define similarities between MIRIAM-compliant element annotations, a first re-
quirement is to score the similarities between the referenced Biological Concepts. To this
aim, we consider a similarity measure for ontology elements that has previously been de-
veloped for semantic text analysis and modify it to make it compatible with our ontology.
Given the similarities between Biological Concepts and numerical scores for the biological
qualifiers, we can then define similarities between MIRIAM-compliant annotations. Further
below, these similarity measures will be used to define similarities between models, either
by the vector-based approach described in the main article or using structured similarity
measures as described in sections 3 and 4.

1Open source python code is freely available at sourceforge http://sourceforge.net/projects/

semanticsbml/
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Web resource Annotation for Relations extracted
NCBI Taxonomy organisms is a
Gene Ontology compartments, is a, negatively regulates,

processes part of, positively regulates, regulates
ChEBI species has functional parent, has parent hydride,

has part, has role, is a, is conjugate acid of,
is conjugate base of, is enantiomer of,
is substituent group from, is tautomer of

KEGG Compound species
KEGG Drug species
KEGG Enzyme species
KEGG Reaction reactions
KEGG Genome genes
Reactome species
EntrezGene genes encodes, hasFunction, inOrganism,

inProcess, isLocated, isPartOf
UniProt species encodes, hasProcess, inOrganism
Interpro species parent, member, example, found in
Saccharomyces species
Genome Database

Table 1: List of web resources supported by the libSBAnnotation. Upon installation, the web
resources are screened for element names, identifiers, relations, and cross-linking information.
Corresponding relations from different web resources (e.g., “is a”) are combined in a single
ontology.

2.1 Mathematical notation

First of all, let us introduce some formal notation for models, model elements, their anno-
tations, the referenced resource entries or Biological Concepts, and the relations between
them (compare Figure 1).

Models and annotations. Formally, we identify a model M (from a model list M)
with a set of model elements m ∈M , while each element is identified with a set of MIRIAM-
compliant annotations µA ∈ m. Each annotation relates the model element to an identifier
(ID) µI from a web resource µR, while the qualifier µQ specifies the relation between the
element and the corresponding resource entry. Thus an annotation is formally a triple µA =
(µR, µI, µQ). In addition, the libSBAnnotation links each known web resource entry (µR, µI)
to a Biological Concept µ, a basic element of the ontology. While a BC can be associated
with entries from several web resources, the mapping of an entry to a BC µ = BC(µR, µI)
is unique. Therefore, whenever an annotation points to a resource element listed in the
libSBAnnotation ontology, it can be represented by the pair (µ, µQ).

Relations and properties of Biological Concepts In our ontology, BCs are con-
nected by directed relation edges, described as triples r = r(µ, ν, relation type) of the two
related BCs and the relation type (for a list of relation types, see Table 2). Each relation
implicitly defines an inverse relation r(ν, µ, inverse relation type), where the inverse type
is e.g. “part of” for “has part”. The set of outgoing relation edges at BC µ is called R(µ)
and the set of outgoing relation edges of a certain type is called R(µ, relation type). Each
BC µ can be characterised by a number of properties. Its depth d(µ) is defined as the
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(A)

(B)

Figure 1: Models and element annotations. (A) Structure of an annotated SBML model. A
model M (left) contains a number of elements. Each model element m can have multiple
annotations and each annotation µA refers to a Biological Concept (BC) via a biological
qualifier. (B) Semantic relation between element annotations. Two element annotations (left
and right boxes) refer, via their biological qualifiers (red arrows), to Biological Concepts (α-
D-glucose and D-glucopyranose). The two BCs are linked by biological relations represented
in the libSBAnnotation (black arrows), which can either be direct (as shown in here) or
consist of a chain of relations with other BCs in between.

length of the “is a” relations path between the ontology element and its root. Similarly,
the height h(µ) of a BC is given by the maximal length of an “is a” relation path to any
of the leaves below it. Finally, we define the frequency cµ of a BC in BioModels Database,
the cumulative frequency ccµ = cµ +

∑
ξ:r(µ,ξ,t)∈R(µ,is a) c

c
ξ including all its children in the

“is a” hierarchy, and the total number of annotation appearances including pseudocounts
cΩ = 1 +

∑
∀ξ:cξ>0(cξ + 1). To include MIRIAM annotations that do not match any known

BC in our ontology, we create for each of them a new BC without any relations to other
concepts.

2.2 Similarity measure σLi
BC adopted from semantic text analysis

We now introduce quantitative similarities between Biological Concepts, based on their
frequencies and the known relations between them. First, we adopt a similarity measure
for terms in natural language, introduced by Li et al. [7], which is based on a large text
corpus and on a semantic knowledge base with a simple hierarchical “is a” relation. The
similarity of two terms reflects three different factors: (i) their distance in the relation tree,
(ii) the depth of their lowest common ancestor in the relation tree, and (iii) their count
numbers in the text corpus. In the formula for similarities, these aspects are described by
three multiplicative factors f1, f2, and f3. If we simply replaced natural language terms by
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relation type frts

is a .5
part of .1
has part .1
regulates .01
positively regulates .01
negatively regulates .01
is tautomer of .9
is enantiomer of .01
is conjugate acid of .9
is conjugate base of .9
has role .75
has functional parent 0.
is substituent group from .01
has parent hydride .9
encodes .1
hasFunction .75
hasProcess .25
inOrganism .1
inProcess .25
isLocated .1
isPartOf .25

Table 2: Quantitative factors frts assigned to the relations in the libSBAnnotation ontology.
The numerical values were chosen ad-hoc after a series of tests and systematic evaluations.

Biological Concepts, we would obtain the similarity measure

σLi
BC(µ, ν) = f1(µ, ν) · fLi

2 (µ, ν) · fLi
3 (µ, ν) (1)

with the formulae for f1, fLi
2 , and fLi

3 proposed in [7]. In contrast to Li’s original application,
we deal with an ontology containing several relation types, so we had to modify these
formulae for our purposes. First, the different types of relations have to be incorporated into
the distance term. Second, because of the various additional relation types, the relationship
graph may not be a tree, but may contain cycles and consist of disconnected subgraphs. We
therefore developed new formulae for f1, f2, and f3, but attempted to keep them similar to
the ones suggested by Li et al.

