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1 Introduction1

We present the Systems Biology Markup Language (SBML) SBML Level 2 Version 2, a model representation2

formalism for systems biology. SBML is oriented towards describing systems of biochemical reactions of the3

sort common in research on a number of topics, including cell signaling pathways, metabolic pathways,4

biochemical reactions, gene regulation, and many others. SBML is defined in a neutral fashion with respect5

to programming languages and software encoding; however, it is primarily oriented towards allowing models6

to be encoded using XML, the eXtensible Markup Language (Bosak and Bray, 1999; Bray et al., 2000).7

This document contains many examples of SBML models written in XML, as well as the text of an XML8

Schema (Biron and Malhotra, 2000; Fallside, 2000; Thompson et al., 2000) that defines SBML Level 29

Version 2. A downloadable copy of the XML Schema and other related documents and software are also10

available from the SBML project web site, http://sbml.org/.11

The SBML project is not an attempt to define a universal language for representing quantitative models. The12

rapidly evolving views of biological function, coupled with the vigorous rates at which new computational13

techniques and individual tools are being developed today, are incompatible with a one-size-fits-all idea of a14

universal language. A more realistic alternative is to acknowledge the diversity of approaches and methods15

being explored by different software tool developers, and seek a common intermediate format—a lingua16

franca—enabling communication of the most essential aspects of the models.17

The definition of the model description language presented here does not specify how programs should18

communicate or read/write SBML. We assume that for a simulation program to communicate a model19

encoded in SBML, the program will have to translate its internal data structures to and from SBML, use a20

suitable transmission medium and protocol, etc., but these issues are outside of the scope of this document.21

1.1 Developments, discussions, and notifications of updates22

SBML has been, and continues to be, developed in collaboration with an international community of re-23

searchers and software developers. As in many projects, the primary mode of interaction between members24

is electronic mail. Discussions about SBML take place on the mailing list sbml-discuss@caltech.edu. The25

mailing list archives and a web browser-based interface to the list are available at http://sbml.org/forums/.26

Beginning with the release of SBML Level 2 Version 2, a new low-volume, broadcast-only mailing list is27

available where notifications of revisions to the SBML specification, notices of votes on SBML technical issues,28

and other critical matters are announced. This list is sbml-announce@caltech.edu and anyone may subscribe29

to it freely. This list will never be used for advertising and its membership list will never be disclosed. It is30

vitally important that all users of SBML stay informed about revisions and other developments by subscribing31

to this list, even if they do not wish to participate in discussions on the sbml-discuss@caltech.edu list.32

Please visit the SBML project web site, http://sbml.org/, for information about how to subscribe to33

sbml-announce@caltech.edu as well as for access to the list archives.34

In Section 8.1, we attempt to acknowledge as many contributors to SBML’s development as we can, but as35

SBML evolves, it becomes increasingly difficult to detail the individual contributions on a project that has36

truly become an international community effort.37

1.2 SBML Levels, Versions, and Revisions38

Major releases of SBML are termed levels and represent substantial changes to the composition and structure39

of the language. The release of SBML defined in this document, SBML Level 2, represents an incremental40

evolution of the language resulting from the practical experiences of many users and developers working with41

SBML Level 1 since since its introduction in the year 2001 (Hucka et al., 2001, 2003). All of the constructs42

of Level 1 can be mapped to Level 2. In addition, a subset of the constructs in Level 2 can be mapped to43

Level 1. However, the levels remain distinct; a valid SBML Level 1 document is not a valid SBML Level 244

document, and likewise, a valid SBML Level 2 document is not a valid SBML Level 1 document.45

Minor releases of SBML are termed versions and constitute changes within an SBML Level to correct, adjust,46

and refine language features. The present document defines SBML Level 2 Version 2. Differences in the47
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definitions of data structures between Version 2 and Version 1 are highlighted in red in the diagrams of this1

document; a separate document provides a detailed listing of the changes between these versions of SBML2

Level 2 as well as between SBML Level 2 Version 2 and SBML Level 1 Version 2.3

Specification documents inevitably require minor editorial changes as its users discover errors and ambi-4

guities. As a practical reality, these discoveries occur over time. In the context of SBML, such problems5

are formally announced publicly as errata in a given specification document. Borrowing concepts from the6

