
Parkinson’s disease (PD) is a multicentric neurodegen-
erative disease with a prevalence of approximately 1 in 
300. Clinical features at presentation include the asym-
metric onset of bradykinesia, rigidity and tremor. These 
are the result of the loss of dopaminergic neurons in the 
substantia nigra pars compacta, which causes a con-
sequent reduction of dopamine levels in the striatum 
(FIG. 1). However, additional neuronal fields and neuro-
transmitter systems are also involved in PD, including 
the locus coeruleus, dorsal motor nucleus, substantia 
innominata, the autonomic nervous system and the 
cerebral cortex (FIG.2). Consequently non-adrenergic, 
serotinergic and cholinergic neurons are also lost. 
This loss results in symptoms that include cognitive 
decline, sleep abnormalities and depression, as well as 
gastrointestinal and genitourinary disturbances. These 
‘non-motor’ features progress and come to dominate 
the later stages of PD. Although the clinical conse-
quences of non-dopaminergic neuronal involvement 
usually become apparent some years after diagnosis, 
there is debate about the sequence in which PD pathol-
ogy develops. The distribution of Lewy body formation 
might include non-dopaminergic areas at an early 
stage1; however, it remains to be shown that cell death 
occurs in these areas before the substantia nigra.

The three main strategic developments that have led to 
progress in the medical management of PD have focussed 
on improvements in dopaminergic therapies, (including 

those aimed at managing or preventing the onset of motor 
complications), the identification of non-dopaminergic 
drugs for symptomatic improvement and the discovery 
of compounds to modify the course of PD. 

Dopaminergic drugs

Dopamine-replacement therapy has dominated the treat-
ment of motor symptoms of PD since the early 1960s. The 
effects are predictable (as are the side effects) and none of 
the more recently introduced synthetic dopamine agonists 
has surpassed the clinical benefit derived from levodopa 
(l-DOPA)2,3 (TABLE 1). Most recently, non-oral delivery has 
provided more long-lasting anti-Parkinsonian activity 
through the subcutaneous or intravenous infusion of 
apomorphine and transdermal patch technology with 
rotigotine or lisuride4,5. However, despite the many 
dopaminergic agents currently available, the search for 
novel approaches based on dopamine-replacement therapy 
continues. The multiplicity of dopamine receptors in 
the brain offers a range of potential targets, but so far 
exploitation of drugs acting on specific receptor subtypes 
has been disappointing. Most currently used drugs only 
activate D2 and D3 dopamine receptors6 and no major 
advance has been made in producing D1 dopamine ago-
nists, a known target for anti-Parkinsonian agents. Partial 
D2 dopamine agonists are being developed as they might 
treat the motor symptoms of Parkinson’s disease while 
suppressing both psychosis and dyskinesia7.
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Bradykinesia
Abnormally slow voluntary 

movements.

Lewy body
Abnormal aggregates of 

protein (predominately 

α-synuclein) that develop 

inside nerve cells and displace 

other cell components.

Dyskinesia
Involuntary writhing 

movements affecting head, 

trunk and limbs.
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Abstract | Dopamine deficiency, caused by the degeneration of nigrostriatal dopaminergic 

neurons, is the cause of the major clinical motor symptoms of Parkinson’s disease. These 

symptoms can be treated successfully with a range of drugs that include levodopa, inhibitors 

of the enzymatic breakdown of levodopa and dopamine agonists delivered by oral, 

subcutaneous, transcutaneous, intravenous or intra-duodenal routes. However, Parkinson’s 

disease involves degeneration of non-dopaminergic neurons and the treatment of the 

resulting predominantly non-motor features remains a challenge. This review describes the 

important recent advances that underlie the development of novel dopaminergic and non-

dopaminergic drugs for Parkinson’s disease, and also for the motor complications that arise 

from the use of existing therapies.
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Although l-DOPA is the most effective drug for the 
control of motor symptoms, it also causes a high level 
of motor complications, particularly dyskinesias8. By 
contrast, dopamine agonists produce a lower incidence 
of involuntary movements, which seems to reflect their 
longer duration of action and supports the concept of 
continuous dopaminergic stimulation9,10. This has been 
exploited by the introduction of a range of long-acting 
dopamine agonists, by the use of l-DOPA in combina-
tion with catechol-O-methyl transferase inhibitors11 and 
more recently by development of once-daily controlled-
released formulations of dopamine agonist drugs and the 
introduction of transdermal dopamine agonist delivery7. 
Whether continuous dopaminergic stimulation explains 
all of the differences between l-DOPA and dopamine 
agonists is a matter of contention. There might instead be 
fundamental differences between the actions of l-DOPA 
and those of dopamine agonists. Unlike the dopamine 
agonist drugs, l-DOPA acts on both D1 and D2 receptor 
families, affects multiple pharmacological targets (includ-
ing nonadrenaline and 5-hydroxytryptamine (5-HT; 
serotonin) receptors) and might act as a neuromodulator 
in its own right12. Alternatively, dopamine agonists also 
have additional properties other than actions at dopamine 
receptors, which could explain their lower risk for the 
development of motor complications.

Cholinergic drugs

Both the cortico–striato–thalamic loop and the nigro–
striatal system are largely innervated by cholinergic 
afferents coming from the tegmentum, the septum and 
by cholinergic interneurons. Most cholinergic systems 
are affected in PD, such as muscarinic receptors13,14, 
nicotinic receptors13,15 and choline transporters16.

Anticholinergics were among the first drugs used 
in PD, and were intended to correct the imbalance 
between dopamine and acetylcholine levels. Although 
these drugs do produce some beneficial effects on PD 
symptoms, they are associated with adverse cogni-
tive effects17. Many cholinesterase inhibitors, such 
as rivastigmine (Exelon; Novartis) and donepezil 
(Aricept; Eisai/Pfizer), have been tested to counter-
act PD dementia, and have been found to improve 
cognition18–21. However, they sometimes display 
mixed effects on motor function22. It might be that 
co-treatment using a combination of anticholinergics 
and anticholinesterases would correct acetylcholine 
deficits while counteracting the hypersensitivity of 
cortical muscarinic receptors.

Nicotinic receptors are not only highly expressed 
on dopaminergic neurons23, but also in the cortex and 
thalamus. Nicotine has been found to protect against 
degeneration in various PD models24,25. In addition, an 
inverse association between smoking and PD has been 
consistently demonstrated26. However, nicotine itself 
has no anti-Parkinsonian effect and the mechanism by 
which smoking might confer protection against PD is 
not known.

Serotoninergic drugs

5-HT receptors are crucial to motor control in health 
and disease27–33. In PD, 5-HT1A, 5-HT1B, 5-HT2A and 
5-HT2C deserve special attention, particularly with 
respect to involvement in l-DOPA -induced dyskinesia 
(LID).

In monkeys given 1-methyl-4-phenyl-1,2,3,6-tet-
rahydropyridine (MPTP), which induces Parkinsonian 
symptoms, the 5HT1A receptor agonists sarizotan 
(Merck)34 and 8-hydroxy-2-di-n-propylamino-tetralin 
(8-OH-DPAT)35 dramatically reduce LID. In clinical 
trials, sarizotan and another 5HT1A agonist, buspirone, 
reduced LID36–38 and extended the duration of l-DOPA 
action37. However, at high doses, sarizotan can exacer-
bate Parkinsonism36. This might reflect an interaction 
with D2 dopamine receptors. Therefore in developing 
the next generation of 5-HT1A agonists, it might be 
beneficial to remove D2 activity. The potential value of 
developing such compounds is highlighted by recent 
observations that 5-HT1A agonists might also be 
neuroprotective (E.B., unpublished observations).