Ontology distance factor f1 The ontology distance factor f1 accounts for the paths
between two Biological Concepts in the ontology and for the types of relations along these
paths. We score each relation arrow r(µ, ν, t) of type t by a number frts(t) between 0 and 1
(see Table 2), multiply these scores along each possible path, and choose the path with the
maximal resulting value. The resulting value f1 can be recursively defined as

f1(µ, µ) = 1

f1(µ, ν) = max
t,ξ: r(µ,ξ,t)∈R(µ)

(frts(t) · f1(ξ, ν)). (2)

We further set f1(µ, ν) = 0 if there is no relation chain between µ and ν or if this chain is
too long to be calculated in reasonable time. In practise, we only evaluate paths up to a
certain maximal length.
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Ontology depth factor f2 Model annotations can describe the intended BCs to different
levels of detail. For instance, a model element could either be annotated with the ChEBI
entry CHEBI:18133 (for hexose) or with CHEBI:17925 (for α-D-glucose). Since “hexose” is
more general than “α-D-glucose”, two elements annotated as α-D-glucose will potentially
be more similar than two elements annotated as hexoses. To capture this in the formula for
BC similarities, a second factor f2 is included into the similarity measure. It increases with
the degree of detail of an annotation, which is measured by its depth in the ontology tree.
In Li’s original formula, the level of detail of the two BCs is determined by the depth of
their lowest common ancestor. In our case, two compared BCs, e.g. a protein and the gene
encoding it, are not necessarily part of the same tree of “is a” relations and do not have a
common ancestor. Therefore, we consider the average relative depth of both BCs and use
the formula

fLi
2 (µ, ν) = tanh

(
3

2

(
d(µ) + 1

d(µ) + h(µ) + 1
+

d(ν) + 1

d(ν) + h(ν) + 1

))
. (3)

The prefactor 3/2 was chosen ad-hoc to use the nonlinear range of the hyperbolic tangent
function.

Local semantic density factor f3 Some annotations, for instance the GeneOntology
term for “cell” (GO:0005623), are very frequent in BioModels Database (see BioModelsStats
website at www.semanticsbml.org) and provide little information to distinguish between
models. Just like the unspecific annotations discussed before, such frequent annotations
could be down-weighted in the overall model similarity. Since there is no “text corpus” for
biochemical annotations, we use the collected annotations from the BioModels Database
instead. We screen all models for references to each of the BCs and compute the local
semantic density term

fLi
3 (µ, ν) = tanh

(
− log

(
min(ccµ, c

c
ν)

cΩ

))
. (4)

from the cumulative frequencies ccµ (see definition above).

2.3 Similarity measure σDD
BC accounting for distance/depth depen-

dence

Li’s formula Eq. (1) treats the distance and depths of different ontology terms as independent
factors. In reality, if two BCs have a small depth, their maximum distance will be limited by
this very fact. To avoid the independence assumption, we defined a new similarity measure
for Biological Concepts in which distance and depth are combined and the local semantic
density is calculated individually for each BC:

σDD
BC (µ, ν) = f1(µ, ν)f2(µ,ν) · f3(µ) · f3(ν) (5)

where

f2(µ, ν) =
2

d(µ) + d(ν) + 2
(6)

f3(µ) = 1−
log (ccµ + 1)

log cΩ
. (7)
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2.4 Similarity measure σAn for MIRIAM annotations

As shown in Figure 1 (B), two model elements are related by the Biological Concepts refer-
enced in their annotations. Model elements and BCs are connected via qualifiers, while BCs
may be interconnected by relation chains in the ontology. We quantify these relations by a
similarity measure between element annotations µA and νA. The similarity should increase
with the similarity between the two BCs and with direct qualifiers like “is”, in contrast to
vague qualifiers like “isVersionOf”. Since these two factors are logically independent, we
combine them by the multiplicative formula

σAn(µA, νA) = fqsm(µQ, νQ) · σBC(µ, ν). (8)

The term fqsm scores each possible pair of qualifiers by a value between 0 and 1 (for
numerical values, see Table 3). The term σBC ∈ [0, 1] describes the similarity between BCs
as determined from the ontology, i.e., either σLi

BC from Eq. (1) or σDD
BC from Eq. (5).
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is 1. 0. .5 .5 .8 .2 .2 .2 .2
isDescribedBy 0. 1. 0. 0. 0. 0. 0. 0. 0.

isVersionOf .5 0. .3 .25 .4 .1 .1 .1 .1
hasVersion .5 0. .25 .3 .4 .1 .1 .1 .1

isHomologTo .8 0. .4 .4 .7 .64 .64 .64 .64
isPartOf .2 0. .1 .1 .64 .05 .04 .04 .04
hasPart .2 0. .1 .1 .64 .04 .05 .04 .04

isEncodedBy .2 0. .1 .1 .64 .04 .04 .5 .04
encodes .2 0. .1 .1 .64 .04 .04 .04 .5

Table 3: Contribution fqsm(µQ, νQ) of the biological qualifiers to the annotation similarity
Eq. (8). Each possible pair of biological qualifiers µQ and νQ is scored by a value between 0
and 1. The numerical values were chosen ad-hoc after a series of tests.

3 Vector-based similarity measure σTVSM
Mo for models

Given the pairwise similarities between element annotations, we can now define similarities
between entire models. The first type of similarity measures, which is used in our online
model search and discussed in the main article, is related to the Topic-based Vector Space
Model (TVSM, [1]) used in information retrieval. The basic idea is to compare models by
their feature vectors, i.e., the columns of the annotation matrix. In the feature vector vM of
model M , the ith BC µ is represented by a component viM with a value of 1 if the model
points to this BC by one of its annotations and viM = 0 otherwise. Instead of the value
1, one may also choose different values viM =

√
fqsm(µQ, µQ) depending on the qualifier

appearing in the model. If a BC is referenced several times in a model, one could use either
the sum or the maximum of the different values.

Simple similarities between two models M and N can be defined based on the scalar
product vM · vN between feature vectors, which basically counts how many of the BCs are
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shared by both models. Using different normalisations, we can obtain our cosine coefficient
vM · vN/

√
||vM || ||vN ||, but also other association measures like Dice’s coefficient 2 vM ·

vN/(|vM |1 + |vN |1) or the overlap coefficient vM · vN/min(|vM |1, |vN |1), where we assumed
binary feature vectors [12]. If two models contain BCs that are similar, but not identical,
the cosine coefficient will not take into account their similarity. In the Topic-based Vector
Space Model (TVSM) approach, we replace the scalar product by the quadratic form

σTVSM
Mo (M,N) =

vM
T S vN√

vM
TSvM

√
vN

TSvN

, (9)

where S is the precalculated similarity matrix between BCs. For instance, we could use the
similarity measure σDD

BC Eq.(5) and set Sil = f1(µ, ν)f2(µ,ν) · f3(µ) · f3(ν) where µ is the ith

and ν is the lth BC. Since the feature vectors vM and all individual individual components
of S are non-negative, the resulting model similarities will be non-negative even if S is not
a positive-definite matrix.