World Wide Web Consortium (Jacobs, 2004), we define SBML errata as changes of the following types:7

(a) formatting changes that do not result in changes to textual content; (b) corrections that do not affect8

conformance of software implementing support for a given combination of SBML Level and Version; and (c)9

corrections that may affect such software conformance, but add no new language features. A change that10

affects conformance is one that either turns conforming data, processors, or other conforming software into11

non-conforming software, or turns non-conforming software into conforming software, or clears up an ambi-12

guity or insufficiently documented part of the specification in such a way that software whose conformance13

was once unclear now becomes clearly conforming or non-conforming (Jacobs, 2004). In short, errata do not14

change the fundamental semantics or syntax of SBML; they clarify and disambiguate the specification and15

correct errors. (New syntax and semantics are only introduced in SBML Versions and Levels.)16

SBML errata result in new Revisions of the SBML specification. Each revision is numbered with an integer,17

with the first release of the specification being given the revision number 1. Subsequent revisions of an18

SBML specification document contain a section listing the accumulated errata issued since the first revision.19

A complete list of the errata for SBML Level 2 Version 2 since the publication of Revision 1 is also made pub-20

licly available at http://sbml.org/specifications/sbml-level-2/version-2/errata/. Announcements21

of errata and revisions to the SBML specification, as well as releases of new SBML Levels, are made on the22

sbml-announce@caltech.edu mailing list.23

1.3 Language features and backward compatibility24

Some language features of previous SBML Levels and Versions have been either deprecated or removed25

entirely in SBML Level 2 Version 2. For the purposes of SBML specifications, the following are the definitions26

of deprecated feature and removed feature:27

Removed language feature: A syntactic construct that was present in previous SBML Levels and/or Versions28

within a Level, and has been removed beginning with a specific SBML Level and Version. Models29

containing such constructs do not conform to the specification of that SBML Level and Version.30

Deprecated language feature: A syntactic construct that was present in previous SBML Levels and/or31

Versions within a Level, and while still present in the language definition, has been identified as non-32

essential and planned for future removal. Beginning with the Level and Version in which a given33

feature is deprecated, software tools should not generate SBML models containing the deprecated34

feature; however, for backward compatibility, software tools reading SBML should support the feature35

until it is actually removed.36

As a matter of SBML design philosophy, the preferred approach to removing features is by deprecating them37

if possible. Immediate removal of SBML features is not done unless serious problems have been discovered38

involving those features, and keeping them would create logical inconsistencies or extremely difficult-to-39

resolve problems. The deprecation or outright removal of features in a language, whether SBML or other,40

can have significant impact on backwards compatibility. Such changes are also inevitable over the course41

of a language’s evolution. SBML must by necessity continue evolving through the experiences of its users42

and implementors. Eventually, some features will be deemed unhelpful despite the best intentions of the43

language editors to design a timeless language.44

Throughout the SBML specification, removed features are discussed in the text of the sections where the45

features previously appeared. The features removed in SBML Level 2 Version 2 are as follows:46

• The offset field on UnitDefinition. (See Section 4.4.2.) The definition of offsets in SBML Level 247

Version 1 was in fact incorrect; moreover, a proper implementation would have required a complete48
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change in the SBML unit scheme. Few models appeared to use offsets on unit definitions, so the impact1

of this change on models is expected to be small.2

• The “Celsius” predefined unit. (See Section 4.4.2.) The removal of offsets on unit definitions meant an3

inconsistency existed if the Celsius predefined unit was left in the system. Removing Celsius removes4

the inconsistency. Alternative ways of using Celsius are discussed in Section 4.4.2.5

• The substanceUnit and timeUnits fields on KineticLaw. (See Section 4.13.5.) The ability to redefine6

the substance units on each reaction separately, coupled with other features in SBML Level 2 Version 2,7

created the opportunity for defining a valid system of reactions which potentially could not be combined8

into a consistent system of equations without external knowledge.9

Throughout the SBML specification, deprecated features are explicitly indicated in the definitions of the10

constructs affected. The features deprecated in SBML Level 2 Version 2 are as follows:11