Rodent studies suggest that antagonism of 5-HT2A 
and 5-HT2C receptors can reduce LID either directly39 or 
indirectly by allowing reduction in l-DOPA dosage40,41. 
In MPTP primates, blockade of all 5-HT2 receptor sub-
types with methysergide reduces dyskinesia, though 
with adverse effect on Parkinsonism42. The atypical neu-
roleptics quetiapine (Seroquel; AstraZeneca) and cloza-
pine are 5-HT2A and 5-HT2C antagonists, in addition to 
being dopamine antagonists43,44. In MPTP primates, both 
quetiapine and clozapine can reduce LID without exacer-
bating Parkinsonism45, though at higher doses clozapine 
does worsen Parkinsonism. In a clinical study, clozapine 
reduced LID without affecting Parkinsonian disability46. 
However, in another clinical study, quetiapine failed to 
demonstrate any benefit on dyskinesia, though the doses 
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Depotentiation
The reversal of long-term 

potentiation back to 

baseline levels.

used were lower than those found to be effective in 
monkeys47. As with 5-HT1A agonists, it is likely that 
the therapeutic window of currently available 5-HT2A/C 
agents will be limited by antidopaminergic actions, 
though their use could pave the way for more selective 
compounds in development (for example, ACP-103  
(Acadia)).

In MPTP primates, 5-HT1B receptor stimulation 
reduced LID35,48. 5-HT1B agonists and partial agonists 
are widely available for other indications and are gen-
erally unencumbered by direct dopaminergic effects. 
A 5-HT1B agonist/partial agonist capable of crossing 
the blood–brain barrier and with pharmacokinetics 
similar to l-DOPA might be an excellent candidate for 
a novel antidyskinetic agent.

The diversity of 5-HT receptors involved in PD raises 
the issue of whether the most effective 5-HT-modulat-
ing drugs for PD might be molecules that target a range 
of receptors rather than highly selective ones. However, 
a non-selective increase in 5-HT transmission, such 
as achieved with a selective serotonin-reuptake inhibi-
tor (SSRI), does not reduce LID in either monkeys48 or 
humans49. However, it would be desirable to discover a 
molecule combining two or more of the specific agonist 
and antagonist properties discussed above. The feasibility 
of this approach is highlighted by findings that mirtazap-
ine (Remeron; Organon), a molecule combining 5-HT1A 
agonist and 5HT2A antagonist properties, can reduce LID 
in patients50, while in MPTP monkeys the non-selective 
serotonergic agent 3,4 methylenedioxymethamphetamine 
(MDMA, or ‘ecstasy’) can reduce dyskinesia by stimulating 

both 5-HT1A or 5-HT1B receptors48. Although itself unten-
able as a therapeutic agent, the MDMA molecule might 
represent a starting point for novel medicinal chemistry 
to develop new drugs that combine a propitious mix of 
5-HT actions of benefit to PD.

Glutamate and GABA drugs

Since the vast majority of pathways in the basal ganglia 
utilize glutamate and GABA (γ-amino butyric acid) as 
their respective excitatory and inhibitory neurotransmit-
ters, these systems are obvious drug candidates. Indeed, 
there is already some evidence that N-methyl-d-aspar-
tate (NMDA) receptor antagonists, such as remacemide, 
amantadine and dextromethorphan, might reduce motor 
complications associated with l-DOPA therapy.

Targeting these amino-acid receptor systems, 
although potentially very attractive, is fraught with 
complications. Firstly, there is the problem of regional 
selectivity given the ubiquitous nature of these receptor 
systems in the brain. The second problem is the potential 
for affecting normal basal ganglia function. For example, 
antagonizing NMDA receptors could offer neuroprotec-
tion and limit pathological plasticity but will interfere 
with the normal function of these receptors as mediators 
of high-frequency synaptic transmission and synaptic 
plasticity (for example, long-term potentiation, long-
term depression and depotentiation).

A detailed understanding of the sites and mecha-
nisms of action of the compounds can, however, be 
used to optimize efficacy and minimize potential side 
effects. Memantine (Axura; Merz) is an example of 
how an NMDA receptor antagonist with specific prop-
erties can provide therapeutic potential51. Because it is 
a low-affinity and highly voltage-dependent NMDA 
receptor antagonist it can limit spurious NMDA recep-
tor activation without preventing the intense transient 
activation that results from the coordinated synaptic 
release of glutamate. In addition to the mechanism of 
block, subtype-selective NMDA receptor antagonists 
provide another potential therapeutic angle. In this 
context, selective antagonists of NDMA receptor 2B 
(NR2B) might offer anti-Parkinsonian effects52,53. 
Interestingly, the high expression of NR2D receptors on 
substantia nigra pars compacta neurons, but relatively 
low expression of this receptor on many other neuro-
nal types, makes these receptors an interesting target54. 
Lead compounds for developing NR2D-selective 
antagonists are now available55. 

Targeting metabotropic glutamate (mGlu) receptors 
(mGluRs) is another interesting possibility. The eight 
receptor subtypes (mGlu1–8) have a varied distribution in 
the brain. Recent evidence suggests that profound altera-
tions in depotentiation, a process that probably utilizes 
mGlu receptors, could underlie dyskinesia56. Interesting 
candidates for development are allosteric potentiators of 
group III mGluRs. For example, it has been shown that 
N-phenyl-7-(hydroxylimino)cyclopropa[b]chromen-1a-
carboxamide selectively activates mGlu4 receptors and 
markedly reverses reserpine-induced akinesia57. Another 
prime target is the AMPA (α-amino-5-hydroxy-3-methyl-
4-isoxazole propionic acid) receptor, which mediates most 

Figure 1 | A single-photon emission computerized tomographic (SPECT) scan 
of dopamine transporter density in a Parkinson’s disease patient shortly after 
diagnosis and serially for 46 months. There is asymmetric loss particularly in the 

posterior putamen, which progresses bilaterally over time. Levels of SPECT activity 

are colour-coded from low (black) to high (yellow/white). β-CIT, 2β-carboxymethoxy-

3β(4-iodophenyl)tropane. Adapted, with permission, from REF. 95 © (2002) American 

Medical Association.

Baseline 22 mo

34 mo 46 mo
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fast excitatory synaptic transmission in the brain. AMPA 
receptor antagonists, such as E-2007, GYKI-47261 and 
the non-competitive inhibitor talampanel, have entered 
into clinical trials as potential neuroprotectants in PD. 
Conversely, several strategies have been used to potentiate 
AMPA receptor function, with a view to providing cognitive 
enhancement and neurotrophic effects58. The other major 

excitatory amino-acid receptor, the kainate recep-
tor, is widely expressed in the basal ganglia and is a 
potentially promising drug target. Of the five subunits 
that can form various heteromeric kainate receptor 
assemblies, highly selective antagonists are now avail-
able for mGlu5 receptors59. Finally, considering the 
possible involvement of pallidal GABA receptors in 

Figure 2 | Schematic representation of the neurodegenerative changes in the central nervous system in Parkinson’s 
disease. The figure on the left shows the basal view of the right cerebral hemisphere, including the olfactory bulb (in the 

grey brain on the far left, A = anterior; P = posterior; L = lateral; M = medial). On the left of the coronal section and on the 

left of the brainstem sections (from top to bottom: midbrain, pons and medulla), the areas affected by pathological lesions 

are marked in black or shades of grey (black indicating severe pathological lesions in early and middle stages; grey 

indicates later or milder involvement). On the right, projection pathways of the affected monoamine neurotransmitters 

are marked (turquiose = dopamine; pink = noradrenaline; blue = serotonin). Acetylcholine pathways, which are also 

severely affected in Parkinson’s disease, have been omitted for the sake of clarity. The graphs show the extent of dopamine 

(turquiose), noradrenaline (pink) and serotonin (blue) loss (% of normal controls) in various projection regions. A8, A8 

dopamine area; Amg, amygdala; ACC, nucleus accumbens; AP, area postrema; Cer, cerebellum; CIC, cingular cortex; 

DMN, dorsal motor nucleus of the vagus nerve; EC, entorhinal cortex; FC, frontal cortex; GPe, external segment of globus 

pallidus; GPi, internal segment of globus pallidus; HI, hippocampus; HY, hypothalamus; LC, locus coeruleus; PU, putamen; 

Cau, caudate; SN, substantia nigra; PAL, pallidum; POG, parolfactory gyrus; PPN, pedunculopontine nucleus; RN, raphe 

nuclei; SI, substantia innominata; SC, spinal cord; STN, subthalamic nucleus; VTA, ventral tegmental area. Adapted, with 

permission, from REF 119 © (2004) Elsevier Science.
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Indirect motor pathway
Globus pallidus-mediated 

control of motor activity.