For positive-definite matrices S, this formula can be can be justified by the use of linearly
transformed feature vectors v′M = AvM. The transformation is chosen such that ATA = S.
Effectively, this reduces the angle between basis vectors representing similar BCs. The
resulting similarity measure is defined as the cosine of the angle between the transformed
vectors v′M and v′N.

4 Structured similarity measures for model elements
and models

The vector-based similarity measures detect which BCs are referenced by a model, but not
how they are linked to individual model elements. In SBML models, each element (describing
a compound, reaction, etc.) can have multiple annotations with different qualifiers and
referring to different BCs. To account for the specific arrangement of annotations, we
developed a second class of model similarity measures, which are described in this section.

In these structure-based similarity measures, the similarity between two models is com-
puted from the pairwise similarities between model elements, which in turn is based on
the pairwise similarities between their individual annotations. We consider two different
approaches: First, in the preference-based approach, we iterate over all model elements,
determine for each of them the maximal similarity to elements from the other model, and
average over the resulting values. Using the same approach, the similarities between two
model elements can be computed from the pairwise similarities of the annotations. Second,
we discuss an approach in which annotations are regarded as uncertain pieces of information
and are combined using formulae derived from probabilistic reasoning.

4.1 Preference-based similarity σPref
El for model elements

The preference-based similarity between two model elements m and n can be computed from
the pairwise similarities σAn(µA, νA) of all their annotations µA and νA by the formula

σPref
El (m,n) =

∑
µA∈m

max
νA∈n

σAn(µA, νA) +
∑
νA∈n

max
µA∈m

σAn(µA, νA)

|m|+ |n|
, (10)

where |m| is the number of annotations assigned to model element m. For every annotation,
the most similar annotation from the other model is selected; an example is shown in Figure
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Figure 2: Preference-based similarity measure σPref
El for model elements. (A) The similarity

between two model elements m and n (blue boxes) is computed from the pairwise simi-
larities σAn (shown as numbers) between their annotations (small white boxes). (B) For
each annotation, the maximal similarity to an annotation from the other model element is
determined (dotted arrows). To compute the overall element similarity σPref

El (µA, νA), these
numbers are averaged over all annotations, σPref

El (µA, νA) = (1 + 0 + 0.5 + 1 + 0.5)/5 = 0.6.

2. If one of the elements has no annotations, the similarity σPref
El (m,n) is set to a small

value εEl ≥ 0, representing the similarity between randomly picked elements (see Table 4).
Equation (10) yields similarity values between 0 and 1. A similarity of 1 shows that the
annotations of both elements contain is qualifiers and are basically identical. A similarity
of 0 < εEl, on the contrary, shows that both elements are annotated, but their annotations
are completely unrelated.

Parameter Value
basal element similarity εEl 0
basal model similarity εMo 0

Table 4: Numerical parameters used on calculations for the preference-based model similarity
measure.

4.2 Preference-based similarity σPref
Mo for models

Similarity between models Similarities between models could be computed from the
pairwise similarities of their elements in a variety of ways. In analogy to formula (10), we
propose the preference-based formula

σPref
Mo (M,N) =

∑
m∈M

max
n∈N

σEl(m,n) +
∑
n∈N

max
m∈M

σEl(m,n)

|M |+ |N |
. (11)

A model similarity of 1 means that each element from one model has a similarity of 1 with
at least one element from the other model, while a model similarity of 0 means that any
pair of elements has similarity 0. Again, if one of the models has no elements at all, the
similarity σPref

Mo (M,N) is set to a value εMo ≥ 0, representing a basal similarity between
randomly picked models (see Table 4).
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Normalised model similarities Our preference-based similarity measure can lead to
counter-intuitive results if models are incompletely annotated or contain several elements
with the same annotations. For instance, a model with missing annotations will have a self-
similarity σPref

Mo (M,M) smaller than 1 and may have higher similarities to other, different
models. To compensate for such artifacts caused by incomplete annotation, the similarity
of two models can be normalised by the maximum of their self-similarities, yielding the
normalised similarity

σ̂Pref
Mo (M,N) =

σPref
Mo (M,N)

max(σPref
Mo (M,M), σPref

Mo (N,N))
. (12)

4.3 Similarities σProb
El derived from probabilistic reasoning

If a human expert had to compare model elements manually, she would go through the
annotation lists, logically combine all pieces of information, and try to find pairs of anno-
tations that either support or preclude similarity. Elements without annotations would be
regarded as dissimilar since their odds to describe the same concepts are rather low. Fi-
nally, where annotations do not seem to fit at all, an expert might conclude that some of
the annotations are wrong. The formula (10) for the preference-based element similarity
σPref

El reflects this human reasoning only very roughly. To mimic a little better how human
experts would compare model elements, we developed another similarity measure based on
ideas from probabilistic reasoning. Although this measure performed worse than heuristic
ones in the evaluation (see below), it is of theoretical interest because its numerical similarity
values can be interpreted in terms of evidence and uncertainty.

First of all, we assume that each model element represents a certain biochemical entity
(“intended concept”), which the curator had in mind when assigning the annotations and
which is described, possibly roughly or even wrongly, by the annotations. Furthermore, we
assume that two intended concepts are classified as “alike” if they are biochemically close
enough to be matched in model merging (the exact criterion for alikeness does not play a
role for our argument). The annotations of two model elements can help to decide whether
the two corresponding intended concepts are alike or not.

Our similarity score is supposed to quantify the probability that the intended concepts
are alike, taking into account their annotations. If there is strong evidence that the intended
concepts are alike, the model elements will obtain a similarity score close to 1. If there is
little such evidence – or even evidence that the entities are not alike – the similarity score
will be close to 0. To derive a formula for this probability, we first consider the simple
case of two elements, each with a single annotation, and a single relation path between the
corresponding BCs2. If there is no sufficiently short ontology path between the two BCs, we
replace the path by a hypothetical “is not” relation. Furthermore, if both elements refer to
the same BC, the path consists of the self-relation “is”. The three pieces of information – the
two qualifiers and the BC relation – form a semantic chain λ(µQ, path(µ, ν), νQ) between two
elements. Some chains will provide strong evidence for alikeness (e.g., the triple “is/is/is”),
while others provide little evidence (e.g., “is version/is/has part”) or even evidence for non-
alikeness (“is/is not/is”).