• The charge field on Species. (See Section 4.8.7.) This field does not appear to have been supported12

by any existing software, so the impact of this change is expected to be small.13

Despite these changes, SBML Level 2 Version 2 is designed to be maximally backward compatible with SBML14

Level 2 Version 1. An XML document defining a valid model in SBML Level 2 Version 1, after changing the15

XML namespace and version attribute values on the sbml container element (see Section 4.1), can become16

a valid SBML Level 2 Version 2 document, subject to the following provisions:17

1. Any uses of the field offset on UnitDefinition must be removed and the unit definitions or the model18

changed appropriately to account for this data structure difference. See Section 4.4.19

2. Any references to the previously predefined unit “Celsius” must be removed and unit definitions or20

the model changed as needed to incorporate conversion between Celsius and kelvin degrees. (The latter21

is predefined in SBML.) See Section 4.4.22

3. Any references to the previously defined fields substanceUnits and timeUnits on KineticLaw must be23

removed and the model rewritten to incorporate the necessary unit conversions in some other fashion.24

See Section 4.13.5.25

4. SBML Level 2 Version 1 did not clearly specify the value space of integer and floating-point numbers26

permitted in the MathML expressions in SBML; moreover, it used the XML Schema type “integer”27

instead of SBML Level 2 Version 2’s “int”. Although extremely unlikely, some previously valid SBML28

Level 2 Version 1 documents may not be valid in Version 2 as a result of these changes. See Sec-29

tions 3.1.3, 3.1.5 and 3.5.2 for more information.30

5. SBML Level 2 Version 1 did not define a default value for the field fast on Reaction. In SBML Level 231

Version 2, a default value is defined, and the value is “false”. Further, software tools must respect32

the value or indicate to the user that they do not have the capacity to do so. See Section 4.13.1.33

6. SBML Level 2 Version 2 is somewhat stricter about how the content of annotation elements must34

be organized and written.. Previously valid SBML Level 2 Version 1 documents may need changes to35

their annotation elements to comply with the new specification. See Section 3.3.3 for more details.36

7. SBML Level 2 Version 2 is slightly stricter about how the content of notes elements must be organized.37

Previously valid SBML Level 2 Version 1 documents may need changes to their notes elements to38

comply with the new specification. See Section 3.3.2 for more details.39

8. SBML Level 2 Version 2 corrects numerous errata and ambiguities discovered in SBML Level 2 Ver-40

sion 1. These errata are listed on the project web site at http://sbml.org. As a result of changes41

to SBML Level 2 implied by these errata, some existing SBML Level 2 Version 1 models, even when42

modified as explained above, may still not be compliant with Version 2. The ultimate impact of the43

changes depends on the specific features used by a given model and the assumptions under which the44

model was created.45
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1.4 Notational conventions1

We define SBML data objects using a graphical notation based upon UML, the Unified Modeling Lan-2

guage (Eriksson and Penker, 1998; Oestereich, 1999). This UML-based definition in turn is used to define3

an XML Schema (Biron and Malhotra, 2000; Fallside, 2000; Thompson et al., 2000) for SBML. The XML4

Schema defines the encoding of SBML documents in XML. In this section, we briefly summarize this UML-5

based approach and notation and its mapping to XML Schema 1.0. More details are available in a separate6

document (Hucka, 2000).7

There are three main advantages to using UML as a basis for defining SBML data structures. First, compared8

to using other notations or a programming language, the UML visual representations are generally easier9

to grasp by readers who are not computer scientists. Second, the notation is implementation-neutral: the10

defined structures can be encoded in any concrete implementation language—not just XML, but C, Java and11

other languages as well. Third, UML is a de facto industry standard that is documented in many resources.12

Readers are therefore more likely to be familiar with it than other notations.13

1.4.1 Typographical conventions for names14

The following typographical notations are used in this document to distinguish object classes from other15

kinds of entities:16

AbstractClass: Abstract classes are classes that are never instantiated directly, but rather serve as parents17

of other classes. Their names begin with a capital letter and they are printed in a slanted sans-serif18

typeface. In electronic document formats, the class names are also hyperlinked to their definitions in19

the specification. For example, in the PDF and HTML versions of this document, clicking on the word20