LID60,61, targeting GABA systems could provide a com-
plementary strategy, although again subtype-selective 
compounds would seem to be the way forward.

Adenosine A
2A 

receptor antagonists

Several distinctive features of the adenosine A2A receptor 
(A2AR) have made its antagonism a leading candidate 
strategy for the improved treatment of PD62,63. First, 
and perhaps uniquely among currently pursued non-
dopaminergic targets in PD research, A2ARs in the cen-
tral nervous system are relatively selectively expressed in 
the striatum, which is innervated by the dopaminergic 
nigrostriatal neurons lost in PD. Moreover, within the 
striatum A2ARs are largely restricted to the subset of 
medium spiny output neurons that project to the globus 
pallidus and co-express dopamine D2 receptors64. This 
discreet anatomical localization reduces the liability of 
A2A antagonists for adverse CNS effects such as those 
that limit the usefulness of current non-dopaminergic 
(anticholinergic and antiglutamatergic) agents in PD.

Second, A2A antagonists consistently reverse Parkin-
sonian motor deficits in all preclinical models of PD, 
and do so without inducing or exacerbating dyskinesias 
in non-human primate models63,65. This symptomatic 
effect can be explained by blockade of the A2AR on 
the D2R-coexpressing striatopallidal neurons, which 
inhibits their release of GABA in the globus pallidus, 
ultimately leading to enhanced motor function through 
the so-called indirect motor pathway of the basal ganglia66. 
Initial human studies with an A2A antagonist have indeed 
demonstrated modest symptomatic improvements, 
apparently without increasing troublesome dyskinesias 
in moderately advanced patients already experiencing 
motor fluctuations62,63,67,68 (TABLE 2).

Third, the A2AR might have an important role in 
the underlying neurodegenerative process, suggesting 
that A2A antagonists possess neuroprotective proper-
ties. Epidemiological data linking the consumption 
of caffeine (a non-specific adenosine antagonist) with 
a reduced risk of developing PD have converged with 
laboratory studies showing that caffeine and more 
specific A2A antagonists protect against dopaminergic 
neuron toxicity in vivo69,70. Another potential disease-
modifying benefit of A2A antagonism — preventing the 
development of LID in PD — has been proposed based 
on rodent and monkey studies71,72. These findings have 
further encouraged clinical trials that will investigate A2A 
antagonists in early PD62.

Lastly, the recent discovery that the A2AR can form 
functional heteromeric receptor complexes with other 
G-protein-coupled receptors such as D2R and the 
mGlu5 receptor has suggested new opportunities for 
leveraging the multiple potential anti-Parkinsonian 
benefits of A2A antagonists73. For example, combin-
ing A2A and mGlu5 blockade synergistically reverses 
Parkinsonian deficits in rodents74,75. On the other hand, 
enthusiasm for these agents in PD is tempered by the 
possibility that they might produce untoward CNS or 
systemic effects. On balance, A2A antagonism represents 
one of the most realistic and promising therapeutic 
candidates for PD.

Opioid drugs

Recognition of the enhanced opioid peptide trans-
mission in the striatum of animal models and PD 
patients with LID motor complications has raised the 
possibility of controlling these by targeting opioid 
transmission in the basal ganglia76. Interestingly, 

Table 1 | Current drugs for Parkinson’s disease

Drug Advantages Disadvantages

Levodopa (l-dopa) + dopa 
decarboxylase inhibitor

• Probably the most potent dopaminergic drug 
for symptom relief

• Generally well tolerated

• Motor complications 
(cumulative risk 10% per 
annum)

Catechol-O-methyl transferase 
inhibitors, for example, 
entacapone, tolcapone

• Increase levodopa half-life
• Reduce ‘off’ time

• Tolcapone can cause liver 
damage.

• Diarrhoea

Ergot dopamine agonists 
(for example, bromocriptine, 
pergolide, cabergoline
Non-ergot dopamine agonists 
for example, pramipexole, 
ropinirole, rotigitine 

• Good efficacy
• Delay onset of motor complications
• Generally well tolerated
• Once-a-day preparations available with some
• Transdermal patch for rotigitine
• Theoretical neuroprotective action
• Some antidepressant action with pramipexole

• Increased risk of somnolence, 
confusion, hallucinations, 
peripheral oedema and 
behavioural changes

• Cardiac valve fibrosis with 
ergot drugs

Monoamine oxidase B 
inhibitor; selegiline; rasagiline

• Improve motor features in early and late 
disease

• Easy to use, once-a-day
• Well tolerated
• Theoretical neuroprotective effect

• Relatively mild efficacy
• Selegiline metabolized to 

amphetamines — potential 
cognitive effects

Amantadine • Mild anti-Parkinsonian effect
• Improves dyskinesias

• Cognitive disturbances
• Peripheral oedema
• Livedo reticularis

Anticholinergics • Mild anti-Parkinsonian effect • Limited by side effects such as 
confusion

R E V I E W S

NATURE REVIEWS | DRUG DISCOVERY  VOLUME 5 | OCTOBER 2006 | 849



studies in the brain of monkeys and human patients have 
shown that non-dyskinesiogenic dopamino-mimetic 
treatments are associated with a correction of increased 
preproenkephalin-A expression back to control levels10,77. 
So far, however, the use of non-selective opioid recep-
tor antagonists such as naloxone and naltrexone has 
provided contradictory or species-dependent results 
in non-human primates78,79 and inconclusive results in 
PD patients80,81. 

The use of selective μ- and δ-receptor antagonists, 
but not of κ-receptor, however, looks more promising78. 
Almost none of the previous studies have considered 
opioid transmission at the peak of dyskinesia, but have 
instead measured precursor levels a few hours or days 
after the actual presence of involuntary movements. The 
correlation between opioid expression and dyskinesias 
reported might therefore not be associated with dyskinesia 
per se, but rather with the supersensitive state of striatal 
dopamine receptors. If this hypothesis is correct, detection 
of preproenkephalin-A mRNA overexpression through 
imaging technology might help predict the susceptibil-
ity of patients to dyskinesia. In addition, although opioid 
precursor levels have been extensively characterized, both 
the actual identity of their end products, the opioid pep-
tides, and the levels of opioid receptors are poorly known. 
Indeed, opioid precursors are potentially processed into 
a number of opioid peptides82, which then bind with 
various affinities to the three classes of opioid peptide 
receptors83,84. Considering the discrepancy between a 
wide range of binding peptides and only three different 
receptors, and the complex anatomical distribution of 
these receptors in the basal ganglia85, calls for developing 
innovative approaches, possibly based on local delivery of 
small interfering RNA specific for the opioid precursors 
instead of classic pharmacological approaches.