This evidence can be quantified by probabilistic formulae. We assume a hypothetical,
large collection of annotated model elements. Pairs of elements are categorised as “alike”
(A) or “not alike” (B) according to the intended concepts they represent. As pointed out

2Note that the BCs referenced by the annotations need not be identical with the intended concepts.
For instance, they can be less specific than the intended concept because the curator could not find a web
resource entry that would exactly match her intention.
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Figure 3: Semantic chains between two model elements. Top: Model elements (left and
right boxes) refer to Biological Concepts (centre boxes) by biological qualifiers (red arrows).
The Biological Concepts are interlinked via direct relations stored in the libSBAnnotation
ontology and indirect relations derived from them (black arrows). Bottom: semantic chains
between the two model elements, consisting of a qualifier, a relation, and another qualifier.
Four of the possible chains are shown.
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before, the exact criterion for alikeness does not play a role for our argument. If we consider
a particular semantic chain λ (e.g., “is version/is/is version”), we can count how often this
chain appears (or does not appear) in element pairs of type A or B. The probability to find
the chain λ in a randomly picked pair of alike entities is given by the conditional probability
p(λ|A). The resulting log odds ratio

τEl(λ) = log
p(λ|A)

p(λ|B)
(13)

tells us how much information about the question “alike or not alike?” is provided by the
chain λ. If a chain is equiprobable for pairs of type A or B, the log odds ratio will be zero. If
a chain appears more frequently in pairs of type A (B), the ratio will be positive (negative).

The next step is to combine information from several chains that might exist between
the two model elements. This is illustrated in Figure 3. If each element contains several
annotations and if pairs of referenced BCs are linked by several semantic chains, each possible
path between the two model elements will contribute some information about the question
“alike or not alike?”. The evidence from all these semantic chains can be combined by using
the Bayesian formula. To determine the probability that the two elements are alike, we
enumerate all combinatorial chains λ1, λ2, ... and compute the posterior log odds ratio

L(m,n) = log
p(A|λ1, λ2, ...)

p(B|λ1, λ2, ...)
= log

p(λ1, λ2, ...|A)

p(λ1, λ2, ...|B)
+ log

p(A)

p(B)
. (14)

As an approximation, we assume that the conditional probabilities of the chains are inde-
pendent of each other and obtain

L(m,n) ≈ L′(m,n) = log
p(λ1|A)

p(λ1|B)
+ log

p(λ2|A)

p(λ2|B)
+ · · ·+ log

p(A)

p(B)

= τEl(λ1) + τEl(λ2) + ...+ τEl. (15)

This formula consists of a sum of likelihood log odds ratios τEl(λi) for each chain plus a
prior log odds ratio τEl for two arbitrary elements to be alike. The values of all these log
odds ratios can be collected in a table (for an example, see Table 5). Positive values will
increase the probability for two elements to be alike, while negative ones will decrease it.
Most chains can be assumed to have negligible values and are therefore omitted from the
sum in Equation (15). If we accept the approximation (15) and translate the log ratios back
to probabilities, we obtain our probabilistic similarity measure

σProb
El (m,n) =

eL
′(m,n)

1 + eL′(m,n)
≈ prob(A|λ1, λ2, ...) (16)

for model elements. Since we distinguished here between the intended concepts and the BCs
representing them, we can also account for misannotations, where BCs were just wrongly
assigned. A certain rate of such misannotations can be considered by simply changing the
values of the conditional probabilities p(λi|A).

5 Calculation of p-values for model similarities

5.1 Background model

A model similarity search yields a list of retrieved models, ranked by their similarities to the
query model. Similarity values close to zero indicate that two models are basically dissimilar,
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µQ path(µ, ν) νQ τEl(λ)
is has functional parent is 1.
is is is 5.
is is isPartOf 1.
is is isVersionOf 2.
is is a isVersionOf 1.
is is isHomologTo 2.
hasPart is hasVersion 0.5
hasPart is is 1.
hasPart is a is 0.5
hasPart is isPartOf 1.3
hasPart is isVersionOf 0.5
hasPart is a isVersionOf 0.2
hasPart is hasPart 1.3
hasPart is a hasPart 0.6
hasPart is isHomologTo 1.
hasVersion is is 2.
hasVersion is hasVersion 1.
hasVersion is isVersionOf 1.
hasVersion is isHomologTo 1.
isDescribedBy is isDescribedBy 5.
isHomologTo is isHomologTo 2.5
isHomologTo is isPartOf 1.
isHomologTo is isVersionOf 1.5
isPartOf is isVersionOf 0.7
isVersionOf is isVersionOf 1.
isVersionOf is a isVersionOf 0.5

others 0

Table 5: Scores for semantic chains used in the probabilistic similarity measure σProb
El . A

chain λ = (µQ, path(µ, ν), νQ) between both MIRIAM annotations µA and νA consists of the
two qualifiers µQ and νQ and the relation between the referenced Biological Concepts µ and
ν. In this example table, only direct relation arrows are listed. Semantic chains that are

not listed in the table are assigned values of 0. For the prior log odds ratio τEl = log p(A)
p(B) ,

we choose a value of -3. All numerical values were chosen ad-hoc.

except for some elements that they possibly share by chance. But where can we draw the
line between “similar” and “dissimilar” models? A pragmatic solution is to cut the list of
retrieved models below a certain threshold value, e.g. a minimal similarity score of 0.25,
chosen ad-hoc or from experience. While this might work well in practise, the choice of the
threshold is arbitrary and a single threshold may not be appropriate for models of different
size.

Alternatively, we can judge each similarity score by a p-value, describing the probability
that the observed score could have occurred just by chance. To define precisely what is
meant by “chance”, we consider the similarities between our query model and an ensemble
of random models. For the vector-based similarity measures, the random models can be
simply defined by their feature vectors. For each possible BC, we count how many models
in BioModels Database (xi, total model number xtot) refer to it in their annotations. From
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the count number, we compute its appearance probability

pi = Prob(vi = 1) =
xi + 1

xtot + 1
(17)

where we use pseudo counts to avoid zero probability values. A random model is described
by an independent random vector v in which each component vi is set to a value vi = 1 with
probability pi and to vi = 0 otherwise. For a given query model, a background distribution
for a similarity score σTVSM

Mo (as shown in Figure 4) is derived by evaluating the scores
between the query and the random models.

The proposed null model was specifically chosen to emphasise the “unexpected” common
appearance of BCs shared by the query model and the retrieved models. By construction,
a low p-value (e.g. below 0.05) means that the observed similarity score cannot simply be
explained by random appearance of individual BCs with their different frequencies. Instead,
it hints at a correlated appearance of BCs in both models, which suggests that the two
models describe similar biological pathways. Furthermore, using this background model we
take care of the fact that models could overlap in common molecules like nucleotides by
requiring a higher similarity threshold e.g. for models in which ATP appears.