Sbase will send the reader to the section containing the definition of this class.21

Class: Names of ordinary (concrete) classes begin with a capital letter and are printed in an upright sans-22

serif typeface. In electronic document formats, the class names are also hyperlinked to their definitions23

in the specification. For example, in the PDF and HTML versions of this document, clicking on the24

word Species will send the reader to the section containing the definition of this class.25

SomeThing, otherThing: Fields within classes, primitive data type names, literal XML strings, and generally26

all tokens other than SBML UML class names, are printed in an upright typewriter typeface. Primitive27

types defined in SBML begin with a capital letter, but unfortunately, XML Schema 1.0 does not follow28

any convention and primitive XML types may either start with a capital letter (e.g,. ID) or not (e.g.,29

double).30

1.4.2 Notational conventions for object fields31

The basis of this UML-to-XML Schema approach is to translate object classes such as Sbase into XML32

Schema 1.0 complex types. When instances of these classes are expressed in XML, they are implemented as33

XML elements and their fields are implemented either as attributes on the elements, or as subelements. The34

following example class definition illustrates the notation used for different types of fields in this specification35

document:36

ExampleClass

field1: int
field2: Species[0..*]
field3: double { use=”optional” default=”0.0” }
math: Math { namespace=”http://www.w3.org/1998/Math/MathML” }
field4: (math : Math { namespace=”http://www.w3.org/1998/Math/MathML” })

The symbols field1, field2, etc., represent fields in an object class. The colon immediately after the name37

separates the name of the field (on the left) from the type of data that it stores (on the right).38
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The order of fields implemented as subelements in the XML encoding is significant and must follow the order1

given in the corresponding UML diagram. Fields are implemented as subelements when they are a complex2

object comprised of fields, or if they are a list of objects. Fields implemented as subelements are field2,3

math and field4 in the example. This ordering constraint also holds true when a subclass inherits fields4

from a base class: the base class field elements must occur before those introduced by the subclass. This5

ordering constraint is introduced by aspects of XML Schema beyond SBML’s control. (Software developers6

should beware that the ordering requirement is a frequent cause of compatibility problems; validating XML7

parsers will generate errors if the field ordering of an XML element does not correspond to the SBML object8

class definition.)9

Expressions in curly braces ({}) shown after a field type indicate additional constraints placed on the field.10

We express constraints using the XML Schema language. In the examples above, the text {use="optional"11

default="0.0"} indicates that the field field3 is optional and that it has a default value of 0.0. A constraint12

of the form {namespace="X "} indicates that the field is not in the SBML Level 2 XML namespace but resides13

in the given XML namespace X. If a field is in a different namespace, then the type of the field will not14

be defined by the SBML UML but rather by another source. In the examples above, the math field and its15

content is defined in the MathML namespace.16

Simple attribute fields17

A field whose value can be a simple scalar type such as string, SId and double, as well as enumeration18

types is implemented as an XML attribute. In the example above field1 and field3 are fields that would19

be translated into XML attributes.20

Lists21

Square brackets ([]) just after a type name indicate that the field contains a list of elements each having the22

same type. Specifically, the notation [0..*] signifies a list containing zero or more elements, the notation23

[1..*] signifies a list containing at least one element, and so on, with the asterisk character indicating an24

unbounded upper limit.25

The approach used here to translate from a list form into XML is, first, to create a subelement named26

listOf s, where the blank indicates the capitalized name of the field. (For example, listOfField2s.)27

Within this subelement are placed elements each of which has the name of the type, beginning with a28

lowercase letter. Here is an example:29

<listOfCompartments>30

<compartment id="cytosol" size="2.5"/>31

<compartment id="mitochondria" size="0.3"/>32

</listOfCompartments>33

When list fields can have zero elements (i.e., the type name is followed by [0..*]), the listOf s34

element is optional. That is, a missing listOf element in an SBML XML instance document35

indicates that the list is empty. The listOf elements, when present, should always have content.36