Disease modification

The development of drugs to slow or prevent the pro-
gression of PD might logically be thought to evolve 
from an improved understanding of the aetiology and 
pathogenesis of PD. There have certainly been major 
advances in these areas over the past few years and the 
prospects for the introduction of ‘neuroprotective’ ther-
apies is much improved. Mutations in six different genes 
have been demonstrated in familial PD: αα-synuclein, 
parkin ,  UCHL1 (ubiquitin carboxyl-terminal 
esterase L1), DJ1, PINK1 (PTEN induced putative 
kinase 1) and LRRK2 (leucine-rich repeat kinase 2). 
Other gene mutations such as in NURR1 (Nur-related 
factor 1) and HTRA2 might also be associated with PD. 
Although these are still considered uncommon causes 
of PD, understanding the biochemical consequences 
of their expression will provide important insights into 
the pathogenesis of the idiopathic disease86.

 This understanding has led to the trial of anti-oxidants 
and pro-mitochondrial drugs in PD, with the latter 
showing some promise88. Activated microglial cells 
are present in the substantia nigra and it has been 
reported that these cells express tumour-necrosis 
factor-α, interferon-γ, interleukin 1-β, the low-affinity 
immunoglobulin E receptor CD23, inducible nitric 

Table 2a | Selected drugs in Phase II–IV study for PD or novel indications in PD

Structure Drug Status

Cholinergic drugs

O

O

O

N

Donepezil Launched for 
Alzheimer’s disease

O O OH

N
Galantamine Launched for 

Alzheimer’s disease

N

N

O

O

Rivastigmine Launched for 
Alzheimer’s disease

Serotoninergic drugs

F

N

H
N

O

Sarizotan

F

N
H
N

O

O

N

ACP-103 Phase II

O

OH

NH+

N

N

S

Quetiapine Launched for 
psychoses

Opioid drugs

O

H3C

O

N

O CH3

Cyprodine Discovery/research 
tool
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oxide, cyclooxygenase 2, complement 3 receptor and 
increased ferritin89. A microglial reaction has also been 
observed in animal models of PD induced by several 

toxic compounds (6-hydroxydopamine (6-OHDA), 
MPTP, rotenone and annonacine), indicating that the 
glial reaction is the consequence of dopamine degenera-
tion, whatever the cause. Epidemiological studies have 
suggested that the use of anti-inflammatory drugs might 
reduce the risk for PD90. The identification of these bio-
chemical abnormalities has helped the development of 
disease-modifying therapies.

No drug has yet been shown to be neuroprotective 
in PD, although several have been tested in clinical 
trials. It is accepted that such a strategy will only be 
successful if degeneration is ameliorated in multiple 
neurotransmitter systems, preventing the progression 
of both motor and non-motor features. The drugs that 
have received most attention in relation to neuropro-
tection include the dopamine agonists and monoamine 
oxidase (MAO) type B inhibitors, although others, 
including co-enzyme Q10, growth factors, anti-apoptotic 
agents and glutamate inhibitors, have also been the 
subjects of clinical trials in PD.

Dopamine agonists. Dopamine agonists have demon-
strated neuroprotective properties in a wide range of 
in vitro and in vivo studies91. The D2/D3 agonist prami-
pexole (Mirapex; Boehringer Ingelheim) has been shown 
to protect non-human primates against MPTP toxicity92. 
The basis for this protection is not understood, but it does 
not seem to depend on the presence of dopamine recep-
tors93. Dopamine agonists have been studied in clinical 
trials to assess potential disease modification with neuro-
imaging markers as endpoints94,95 (FIG. 3). Both pramipex-
ole and ropinirole showed slowed progression of their 
respective imaging endpoints compared with l-DOPA. 
These results could be interpreted as demonstrating 
neuroprotection.  However, this interpretation is poten-
tially confounded by a theoretical effect of the drugs on 
imaging endpoints and could not discriminate between 
agonist protection and l-DOPA toxicity given the 
absence of a placebo group96. Further trials are underway 
to address these issues.

MAO-B inhibitors

The MAO-B inhibitor selegiline (deprenyl) has dem-
onstrated neuroprotective properties in a number of 
model systems relevant to PD97–103. The DATATOP 
(Deprenyl And Tocopherol Antioxidant Therapy of 
Parkinson’s disease) trial demonstrated that selegiline 
could delay the introduction of l-DOPA in early PD 
by 9–12 months104. The interpretation of this result 
was confounded by selegiline’s symptomatic effect. 
Rasagiline (Azilect; Teva) is a new potent MAO-B 
inhibitor and has also shown neuroprotective effects 
in in vitro and in vivo models of PD105–108. These effects 
are independent of its MAO-B inhibition. The potential 
for rasagiline to delay progression in PD was evaluated 
in the 12-month extension study TEMPO (TVP-1012 
Early Monotherapy for Parkinson’s disease Outpatients; 
FIG. 4)109. At 12 months, those who started rasagiline 6 
months before the delayed- start group maintained better 
clinical scores. The results cannot be explained by a 
symptomatic effect alone and at face value represent 

Table 2b | Selected drugs in Phase II–IV study for PD or novel indications in PD
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Dopaminergic drugs

N

S

H2N N

H H

• 2 HCl • H2O
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NH
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H

O

O

H Cl
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Glutamatergic and GABAergic drugs
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O NH2

OH

O
N

E-2007 Phase III
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N
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H2N
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Adenosine A2A drugs
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Structure unavailable SCH 420814 Phase II

Structure unavailable BIIB014/V2006 Phase I
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Microglial reaction
Inflammatory-mediated 

reaction.

an early disease-modifying effect. However, there are 
potential confounding effects, including the beneficial 
effect of early start therapy per se (see below).

GDNF

Attempts have also been made to regenerate existing 
dopaminergic neurons. The use of daily intraventricular 
or striatal infusions of glial-derived nerve growth factor 
(GDNF) in MPTP monkeys produced restoration of the 
nigrostriatal system and improvement in motor function 
without dyskinesias110. There was a >20% increase in the 
number of tyrosine hydroxylase-positive nigral neurons, 
increases in neuronal size, in dopamine levels and a five-
fold increase in striatal tyrosine hydroxylase-positive 
fibre density. GDNF delivered by lentivirus transfec-
tion one week after MPTP exposure produced similar 

results111. The beneficial effects of GDNF could be a 
consequence of both protective and restorative proper-
ties. An early study of low-dose, monthly intraventricular 
injections of GDNF into PD patients did not produce any 
clinical benefit, or any evidence of dopaminergic regen-
eration in the one patient that underwent autopsy112,113. 
A pilot study reported on direct putaminal infusion of 
GDNF in five PD patients with advanced disease114. In 
contrast to intraventricular delivery of GDNF, putami-
nal infusion was well tolerated and produced significant 
clinical improvement and a reduction in dyskinesias. 
Furthermore, fluorodopa PET scans showed a significant 
increase in uptake in the putamen and substantia nigra at 
18 months. However, a larger controlled clinical trial of 
GDNF in PD was negative and terminated prematurely 
because of side effects115. This trial has been criticized for 
its design and the dosage of GDNF used116.

Other compounds have been evaluated for disease-
modifying effect in PD with varying results (see REF. 96 
for a review).

It has recently been suggested that early symptomatic 
treatment of PD might itself have some neuroprotective 
effect by modifying the compensatory mechanisms that 
maintain normal motor function in the pre-symptomatic 
period during which nigral dopaminergic cell death is pro-
gressing117. The results of the TEMPO, ELLDOPA (Early 
versus Late Levodopa) and DATATOP studies would sup-
port such an effect. The identification and validation of 
preclinical markers for PD would be an important devel-
opment. Certain non-motor features, including olfactory 
loss, depression and disorders of rapid-eye-movement 
sleep behaviour, can precede the onset of the motor 
symptoms and signs of PD, but none are specific for this 
disease118. Nevertheless, it might be possible to enrich an 
at-risk population for PD with a combination of these 
features. Various imaging modalities, including PET with 
18fluorodopa and single-photon emission computerized 
tomography with ligands for the dopamine transporter, 
have already found applications in neuroprotection 
trials94,95, but the interpretation of the results of these 
trials remains complex. Further study of these modali-
ties as markers of disease progression, even with the 
potentially confounding factor of drug treatment, 
is important.