If we score the retrieved models by their p-values (instead of the similarities), the fre-
quencies of individual BCs are, as mentioned above, taken into account in the background
model. Therefore, the term f3 in the formula for BC similarities would provide no additional
information and could be omitted.

Figure 4: Calculation of p-values for model similarities. The blue histogram shows the
distribution of vector-based similarity scores σTVSM

Mo between the BioModel 9 [3] and 1000
randomly generated feature vectors representing random models. The distribution resembles
a beta distribution (green, fitted) and is concentrated at values below 0.2. Given these
random similarities the observed ones of the first retrieved models (Figure 3 in main article)
are highly significant.
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5.2 Bayesian estimation of p-values

Even for this simple ensemble of random models, the background distribution for our simi-
larity measure is hard to compute as there exists no closed, simple formula. Only with a few
simplifications concerning the similarity measure and the feature vectors an efficient explicit
computation becomes possible.

However, p-values for any similarity measure can be estimated by sampling many reali-
sations of the random model and employing a Bayesian approach. The number xsim counts
the positive random models, i.e. the models showing a higher similarity than the retrieved
model. Under the null hypothesis, the number xsim of positive random models would follow
a binomial distribution with distribution parameter p and maximal number xrand. Given
xsim and xrand and assuming a uniform prior distribution for the p-value P , the posterior for
P is a beta distribution prob(P ) ∼ P xsim (1 − P )xrand−xsim , which describes our estimated
p-value. Its mean value and standard deviation read

〈P 〉 =
xsim + 1

xrand + 2√
var(P )〉 =

√
(xsim + 1)(xrand − xsim + 1)

(xrand + 2)2(xrand + 1)
≈
√
xsim + 1

xrand + 2
(18)

Thus, the estimation of low p-values is limited by the number xrand of random models
considered: for xrand = 998 even a similarity of 1 would be assigned a p-value of 0.001±0.001.

5.3 Analytic derivation of p-values

There is no simple analytic formula for the p-value of our vector based similarity measure.
This is due to the mathematical structure of the similarity formula and the fact that all BCs
can have different occurrence probabilities in a random model. In order to deal with the
first problem, we start to develop a way to compute p-values for a more simple similarity
measure and show ways to extend it, while we tackle the second problem by an efficient
computation.

p-value for model overlap First we consider the simple model overlap σO
Mo(M,N) =

vT
MvN , which counts the number of BCs which are referred to in both models under the

condition that the vectors contain only zeros and ones. Without loss of generality, let
the BCs be sorted such that ∀i∈1..|M |viM = 1 and viM = 0 otherwise. With pi being the
probability of an annotation to occur in a model we can easily determine the probability of
a random model N to have an overlap of zero to model M :

Pr
(
σO

Mo(M,N) = 0
)

=

|M |∏
i=1

(1− pi)

or the maximal overlap of |M |:

Pr
(
σO

Mo(M,N) = |M |
)

=

|M |∏
i=1

pi.

The probability distribution for random models referring to a certain number of the first
|M | BCs can be obtained by convolution of Bernoulli distributions describing the probabil-
ities of containing the single BCs. Computationally this can easily be solved by dynamic
programming.
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The dynamic programming matrix D is filled with the conditional probabilities of a
random model referring to a certain number of the first |M | BCs given |M |.

D0,0 = Pr
(
σO

Mo = 0
∣∣ |M | = 0

)
= 1

is the trivial anchor of the iteration, and

Dx,y = Pr
(
σO

Mo = x
∣∣ |M | = y

)
= py · Pr

(
σO

Mo = x− 1
∣∣ |M | = y − 1

)
+ (1− py) · Pr

(
σO

Mo = x
∣∣ |M | = y − 1

)
= py ·Dx−1,y−1 + (1− py) ·Dx,y−1

defines the stepwise completion ofD. Since the final p-value is given by 1−
∑σO

Mo(M,N)−1
i=0 Di,|M |,

the matrix D does not need to be computed completely. Therefore, the computational effort
of the calculation is relatively low (O(|M | · σO

Mo(M,N))). In case many BCs are associated
identical pi values, the computation can be sped up by convoluting binomial instead of
Bernoulli distributions.

p-value for querying the database The above mentioned p-value describes the proba-
bility of observing a certain or higher score by chance in a random model. In case we would
not be interested in individual models but rather would like to know whether significant
parts of a certain model are already described by available models, we could extend this to
a p-value describing the probability of finding at least one model with this or a higher score
in the database. The formula for this extended p-value reads

pe = 1− (1− p)|M|,

where |M| is the number of models in the database and p is the p-value for the comparison
to one single random model.

Accounting for similar annotations In the overlap measure σO
Mo we disregard the

knowledge about similar BCs. The matrix S, containing this information, introduces a new
level of complexity to the p-value calculation for a similarity measure σOS

Mo(M,N) = vT
MSvN,

because real valued similarity scores become possible. Including probabilities of these real
valued similarities would blow up the size of the dynamic programming matrix. A pragmatic
solution to this problem is to allow only a limited number of rational numbers, e.g. fractions
of 10, in the S matrix, building a bigger D matrix accounting for the new similarity scores,
and customising the iteration step integrating the score contribution of every single BC.

Accounting for vector lengths Our complete similarity measure σTVSM
Mo also accounts

for the length of the vectors vM and vN which has previously not be considered. In order
to incorporate this normalisation, we now have to consider two random variables describing
the number of BCs in model N which also appear in M and those who do not:

X =

|M |∑
i=1

viN

Y =

|A|∑
i=|M |+1

viN,
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where |A| is the length of the feature vectors, i.e., the number of all BCs which are men-
tioned in any model of the BioModels Database +1 (representing BCs not referred to).
The probability distribution of these variables can be calculated as explained above, al-
though the complete dynamic programming matrices have to be constructed. Since both
variables are independent, their combined probabilities can be constructed by multiply-
ing their single probabilities. Finally, the probabilities of those X and Y pairs for which

X√
X+Y

≥
√
|M |σTVSM

Mo (M,N) are summed up to yield the p-value.

With the extensions explained here the computation of p-values for our similarity measure
is in principle possible. Nevertheless, the computation is too slow for this method to be
included into our web service and thus only the explicitly computed p-value for the model
overlap is shown. In contrast to the Bayesian way of computing p-values, this explicit
approach can only be used for simple similarity measures. More complex similarity measures
as the structured ones introduced in this article or even network structure based ones might
also require a different, more complex null model. As they include more or different kinds
of information a bias in the similarity measure towards certain models will arise. Without
accounting for this bias in the null model and therefore in the computation of the p-value
such a similarity measure will lose its value as the number of available models grows.