Substructures37

As we have seen a field definition of the form X : B defines a field X of type B. If B is a complex type38

consisting of multiple fields then X is implemented as an element. A field definition of the form X : (A39

: B) defines an element X that contains a field A with type B. If A is the string any then the element X40

contains an arbitrary sequence of elements. A field definition of the form X : ( A : B ) { C } is similar41

except that the field X and its content is constrained by constraint C. A field definition of the form X :42

( A : B { C } ) is similar except that the field A and its content is constrained by constraint C. In the43

examples above the field field4 is an element which contains a math field. The math field is in the MathML44

namespace but field4 is in the SBML namespace.45
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Additional notes about the translation to XML Schema1

The class definitions are mapped to XML Schema 1.0 complexType elements. A class inheriting fields from2

a base class is constructed in XML Schema using a extension element. The fields that are implemented as3

XML attributes are represented in XML Schema as attribute elements. The fields that are implemented4

as XML elements are represented in XML Schema as element elements within a sequence element. See5

Appendix A for a mapping of this SBML specification to XML schema. Not all of the constraints on SBML6

documents described in this document can be practically expressed in XML Schema 1.0. Appendix C defines7

additional rules, beyond what is encoded in the XML Schema for SBML, that must followed to produce a8

valid SBML document. See Walmsley (2002) for more information on XML Schema.9
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2 Overview of SBML1

The following is an example of a simple network of biochemical reactions that can be represented in SBML:2

S1
k1[S1]/([S1]+k2)−−−−−−−−−−−−→ S2

S2
k3[S2]−−−−−−−−−−−−→ S3 + S4

3

In this particular set of chemical equations above, the symbols in square brackets (e.g., “[S1]”) represent4

concentrations of molecular species, the arrows represent reactions, and the formulas above the arrows5

represent the rates at which the reactions take place. (And while this example uses concentrations, it6

could equally have used other measures such as molecular counts.) Broken down into its constituents, this7

model contains a number of components: reactant species, product species, reactions, reaction rates, and8

parameters in the rate expressions. To analyze or simulate this network, additional components must be9

made explicit, including compartments for the species, and units on the various quantities.10

SBML allows models of arbitrary complexity to be represented. Each type of component in a model is11

described using a specific type of data structure that organizes the relevant information. The top level of an12

SBML model definition consists of lists of these components, with every list being optional:13

14

beginning of model definition
list of function definitions (optional)
list of unit definitions (optional)
list of compartment types (optional)
list of species types (optional)
list of compartments (optional)
list of species (optional)
list of parameters (optional)
list of initial assignments (optional)
list of rules (optional)
list of constraints (optional)
list of reactions (optional)
list of events (optional)

end of model definition

The meaning of each component is as follows:15

Function definition: A named mathematical function that may be used throughout the rest of a model.16

Unit definition: A named definition of a new unit of measure, or a redefinition of an existing SBML default17

unit. Named units can be used in the expression of quantities in a model.18

Compartment Type: A type of location where reacting entities such as chemical substances may be located.19

Species type: A type of entity that can participate in reactions. Examples of species types include ions such20

as Ca2+, molecules such as glucose or ATP, and more.21

Compartment : A well-stirred container of a particular type and finite size where species may be located. A22

model may contain multiple compartments of the same compartment type. Every species in a model23

must be located in a compartment.24

Species: A pool of entities of the same species type located in a specific compartment.25

Parameter : A quantity with a symbolic name. In SBML, the term parameter is used in a generic sense26

to refer to named quantities regardless of whether they are constants or variables in a model. SBML27