Conclusion

PD is a progressive multicentric neurodegenerative 
disease involving several neurotransmitter systems. 
Dopamine-replacement therapies have been highly suc-
cessful in improving the motor features of the disease 
but the value of these treatments, particularly l-DOPA, 
is limited by the development of motor complications. 
There are now several novel therapeutic approaches 
emerging for PD, as summerized in TABLE 2. These are 
focussed on the non-dopaminergic systems and are 
designed to improve motor function without the risk 
for motor complications associated with l-DOPA, and 
also to improve dyskinesia itself. Disease modification 
remains the most important goal in PD. Although no 
drug has yet been proven to be neuroprotective, several 
candidates have shown promise.

Figure 4 | Delayed start TVP-1012 Early Monotherapy for Parkinson’s disease 
Outpatients (TEMPO) study with rasagiline, 371 subjects. Patients randomised to 

early treatment had better clinical outcome at 12 months compared to those early 

Parkinson’s disease patients on placebo for the first 6 months. UPDRS, Unified Parkinson’s 

Disease Rating Scale *p = 0.05 and **p = 0.01. Adapted, with permission, from REF. 110 © 

(2004) American Medical Association.

U
P

 D
R

S
 c

h
a

n
g

e

W
o

rs
e

n
in

g
Im

p
ro

ve
m

e
n

t 0

1

2

3

4

–1

–2
0 4 8 14 20 26 32 42 52

Weeks

Delayed start

*

**

Rasagiline 1 mg
Rasagiline 2 mg

Delayed 2 mg rasagiline

Figure 3 | Data from imaging studies in dopamine agonist neuroprotection trials 
showing a slowing of progression in Parkinson’s patients in comparison to 
l-DOPA. a | Shows the percentage change in putamen F-DOPA emission p <0.001. 

b | Shows the percentage change in putamen 2β-carboxymethoxy-3β
(4-iodophenyl)tropane binding (*p = 0.005; ‡p = 0.001; §p = 0.03). Numbers in 

parentheses refer to patient numbers. Data adapted, with permission, from REF. 95 

© (2002) American Medical Association. 

%
 c

h
a

n
g

e
 i

n
 1

8
fl

u
o

ro
d

o
p

a
 u

p
ta

k
e

0

10

–5

–10

–15

–20

–25

–30

–35

a

%
 c

h
a

n
g

e
 i

n
 f

ro
m

 b
a

se
li

n
e

0

10

–5

–10

–15

–20

–25

–30

–35
0 10 20 30 40 50

b

Scan interval (months)

Ropinirole (68)
l-DOPA (59) l-DOPA 

Pramipexole

*(39)

‡(36)

§(32)

(33)

(35)

(39)

R E V I E W S

852 | OCTOBER 2006 | VOLUME 5  www.nature.com/reviews/drugdisc



1. Braak, H. et al. Staging of brain pathology related to 
sporadic Parkinson’s disease. Neurobiol. Aging 24, 
197–211 (2003).

2. Rascol, O. et al. A five-year study of the incidence of 
dyskinesia in patients with early Parkinson’s disease 
who were treated with ropinirole or levodopa. 056 
Study Group. N. Engl. J. Med. 34, 1484–1491 
2000).

3. Holloway, R. G. et al. Pramipexole vs levodopa as 
initial treatment for Parkinson disease: a 4-year 
randomized controlled trial. Arch. Neurol. 61, 
1044–1053 (2004).

4. Katzenschlager, R. et al. Continuous subcutaneous 
apomorphine therapy improves dyskinesias in 
Parkinson’s disease: a prospective study using 
single-dose challenges. Mov. Disord. 20, 151–157 
(2005).

5. Poewe, W. & Luessi, F. Clinical studies with 
transdermal rotigotine in early Parkinson’s disease. 
Neurology 65, S11–S14 (2005).

6. Newman-Tancredi, A. et al. Differential actions of 
antiparkinson agents at multiple classes of 
monoaminergic receptor. II. Agonist and antagonist 
properties at subtypes of dopamine D(2)-like receptor 
and α(1)/α(2)-adrenoceptor. J. Pharmacol. Exp. Ther. 
303, 805–814 (2002).

7. Jenner, P. in Principles of Treatment in Parkinson’s 
Disease (eds Schapira, A. H. V. & Olanow, C. W.) 
33–359 (Elsevier, Philadelphia, 2005).

8. Fahn, S. Does levodopa slow or hasten the rate of 
progression of Parkinson’s disease? J. Neurol. 252 
(Suppl. 4), iv37–iv42 (2005).

9. Olanow, W., Schapira, A. H. & Rascol, O. Continuous 
dopamine-receptor stimulation in early Parkinson’s 
disease. Trends Neurosci. 23, S117–S126 (2000).

10. Calon, F. et al. Dopamine-receptor stimulation: 
biobehavioral and biochemical consequences. Trends 
Neurosci. 23, S92–S100 (2000).

11. Brooks, D. J. & Sagar, H. Entacapone is beneficial in 
both fluctuating and non-fluctuating patients with 
Parkinson’s disease: a randomised, placebo 
controlled, double blind, six month study. J. Neurol. 
Neurosurg. Psychiatry 74, 1071–1079 (2003).

12. Mercuri, N. B. & Bernardi, G. The ‘magic’ of L-dopa: 
why is it the gold standard Parkinson’s disease 
therapy? Trends Pharmacol. Sci. 26, 341–344 
(2005).

13. Perry, E. K. et al. Cholinergic nicotinic and muscarinic 
receptors in dementia of Alzheimer, Parkinson and 
Lewy body types. J. Neural. Transm. Park. Dis. 
Dement. Sect. 2, 149–158 (1990).

14. Asahina, M. et al. Hypersensitivity of cortical 
muscarinic receptors in Parkinson’s disease 
demonstrated by PET. Acta Neurol. Scand. 91, 
437–443 (1995).

15. Quik, M. Smoking, nicotine and Parkinson’s disease. 
Trends Neurosci. 27, 561–568 (2004).

16. Rodriguez-Puertas, R., Pazos, A. & Pascual, J. 
Cholinergic markers in degenerative parkinsonism: 
autoradiographic demonstration of high-affinity 
choline uptake carrier hyperactivity. Brain Res. 636, 
327–332 (1994).

17. Katzenschlager, R. et al. Anticholinergics for 
symptomatic management of Parkinson’s disease. 
Cochrane Database Syst Rev. CD003735 (2003).

18. Leroi, I. et al. Randomized placebo-controlled trial of 
donepezil in cognitive impairment in Parkinson’s 
disease. Int. J. Geriatr. Psychiatry 19, 1–8 (2004).

19. Aarsland, D. et al. Donepezil for cognitive impairment 
in Parkinson’s disease: a randomised controlled study. 
J. Neurol. Neurosurg. Psychiatry 72, 708–712 
(2002).

20. Emre, M. et al. Rivastigmine for dementia associated 
with Parkinson’s disease. N. Engl. J. Med. 351, 
2509–2518 (2004).

21. Werber, E. A. & Rabey, J. M. The beneficial effect of 
cholinesterase inhibitors on patients suffering from 
Parkinson’s disease and dementia. J. Neural Transm. 
108, 1319–1325 (2001).

22. Fabbrini, G. et al. Donepezil in the treatment of 
hallucinations and delusions in Parkinson’s disease. 
Neurol. Sci. 23, 41–43 (2002).