6 Evaluation of similarity measures

Similarity measures do not neutrally describe things “as they are”, but emphasise our hu-
man perspective and are chosen to serve certain purposes. In our case, similarities will be
useful if they match the judgement of human experts whether two models describe similar
or closely related biological processes or pathways. To evaluate this for our similarity mea-
sures, we collected benchmark models, classified them into predefined biological groups, and
considered model clustering as a potentially important test case.

6.1 Benchmark: model sets with predefined biological groups

As a gold standard for statistical evaluation, we chose two sets of benchmark models and
grouped them by biological categories.

1. Small benchmark set. We considered 14 manually selected models representing
four distinct types of biochemical systems: glycolysis (models 70, 71, 211), circadian
clock (models 16, 21, 22), cell cycle (models 5, 7, 8, 111), and MAP kinase pathways
(models 26, 27, 28, 29).

2. Large benchmark set. For more comprehensive tests, we considered the entire
BioModels Database (16th release). Since this model set was too big to predefine
model groups by hand, we grouped them semi-automatically according to the MIRIAM
annotations of their SBML <model> elements (see Table 6). Of course, these model
annotations are not taken into account when computing the model similarities.

To test our similarity measures, we computed the pairwise similarities between all models
in the benchmark sets, used them for unsupervised clustering, and compared all results to
the predefined model groups.

6.2 Quality criteria used for evaluation

Model similarity: evaluation by silhouette coefficient Models from one biological
group should be more similar than models from different groups. To evaluate our mea-
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sures, we determined the average intra- and inter-group similarities and scored them by the
silhouette coefficient [6]

sc(M) =

∑
M∈M

ι(M)−ε(M)
max(ι(M),ε(M))

|M|
, (19)

where

ε(M) = max
C∈C,M /∈C

∑
N∈C σMo(M,N)

|C|
,

ι(M) = max
C∈C,M∈C

∑
N∈C,N 6=M σMo(M,N)

|C|
, (20)

M is the set of benchmark models, and C is the set of predefined biological model groups.
The silhouette coefficient compares the similarities of models within (ι) and between (ε)
groups and indicates how clearly models from different groups are separated by the similarity
measures.

Model clustering: evaluation by Jaccard coefficient A clustering based on model
similarities should split the models into biologically meaningful groups. As a test, we clus-
tered the benchmark models by an agglomerative clustering with average linkage, based on
the different model similarity measures, and cut the dendrogram at a certain height. The
cut height was chosen such that the numbers of clusters and predefined groups were identi-
cal. We compared the resulting clusters with the biological groups by the Jaccard similarity
coefficient [4]

jac =
O11

O01 +O10 +O11
. (21)

In this formula, O11 is the number of model pairs that share the same group and the
same cluster, while O10 and O01 count the pairs that share only the same group or the same
cluster, respectively.

6.3 Systematic evaluation of the similarity measures

We considered different variants of our similarity measures (all normalised and with the
numerical parameters listed in Tables 2, 3, 4, and 5) and first evaluated them with the small
benchmark set. In general, all measures performed well and the differences between them
were rather small. Both the similarity matrices (Figure 5) and the clustering results (Figure
6) show a good agreement with the predefined biological groups: model similarity within
groups tends to be high, while models from different groups show little similarity. The cell
cycle models, however, appeared to be rather dissimilar and shared some annotations with
the circadian clock models. Some minor differences between the four similarity measures are
visible in Figure 5. While the results for Li’s measure σLi

BC and the distance-depth-dependent
measure σDD

BC look very similar, the preference-based measure based on probabilistic element
similarities σProb

El shows a stronger background and a weaker intra-group similarity, but also
the inter-group similarity is less prominent. On the contrary, the vector-based measure
σTVSM

Mo shows a stronger intra-group similarity, but also a high inter-group similarity across
the cell cycle, circadian clock, and MAPK models.

For a more systematic evaluation, we considered the large benchmark set, calculated all
pairwise similarities, and evaluated them with the silhouette (Eq. 19) and Jaccard (Eq. 21)
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Figure 5: Similarity matrices for the small set of benchmark models. Model similarities were
computed by the preference-based similarity measure σPref

Mo (a) with independent element
similarity σLi

BC, (b) distance-depth-dependent element similarity σDD
BC , and (c) probabilistic

similarity σProb
El . The vector-based measure σTVSM

Mo without semantic density term (i.e. f3 =
1) is shown in (d). Colours indicate similarity values from 0 (white) to 1 (black).
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Figure 6: Cluster tree of the small benchmark set. Hierarchical clustering with average
linkage based on the vector-based similarity measure σTVSM

Mo without semantic density (i.e.,
setting f3 = 1). The predefined model groups are well matched by the cluster tree obtained
from the model similarities (compare Figure 5 (d)).

coefficients. The tests revealed differences, but not a clear ordering in their quality. As shown
in Table 7, the quality of the similarity measures depends on whether they are judged by
the silhouette or the Jaccard coefficient and whether we consider the small or large model
benchmark set.

In the large benchmark set, the vector-based measure without semantic density per-
formed better both for the silhouette and the Jaccard coefficients. While the independent
and the distance-depth-dependent measure perform similarly, the original Li measure per-
forms better when the local semantic density (in the term f3) is included. This fact might
be incidental as the results from the other measures suggest that the semantic density does
not improve the quality of the measure. Among the vector-based measures, it seems that
the inclusion of the term f3 impairs the results. This finding was unexpected, but agrees
with the observations of Li et al. for similarity of phrases [7]. Furthermore, the probabilistic
preference-based measure performs weakest in this comparison, both for the Jaccard coef-
ficient of the large benchmark set and for the silhouette coefficient of the small benchmark
set.

Surprisingly, the silhouette coefficient partially increases between the cases S = ff21 and
S = I in Table 7, implying that model groups cannot necessarily be better distinguished if
all semantic knowledge from the libSBAnnotation is considered. A possible reason is that
the annotations in BioModels database are very consistent between models because these
models are annotated by a small number of professional curators. Accordingly, a matching of
slightly different annotations will be less important than for models stemming from different
sources and containing less consistent annotations. Altogether, proving or disproving the
usefulness of semantic ontology information for model classification would probably require
larger consistent benchmark sets with less consistent semantic annotations.