23. Le Novere, N., Zoli, M. & Changeux, J. P. Neuronal 
nicotinic receptor α6 subunit mRNA is selectively 
concentrated in catecholaminergic nuclei of the 
rat brain. Eur. J. Neurosci. 8, 2428–2439 
(1996).

24. Costa, G., Abin-Carriquiry, J. A. & Dajas, F. Nicotine 
prevents striatal dopamine loss produced by 
6-hydroxydopamine lesion in the substantia nigra. 
Brain Res. 888, 336–342 (2001).

25. Jeyarasasingam, G., Tompkins, L. & Quik, M. 
Stimulation of non-α7 nicotinic receptors partially 
protects dopaminergic neurons from 1-methyl-4-
phenylpyridinium-induced toxicity in culture. 
Neuroscience 109, 275–285 (2002).

26. Allam, M. F. et al. Smoking and Parkinson’s disease: 
systematic review of prospective studies. Mov. Disord. 
19, 614–621 (2004).

27. Lucas, G., Bonhomme, N., De Deurwaerdère, P., 
Le Moal, M. & Spampinato, U. 8-OH-DPAT, a 5-HT1A 
agonist and ritanserin, a 5-HT2A/C antagonist, reverse 
haloperidol-induced catalepsy in rats independently of 
striatal dopamine release. Psychopharmacology 131, 
57–63 (1997).

28. De Deurwaerdère, P. & Spampinato, U. Role of 
serotonin(2A) and serotonin(2B/2C) receptor subtypes 
in the control of accumbal and striatal dopamine 
release elicited in vivo by dorsal raphe nucleus electrical 
stimulation. J. Neurochem. 73, 1033–42 (1999).

29. De Deurwaerdère, P., Navailles, S., Berg, K. A., Clarke, 
W. P. & Spampinato, U. Constitutive activity of the 
serotonin2C receptor inhibits in vivo dopamine release 
in the rat striatum and nucleus accumbens. 
J. Neurosci. 24, 3235–3241 (2004).

30. Nicholson, S. L. & Brotchie, J. M. 5-hydroxytryptamine 
(5-HT, serotonin) and Parkinson’s disease- 
opportunities for novel therapeutics to reduce the 
problems of levodopa therapy. Eur. J. Neurol. 9 
(Suppl. 3), 1–6 (2002).

31. Frechilla, D. et al. Serotonin 5-HT(1A) receptor 
expression is selectively enhanced in the striosomal 
compartment of chronic parkinsonian monkeys. 
Synapse 39, 288–296 (2001).

32. Numan, S. et al. Increased expression of 5HT2 
receptor mRNA in rat striatum following 6-OHDA 
lesions of the adult nigrostriatal pathway. Brain Res. 
Mol. Brain Res. 29, 391–396 (1995).

33. Fox, S. H. & Brotchie, J. M. 5-HT2C receptor binding 
is increased in the substantia nigra pars reticulata in 
Parkinson’s disease. Mov. Disord. 15, 1064–1069 
(2000).

34. Bibbiani, F., Oh, J. D. & Chase, T. N. Serotonin 5-HT1A 
agonist improves motor complications in rodent and 
primate parkinsonian models. Neurology. 57, 
1829–1834 (2001).

35. Chassain, C. & Durif, F. M. Modulation of serotonin 
receptors in MPTP-lesioned monkeys. Mov. Disord. 
19, 412 (2004).

36. Olanow, C. W. et al. Multicenter, open-label, trial of 
sarizotan in Parkinson disease patients with levodopa-
induced dyskinesias (the SPLENDID Study). Clin. 
Neuropharmacol. 27, 58–62 (2004).

37. Bara-Jimenez, W. et al. Effects of serotonin 5-HT1A 
agonist in advanced Parkinson’s disease. Mov. Disord. 
20, 932–936 (2005).

38. Bonifati, V. et al. Buspirone in levodopa-induced 
dyskinesias. Clin. Neuropharmacol. 17, 73–82 (1994).

39. Oh, J. D., Bibbiani, F. & Chase, T. N. Quetiapine 
attenuates levodopa-induced motor complications in 
rodent and primate parkinsonian models. Exp. Neurol. 
177, 557–564 (2002).

40. Fox, S. H., Moser, B. & Brotchie, J. M. Behavioral 
effects of 5-HT2C receptor antagonism in the 
substantia nigra zona reticulata of the 
6-hydroxydopamine-lesioned rat model of Parkinson’s 
disease. Exp. Neurol. 151, 35–49 (1998).

41. Fox, S. H. & Brotchie, J. M. 5-HT(2C) receptor 
antagonists enhance the behavioural response to 
dopamine D(1) receptor agonists in the 
6-hydroxydopamine-lesioned rat. Eur. J. Pharmacol. 
398, 59–64 (2000).

42. Gomez-Mancilla, B. & Bedard, P. J. Effect of 
nondopaminergic drugs on L-dopa-induced dyskinesias 
in MPTP-treated monkeys. Clin. Neuropharmacol. 16, 
418–427 (1993).

43. Ashby, C. R. Jr. & Wang, R. Y. Pharmacological actions 
of the atypical antipsychotic drug clozapine: a review. 
Synapse 24, 349–394 (1996).

44. Bymaster, F. P. et al. Radioreceptor binding profile of 
the atypical antipsychotic olanzapine. 
Neuropsychopharmacology 14, 87–96 (1996).

45. Grondin, R. et al. D1 receptor blockade improves 
L-dopa-induced dyskinesia but worsens parkinsonism 
in MPTP monkeys. Neurology 52, 771–776 (1999).

46. Durif, F. et al. Clozapine improves dyskinesias in 
Parkinson disease: a double-blind, placebo-controlled 
study. Neurology 62, 381–388 (2004).

47. Katzenschlager, R. et al. Low dose quetiapine for drug 
induced dyskinesias in Parkinson’s disease: a double 
blind cross over study. J. Neurol. Neurosurg. 
Psychiatry 75, 295–297 (2004).

48. Iravani, M. M. et al. 3,4-methylenedioxymethampheta
mine (ecstasy) inhibits dyskinesia expression and 
normalizes motor activity in 1-methyl-4-phenyl-
1,2,3,6-tetrahydropyridine-treated primates. 
J. Neurosci. 23, 9107–9115 (2003).

49. Chung, K. A., Carlson, N. E. & Nutt, J. G. Short-term 
paroxetine treatment does not alter the motor 
response to levodopa in PD. Neurology 64, 
1797–1798 (2005).

50. Meco, G. et al. Mirtazapine in L-dopa-induced 
dyskinesias. Clin. Neuropharmacol. 26, 179–181 
(2003).

51. Parsons, C. G., Danysz, W. & Quack, G. Memantine is 
a clinically well tolerated N-methyl-D-aspartate 
(NMDA) receptor antagonist-a review of preclinical 
data. Neuropharmacology 38, 735–767 (999).

52. Nash, J. E. et al. The NR2B-selective NMDA receptor 
antagonist CP-101, 606 exacerbates L-DOPA-induced 
dyskinesia and provides mild potentiation of anti-
parkinsonian effects of L-DOPA in the MPTP-lesioned 
marmoset model of Parkinson’s disease. Exp. Neurol. 
188, 471–479 (2004).

53. Hadj Tahar, A. et al. Effect of a selective glutamate 
antagonist on L-dopa-induced dyskinesias in drug-
naive parkinsonian monkeys. Neurobiol. Dis. 15, 
171–176 (2004).

54. Counihan, T. J. et al. Expression of N-methyl-D-
aspartate receptor subunit mRNA in the human brain: 
mesencephalic dopaminergic neurons. J. Comp. 
Neurol. 390, 91–101 (1998).

55. Feng, B. et al. Structure-activity analysis of a novel 
NR2C/NR2D-preferring NMDA receptor antagonist: 
1-(phenanthrene-2-carbonyl) piperazine-2,3-
dicarboxylic acid. Br. J. Pharmacol. 141, 508–516 
(2004).

56. Picconi, B. et al. Loss of bidirectional striatal synaptic 
plasticity in L-DOPA-induced dyskinesia. Nature 
Neurosci. 6, 501–506 (2003).

57. Marino, M. J. et al. Allosteric modulation of group III 
metabotropic glutamate receptor 4: a potential 
approach to Parkinson’s disease treatment. Proc. Natl 
Acad. Sci. USA 100, 13668–13673 (2003).

58. O’Neill, M. J. et al. Neurotrophic actions of the novel 
AMPA receptor potentiator, LY404187, in rodent 
models of Parkinson’s disease. Eur. J. Pharmacol. 
486, 163–174 (2004).

59. More, J. C. et al. Characterisation of UBP296: a novel, 
potent and selective kainate receptor antagonist. 
Neuropharmacology 47, 46–64 (2004).

60. Calon, F. et al. Levodopa or D2 agonist induced 
dyskinesia in MPTP monkeys: correlation with changes 
in dopamine and GABAA receptors in the 
striatopallidal complex. Brain Res. 680, 43–52 
(1995).

61. Calon, F. et al. Changes of GABA receptors and 
dopamine turnover in the postmortem brains of 
parkinsonians with levodopa-induced motor 
complications. Mov. Disord. 18, 241–253 (2003).

62. Xu, K., Bastia, E. & Schwarzschild, M. Therapeutic 
potential of adenosine A(2A) receptor antagonists in 
Parkinson’s disease. Pharmacol. Ther. 105, 267–310 
(2005).

63. Jenner, P. Istradefylline, a novel adenosine A2A receptor 
antagonist, for the treatment of Parkinson’s disease. 
Expert Opin. Investig. Drugs. 14, 729–738 (2005).

64. Fink, J S. et al. Molecular cloning of the rat A2 
adenosine receptor: selective co-expression with D2 
dopamine receptors in rat striatum. Brain Res. Mol. 
Brain Res. 14, 186–195 (1992).

65. Grondin, R.et al. Antiparkinsonian effect of a new 
selective adenosine A2A receptor antagonist in 
MPTP-treated monkeys. Neurology 52, 1673–1637 
(1999).

66. Mori, A. & Shindou, T. Modulation of GABAergic 
transmission in the striatopallidal system by 
adenosine A2A receptors: a potential mechanism for 
the antiparkinsonian effects of A2A antagonists. 
Neurology 61, S44–S48 (2003).

67. Bara-Jimenez, W. et al. Adenosine A(2A) receptor 
antagonist treatment of Parkinson’s disease. 
Neurology 61, 293–296 (2003).

68. Hauser, R. A., Hubble, J. P. & Truong, D. D. 
Randomized trial of the adenosine A(2A) receptor 
antagonist istradefylline in advanced PD. Neurology 
61, 297–303 (2003).

69. Ascherio, A. & Chen, H. Caffeinated clues from 
epidemiology of Parkinson’s disease. Neurology 61, 
S51–S54 (2003).

70. Chen, J. F. et al. Neuroprotection by caffeine and 
A(2A) adenosine receptor inactivation in a model of 
Parkinson’s disease. J. Neurosci. 21, RC143 (2001).

R E V I E W S

NATURE REVIEWS | DRUG DISCOVERY  VOLUME 5 | OCTOBER 2006 | 853



71. Fredduzzi, S. et al. Persistent behavioral sensitization 
to chronic L-DOPA requires A2A adenosine receptors. 
J. Neurosci. 22, 1054–1062 (2002).

72. Bibbiani, F. et al. A2A antagonist prevents dopamine 
agonist-induced motor complications in animal models 
of Parkinson’s disease. Exp. Neurol. 184, 285–294 
(2003).

73. Fuxe, K. et al. Receptor heteromerization in adenosine 
A2A receptor signaling: relevance for striatal function 
and Parkinson’s disease. Neurology 61, S19–S23 
(2003).

74. Kachroo, A. et al. Interactions between metabotropic 
glutamate 5 and adenosine A2A receptors in 
normal and parkinsonian mice. J. Neurosci. 25, 
10414–10419 (2005).

75. Coccurello, R., Breysse, N. & Amalric, M. 
Simultaneous blockade of adenosine A2A and 
metabotropic glutamate mGlu5 receptors increase 
their efficacy in reversing Parkinsonian deficits in rats. 
Neuropsychopharmacology 29, 1451–161 (2004).

76. Bezard, E., Brotchie, J. M. & Gross, C. E. 
Pathophysiology of levodopa-induced dyskinesia: 
potential for new therapies. Nature Rev. Neurosci. 2, 
577–588 (2001).

77. Calon, F. et al. Increase of preproenkephalin mRNA 
levels in the putamen of Parkinson disease patients 
with levodopa-induced dyskinesias. J. Neuropathol. 
Exp. Neurol. 61, 186–196 (2002). 

78. Henry, B. et al. μ- and δ-opioid receptor antagonists 
reduce levodopa-induced dyskinesia in the MPTP-
lesioned primate model of Parkinson’s disease. Exp. 
Neurol. 171, 139–146 (2001).

79. Samadi, P., Gregoire, L. & Bedard, P. J. Opioid 
antagonists increase the dyskinetic response to 
dopaminergic agents in parkinsonian monkeys: 
interaction between dopamine and opioid systems. 
Neuropharmacology 45, 954–963 (2003).

80. Fox, S. et al. Non-subtype-selective opioid receptor 
antagonism in treatment of levodopa-induced motor 
complications in Parkinson’s disease. Mov. Disord. 19, 
554–560 (2004).

81. Rascol, O. et al. Naltrexone, an opiate antagonist, fails 
to modify motor symptoms in patients with Parkinson’s 
disease. Mov. Disord. 9, 437–440 (1994).

82. Hollt, V. Opioid peptide processing and receptor 
selectivity. Annu. Rev. Pharmacol. Toxicol. 26, 59–77 
(1986).

83. Sadee, W., Wang, D. & Bilsky, E. J. Basal opioid 
receptor activity, neutral antagonists, and therapeutic 
opportunities. Life Sci. 76, 1427–1437 (2005).

84. Simonds, W. F. The molecular basis of opioid receptor 
function. Endocr Rev. 9, 200–212 (1988).

85. Mansour, A. et al. Opioid-receptor mRNA expression 
in the rat CNS: anatomical and functional implications. 
Trends Neurosci. 18, 22–29 (1995).

86. Schapira, A. H. Etiology of Parkinson’s disease. 
Neurology 66, S10–S23 (2006).

87. Dawson, T. M. & Dawson, V. L. Molecular pathways of 
neurodegeneration in Parkinson’s disease. Science. 
302, 819–822 (2003).

88. Shults, C. W. et al. Effects of coenzyme Q10 in early 
Parkinson disease: evidence of slowing of the 
functional decline. Arch. Neurol. 59, 1541–1550 
(2002).

89. Hunot, S. & Flavell, R. A. Apoptosis. Death of a 
monopoly? Science 292, 865–866 (2001). 

90. Chen, H. et al. Nonsteroidal anti-inflammatory drugs 
and the risk of Parkinson disease. Arch. Neurol. 60, 
1059–1064 (2003). 

91. Schapira, A. H. Disease modification in Parkinson’s 
disease. Lancet Neurol. 3, 362–368 (2004). 

92. Iravani, M. M., Haddon, C. O., Cooper, J. M., Jenner, P. 
& Schapira, A. H. Pramipexole protects against MPTP 
toxicity in non-human primates. J. Neurochem. 96, 
1315–1321 (2006).