The vector-based similarity scores, which are simple and easy to compute, performed
well in the comparison. However, also the preference-based measures have their advantages
as they make use of the information to which model elements annotations are assigned
to. Furthermore, all measures can be customised by changing their parameter values. In
particular, parameters could be optimised, e.g., by comparing clustering results to the our
gold standard classification by the Jaccard coefficient and improving this value by changes in
the parameters. We tried to do this, but the results appeared to be overfitted. The current
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<model> annotation Name Models
GO:0019228 regulation of action potential in neuron 124, 127, 129, 130, 131, 132,

133, 134, 135, 136, 141, 142
GO:0006096 glycolysis 42, 51, 61, 63, 64, 70, 71,
kegg.pathway:sce00010 172, 176, 177, 206, 211, 225
GO:0048863 stem cell differentiation 203, 204, 209, 210
GO:0006915 apoptosis 102, 103, 220
kegg.pathway:hsa04210
GO:0005248 voltage-gated sodium channel activity, 20, 118, 119
GO:0019227 neuronal action potential propagation,
GO:0005249 voltage-gated potassium channel activity
GO:0048511 rhythmic process 79, 99
GO:0009755 regulation of calcium ion transport, 114, 115
GO:0051924 hormone-mediated signalling
GO:0007259 JAK-STAT cascade 93, 94, 151
kegg.pathway:mmu04630
GO:0019236 response to pheromone 32, 116
reactome:REACT 634 MAP kinase cascade 9, 10, 11, 14
GO:0016692 NADH peroxidase activity 46, 143
GO:0007188 G-protein signalling, coupled to 128, 165

cAMP nucleotide second messenger
GO:0045990 regulation of transcription by carbon catabolites 65, 67
kegg.pathway:mmu04660 T cell receptor signalling 139, 140, 147, 226, 227, 230
GO:0009088 threonine biosynthetic process 66, 68
kegg.pathway:map00260
GO:0008277 regulation of G-protein coupled receptor 85, 86

protein signalling pathway
GO:0006099 glyoxylate cycle, 218, 219, 222
kegg.pathway:ko00020 tricarboxylic acid cycle
GO:0006097
reactome:REACT 1785
GO:0019722 calcium-mediated signalling 39, 43, 44, 45, 47, 57,
kegg.pathway:hsa04020 58, 59, 60, 81, 100, 113,
kegg.pathway:map04020 117, 145, 166, 184
GO:0031684 heterotrimeric G-protein complex cycle 72, 80, 82
GO:0006935 chemotaxis 200, 229
kegg.pathway:hsa04012 ErbB signalling pathway 175, 223
GO:0006816 calcium ion transport 98, 162
GO:0000278 mitotic cell cycle 3, 4, 5, 6, 7, 8, 56,
kegg.pathway:sce04111 69, 87, 107, 109, 110, 111,
kegg.pathway:hsa04110 144, 150, 168, 181, 186, 187,
reactome:REACT 152 193, 194, 196, 207, 208
kegg.pathway:hsa04660 T cell receptor signalling 120, 122, 123
GO:0007623 circadian rhythm 16, 21, 22, 24, 25, 34, 36, 55,
kegg.pathway:hsa04710 73, 74, 78, 83, 89, 95, 96, 97,

160, 170, 171, 214, 216
GO:0016055 Wnt receptor signalling pathway 149, 201
GO:0007173 epidermal growth factor receptor signalling pathway 19, 33, 48, 49, 84, 161
kegg.pathway:hsa04115 p53 signalling pathway 154, 155, 156, 157, 158, 159,

188, 189
GO:0007166 cell surface receptor linked signal transduction 1, 2, 125
GO:0046655 folic acid metabolic process 18, 213
GO:0002028 regulation of sodium ion transport 54, 126
kegg.pathway:hsa04350 TGF-beta signalling pathway 101, 112, 163, 173
GO:0040029 regulation of gene expression, epigenetic 12, 104
from small example MAPKKK cascade 26, 27, 28, 29

Table 6: Large set of benchmark models. Models from BioModels Database were semi-
automatically classified into joint biological groups taking into account the MIRIAM anno-
tations of their <model> elements. Some annotations, e.g. GO:0000165 (MAPKKK cascade)
or the annotations for organisms, referring to the NCBI Taxonomy, would have resulted in
too big clusters and were therefore ignored.

BioModels database seems to be too small and restricted in the types of models included.
As long as good training data for comparison is lacking, the estimation of all parameters,
especially for the dependent preference-based method, is not possible.
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Similarity measure σ̂ Silhouette coefficient Jaccard coefficient
(normalised) Small set Large set Small set Large set
TVSM, S given by σDD

BC .657 .0982 1 .284

with S = ff21 .705 .136 1 .377
with S = I .766 .146 1 .356
Preference-based with σPref

El and σLi
BC .746 .108 1 .231

setting ccµ = cµ .746 .108 1 .231
setting fLi

3 = 1 .746 .104 1 .229
Preference-based with σPref

El and σDD
BC .741 .118 1 .231

setting ccµ = cµ .738 .120 1 .231
setting f3 = 1 .700 .123 1 .269
additionally setting f2 = 1 .720 .122 1 .254
additionally without libSBAnnotation .746 .101 1 .229
additionally setting fqsm = 1 .709 .095 .556 .262
Preference-based, using σProb

El .663 .141 1 .207

Table 7: Evaluation of model similarity measures with predefined model groups. Different
variants of normalised similarity measures (rows) were compared for the small and large
model benchmark sets. The silhouette coefficient scores the similarities of models within
and between groups. For computing the Jaccard coefficient, the models were clustered by
agglomerative clustering with average linkage and with the respective similarity measure.
The dendrograms were cut at a height where the numbers of clusters and predefined model
groups were identical (4 groups for the small benchmark set; 34 for the large benchmark
set).

6.4 Ranking result depend little on the values of relation type
scores

Although we have been unable to meaningfully optimise the parameters used in our similarity
measures we have performed a sensitivity analysis for the retrieval results described in Figure
3 in the main text with respect to the relation type scores frts. For this purpose we randomly
constructed 100 sets of relation type scores by multiplying each of the entries with a random
normally distributed variable centred around 1 (resulting frts values were restricted to the
range [0, 1]) and started a model retrieval for models similar to BioModel 9. Across the 100
results we determined mean and standard deviation for the similarity score and the rank of
the retrieved model.

The results for this example (see Table 8) suggest that the ranking and the similarities are
only slightly influenced by the ffts values. This effect might be due to the above mentioned
fact that all models have been annotated by the same curators and in most cases use not
only similar, but identical annotations.