93. Gu, M. et al. Pramipexole protects against apoptotic 
cell death by non-dopaminergic mechanisms. 
J. Neurochem. 91, 1075–1081 (2004).

94. Whone, A. L. et al. Slower progression of Parkinson’s 
disease with ropinirole versus levodopa: The REAL-
PET study. Ann. Neurol. 54, 93–101 (2003). 

95. Parkinson Study Group. Dopamine transporter brain 
imaging to assess the effects of pramipexole vs 
levodopa on Parkinson disease progression. JAMA 
287, 1653–1661 (2002).

96. Schapira, A. H. & Olanow, C. W. Neuroprotection in 
Parkinson disease: mysteries, myths, and 
misconceptions. JAMA 291, 358–364 (2004).

97. Mytilineou, C. & Cohen, G. Deprenyl protects 
dopamine neurons from the neurotoxic effect of 
1-methyl-4-phenylpyridinium ion. J. Neurochem. 45, 
1951–1953 (1985).

98. Tatton, W. G. & Greenwood, C. E. Rescue of dying 
neurons: a new action for deprenyl in MPTP 
parkinsonism. J. Neurosci. Res. 30, 666–672 (1991).

99. Chiueh, C. C., Huang, S. J. & Murphy, D. L. Enhanced 
hydroxyl radical generation by 2′-methyl analog of 
MPTP: suppression by clorgyline and deprenyl. 
Synapse 11, 346–348 (1992).

100. Wu RM, Chiueh CC, Pert A, Murphy DL. Apparent 
antioxidant effect of L-deprenyl on hydroxyl radical 
formation and nigral injury elicited by MPP+ in vivo. 
Eur. J. Pharmacol. 243, 241–247 (1993).

102. Wu, R. M., Chen, R. C. & Chiueh, C. C. Effect of 
MAO-B inhibitors on MPP+ toxicity in vivo. Ann. NY 
Acad. Sci. 899, 255–261 (2000).

103. Tatton, W. G., Ju, W. Y., Holland, D. P., Tai, C. & Kwan, 
M. (–)-Deprenyl reduces PC12 cell apoptosis by 
inducing new protein synthesis. J. Neurochem. 63, 
1572–1575 (1994).

104. Wadia, J. S. et al. Mitochondrial membrane potential 
and nuclear changes in apoptosis caused by serum 
and nerve growth factor withdrawal: time course and 
modification by (–)-deprenyl. J. Neurosci. 18, 
932–947 (1998).

105. Parkinson Disease Study Group Effects of tocopherol 
and deprenyl on the progression of disability in early 
Parkinson’s disease. N. Engl. J. Med. 328, 176–183 
(1993).

106. Akao, Y. et al. An anti-Parkinson’s disease drug, 
N-propargyl-1(R)-aminoindan (rasagiline), enhances 
expression of anti-apoptotic bcl-2 in human 
dopaminergic SH-SY5Y cells. Neurosci. Lett. 326, 
105–108 (2002).

107. Am, O. B., Amit, T. & Youdim, M. B. Contrasting 
neuroprotective and neurotoxic actions of respective 
metabolites of anti-Parkinson drugs rasagiline and 
selegiline. Neurosci. Lett. 355, 169–172 (2004).

108. Maruyama, W., Takahashi, T., Youdim, M. & Naoi, M. 
The anti-Parkinson drug, rasagiline, prevents 
apoptotic DNA damage induced by peroxynitrite in 
human dopaminergic neuroblastoma SH-SY5Y cells. 
J. Neural Transm. 109, 467–481 (2002).

109. Jenner, P. Preclinical evidence for neuroprotection 
with monoamine oxidase-B inhibitors in Parkinson’s 
disease. Neurology 63 (Suppl. 2), S13–S22 (2004).

110. Parkinson Study Group. A controlled, randomized, 
delayed-start study of rasagiline in early Parkinson 
disease. Arch. Neurol. 61, 561–566 (2004).

111. Grondin, R. et al. Chronic, controlled GDNF infusion 
promotes structural and functional recovery in advanced 
parkinsonian monkeys. Brain 125, 2191–2201 (2002).

112. Kordower, J. H. et al. Neurodegeneration prevented 
by lentiviral vector delivery of GDNF in primate 
models of Parkinson’s disease. Science 290, 
767–773 (2000).

113. Kordower, J. H. et al. Clinicopathological findings 
following intraventricular glial-derived neurotrophic 
factor treatment in a patient with Parkinson’s disease. 
Ann. Neurol. 46, 419–424 (1999).

114. Nutt, J. G. et al. Randomized, double-blind trial of 
glial cell line-derived neurotrophic factor (GDNF) in 
PD. Neurology 60, 69–73 (2003).

115. Gill, S. S. et al. Direct brain infusion of glial cell line-
derived neurotrophic factor in Parkinson disease. 
Nature Med. 9, 589–595 (2003).

116. Lang, A. E. et al. Randomized controlled trial of 
intraputamenal glial cell line-derived neurotrophic 
factor infusion in Parkinson disease. Ann. Neurol. 59, 
459–466 (2006).

 Barker, R. A. Continuing trials of GDNF in Parkinson’s 
disease. Lancet Neurol. 5, 285–286 (2006).

117. Schapira, A. H. & Obeso, J. Timing of treatment 
initiation in Parkinson’s disease: a need for 
reappraisal? Ann. Neurol. 59, 559–562 (2006).

118. Chaudhuri, K. R., Healy, D. G. & Schapira, A. H. Non-
motor symptoms of Parkinson’s disease: diagnosis and 
management Lancet Neurol. 5, 235–245 (2006).

119. Lang, A. E. & Obeso, J. A. Challenges in Parkinson’s 
disease: restoration of the nigrostriatal dopamine system 
is not enough. Lancet Neurol. 3, 309–316 (2004).

Competing interests statement
The authors declare competing financial interests: see Web 
version for details. 

DATABASES
The following terms in this article are linked online to:
Entrez Gene: 
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=gene

5-HT
1a

 | 5-HT
1B

 | 5-HT
2A

 | 5-HT
2C

 | α-synuclein | A
2A

R | DJ1 | 

GDNF | HTRA2 | LRRK2 | mGlu4 | mGlu5 | NR2B | NURR1 | 

Parkin | Preproenkephalin-A | PINK1 | UCHL1

OMIM: 
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=OMIM

Parkinson’s disease

FURTHER INFORMATION
Clinical Trials Homepage:
http://www.cancer.gov/clinicaltrials

Access to this links box is available online.

R E V I E W S

854 | OCTOBER 2006 | VOLUME 5  www.nature.com/reviews/drugdisc



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile ()
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage false
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Remove
  /UsePrologue false
  /ColorSettingsFile (None)
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.00000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.00000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.00000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly true
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox false
  /PDFXBleedBoxToTrimBoxOffset [
    0.30000
    0.30000
    0.30000
    0.30000
  ]
  /PDFXOutputIntentProfile (OFCOM_PO_P1_F60)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition (OFCOM_PO_P1_F60)
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /False

  /SyntheticBoldness 1.000000
  /Description <<
    /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
    /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
    /FRA <>
    /PTB <>
    /DAN <>
    /NLD <>
    /ESP <>
    /SUO <>
    /ITA <>
    /NOR <>
    /SVE <>
    /ENU <FEFF004e00500047002000570045004200200050004400460020004a006f00620020004f007000740069006f006e0073002e0020003100350030006400700069002e002000320032006e0064002000530065007000740065006d00620065007200200032003000300034002e002000500044004600200031002e003400200043006f006d007000610074006900620069006c006900740079002e>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.276 782.362]
>> setpagedevice