7 Application: Which part of metabolism is covered by
kinetic models?

An ambitious aim of Systems Biology is to construct large-scale dynamic models of cellular
metabolism. In such models, the metabolic network would be populated with quantitative
formulae for the enzymatic rate laws. Herrg̊ard et al. [2] have compiled a metabolic net-
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Model SD = .1 SD = .5
Rank Similarity score Rank Similarity score

Mean SD Mean SD Mean SD Mean SD
9 1 0 1 0 1 0 1 0

11 2 0 .925 .0003 2 0 .925 .0022
14 3 0 .865 .0006 3 0 .865 .0037
10 4 0 .816 .0009 4 0 .816 .0058
26 5 0 .737 .0013 5 0 .736 .0087
28 6 0 .687 .0025 6.08 .392 .685 .0174
30 7 0 .687 .0025 7.08 .392 .685 .0174
27 8 0 .673 .0018 7.92 .392 .672 .0122
31 9 0 .673 .0018 8.92 .392 .672 .0122
29 10 0 .614 .0033 10 0 .612 .0228
84 11 0 .482 .0049 11 0 .480 .0291

116 12 0 .397 .0029 12 0 .396 .0177
32 13 0 .348 .0028 13 0 .346 .0182

149 14 0 .335 .0023 14.09 .286 .333 .0158
205 15 0 .299 .0079 15.24 .991 .298 .0455
33 16 0 .260 .0010 15.84 .367 .259 .0065
16 17 0 .244 .0027 17.16 .367 .242 .0171
49 18 0 .240 .0015 17.75 .639 .239 .0098
21 19 0 .230 .0025 19.02 .316 .228 .0161
4 20 0 .222 .0031 20.16 .463 .220 .0199

Table 8: Sensitivity of similarities and model retrieval ranking with respect to relation type
scores. Shown are the mean and the standard deviation of similarity and rank for the
retrieved models when searching for models similar to BioModel 9. Mean and standard
deviation are determined in 100 trials in which each relation type score is multiplied by a
Gaussian distributed random variable with mean 1 and standard deviation (SD) 0.1 or 0.5.

work of the yeast S. cerevisiae, containing most of the known metabolic reactions in this
common model organism. To study which fraction of this network can already be cov-
ered by existing kinetic models, we defined a preference-based overlap score ωPref

Mo (M,N) =
σPref

Mo (M,N) · (|M |, |N |) between the yeast network and models in BioModels Database,
counting approximately the number of shared model elements. Model similarities were com-
puted based on the scores σPref

El and σDD
BC . As shown in Table 9, most of the high overlaps

were achieved by models of central metabolism, in particular glycolysis. This is not sur-
prising, since central metabolism has been a main field of biochemical research for many
years. To cover further parts of the network, we chose the model with the highest overlap
score (model number 239, [5]), extracted all its annotated elements and screened the yeast
network for elements that had a similarity σEl greater or equal to 0.3 to any of them. After
masking these elements, the procedure was repeated to determine the next matching model.
After eight iterations, the selected models covered about one seventh of the network, while
all further models would contribute only few additional elements. As shown in Table 10,
the selected models describe diverse metabolic pathways in different organisms. However,
only two of them (BioModel 90 [13] and BioModel 172 [9]) actually represent metabolism
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in yeast3.

Pathway described BioModels Overlap score
model number ωPref

Mo

Pancreatic beta cells 239 238
Glycolysis 172 113
Erythrocyte metabolism 70 107
Glycolysis 64 107
Glycolysis 177 106
Glycolysis 176 104
Respiratory oscillations 90 102
Glycolysis 61 101
Calvin cycle 13 85.7
Pyruvate branches 17 81.8
Aspartate metabolism 212 77.4
Folate cycle 18 65.4
Glycolysis 42 59.3
Glycolysis 71 57.4

Table 9: Models from BioModels Database showing a large overlap with the yeast consensus
model [2]. The overlap score approximately describes the number of shared model elements
(compounds and reactions).

Pathway described BioModels New elements Elements
model number contributed covered

Pancreatic beta cells 239 215 215
Respiratory oscillations 90 45 260
Aspartate metabolism 212 49 309
Erythrocyte metabolism 70 27 336
Folate cycle 18 37 373
Glycolysis 172 73 446
Purine metabolism 15 17 463
Polyamine metabolism 190 17 480

Table 10: Covering the yeast metabolic network with kinetic models. About one seventh of
the yeast consensus model [2] (containing 3279 annotated elements) was successively covered
by kinetic models selected from BioModels Database. While the first model shows an overlap
of 215 network elements (compounds and reactions), the following models contribute less
and less additional elements.
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Kirdar, M. Penttilä, E. Klipp, B.. Palsson, U. Sauer, S.G. Oliver, P. Mendes, J. Nielsen,
and D.B. Kell. A consensus yeast metabolic network reconstruction obtained from a
community approach to systems biology. Nature Biotechnology, 26(10):1155–1160, 2008.

[3] CY Huang and J.E. Ferrell. Ultrasensitivity in the mitogen-activated protein kinase
cascade. Proceedings of the National Academy of Sciences, 93(19):10078, 1996.

[4] P. Jaccard. Étude comparative de la distribution florale dans une portion des Alpes et
des Jura. Bull. Soc. Vaudoise Sci. Nat, 37:547–579, 1901.

[5] N. Jiang, R.D. Cox, and J.M. Hancock. A kinetic core model of the glucose-stimulated
insulin secretion network of pancreatic β cells. Mammalian Genome, 18(6):508–520,
2007.

[6] L. Kaufman and PJ Rousseeuw. Finding groups in data; an introduction to cluster
analysis. Wiley Series in Probability and Mathematical Statistics. Applied Probability
and Statistics Section (EUA)., 1990.

[7] Y. Li, Z.A. Bandar, and D. McLean. An approach for measuring semantic similarity
between words using multiple information sources. IEEE Transactions on knowledge
and data engineering, pages 871–882, 2003.

[8] A.L. Lister, M. Pocock, M. Taschuk, and A. Wipat. Saint: a lightweight integration
environment for model annotation. Bioinformatics, 25(22):3026, 2009.

[9] L. Pritchard and D.B. Kell. Schemes of flux control in a model of Saccharomyces
cerevisiae glycolysis. European journal of biochemistry, 269(16):3894–3904, 2002.

[10] N. Swainston and P. Mendes. libAnnotationSBML: a library for exploiting SBML
annotations. Bioinformatics, 25(17):2292, 2009.

[11] M.P. Van Iersel, A.R. Pico, T. Kelder, J. Gao, I. Ho, K. Hanspers, B.R. Conklin,
and C.T. Evelo. The BridgeDb framework: standardized access to gene, protein and
metabolite identifier mapping services. BMC bioinformatics, 11(1):5, 2010.

[12] C.J. van Rijsbergen. Information Retrieval. Butterworths, London, 2nd edition, 1979.

[13] J. Wolf, H.Y. Sohn, R. Heinrich, and H. Kuriyama. Mathematical analysis of a mech-
anism for autonomous metabolic oscillations in continuous culture of Saccharomyces
cerevisiae. FEBS letters, 499(3):230–234, 2001.

26