Level 2 provides the ability to define parameters that are global to a model as well as parameters that28

are local to a single reaction.29

Initial Assignment : A mathematical expression used to determine the initial conditions of a model. This30

type of structure can only be used to define how the value of a variable can be calculated from other31

values and variables at the start of simulated time.32
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Rule: A mathematical expression added to the set of equations constructed based on the reactions defined1

in a model. Rules can be used to define how a variable’s value can be calculated from other variables,2

or used to define the rate of change of a variable. The set of rules in a model can be used with the3

reaction rate equations to determine the behavior of the model with respect to time. The set of rules4

constrains the model for the entire duration of simulated time.5

Constraint : A mathematical expression that defines a constraint on the values of model variables. The6

constraint applies at all instants of simulated time. The set of constraints in model should not be used7

to determine the behavior of the model with respect to time.8

Reaction: A statement describing some transformation, transport or binding process that can change the9

amount of one or more species. For example, a reaction may describe how certain entities (reactants) are10

transformed into certain other entities (products). Reactions have associated kinetic rate expressions11

describing how quickly they take place.12

Event : A statement describing an instantaneous, discontinuous change in a set of variables of any type13

(species quantity, compartment size or parameter value) when a triggering condition is satisfied.14

Table 1 provides a summary of the sections in this document where each of these components is described15

in more detail.16

A software package can read an SBML model description and translate it into its own internal format for17

model analysis. For example, a package might provide the ability to simulate the model by constructing18

differential equations representing the network and then perform numerical time integration on the equations19

to explore the model’s dynamic behavior. By supporting SBML as an input and output format, different20

software tools can all operate on an identical external representation of a model, removing opportunities for21

errors in translation and assuring a common starting point for analyses and simulations.22

New in
Component Section Starting page Version 2?

Function definition 4.3 30
Unit definition 4.4 31
Compartment type 4.5 37 Yes
Species type 4.6 38 Yes
Compartment 4.7 39
Species 4.8 42
Parameter 4.9 46
Initial assignment 4.10 48 Yes
Rule 4.11 51
Constraint 4.12 55 Yes
Reaction 4.13 57
Event 4.14 70

Table 1: A guide to the sections, and their starting page numbers, where each major SBML component is described in this
specification document. The “New?” column indicates whether a given component is new as of SBML Level 2 Version 2.
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3 Preliminary definitions and principles1

This section covers certain concepts and constructs that are used repeatedly in the rest of SBML Level 2.2

3.1 Primitive data types3

Most primitive types in SBML are taken from the data types defined in XML Schema 1.0 (Biron and4

Malhotra, 2000; Fallside, 2000; Thompson et al., 2000). A few other primitive types are defined by SBML5

itself. What follows is a summary of the XML Schema types and the definitions of the SBML-specific types.6

Note that while we have tried to provide accurate and complete summaries of the XML Schema types, the7

following should not be taken to be normative definitions of these types. Readers should consult the XML8

Schema 1.0 specification for the normative definitions of the XML types used by SBML.9

3.1.1 Type string10

The XML Schema 1.0 type string is used to represent finite-length strings of characters. The characters11

permitted to appear in XML Schema string include all Unicode characters (Unicode Consortium, 1996)12

except for two delimiter characters, 0xFFFE and 0xFFFF (Biron and Malhotra, 2000). In addition, the13

following quoting rules specified by XML for character data (Bray et al., 2000) must be obeyed:14

• The ampersand (&) character must be escaped using the entity &amp;.15

• The apostrophe (’) and quotation mark (") characters must be escaped using the entities &apos; and16

&quot;, respectively, when those characters are used to delimit a string attribute value.17

Other XML built-in character or entity references, e.g., &lt; and &x1A;, are permitted in strings.18

3.1.2 Type boolean19

The XML Schema 1.0 type boolean is used to represent the mathematical concept of binary-valued logic.20

The permitted literal values of a data field having type boolean are the following: “true”, “false”, “1”,21

and “0”. The value “1” maps to “true” and the value “0” maps to “false”.22

3.1.3 Type int23

The XML Schema 1.0 type int is used to represent decimal integer numbers in SBML. The literal represen-24

tation of an int is a finite-length sequence of decimal digit characters with an optional leading sign (“+” or25

“-”). If the sign is omitted, “+” is assumed. The value space of int is the same as a standard 32-bit signed26

integer in programming languages such as C, i.e., 2147483647 to −2147483648.27

3.1.4 Type positiveInteger28

The XML Schema 1.0 type positiveInteger is used to represent nonzero, nonnegative, decimal integers:29

i.e., 1, 2, 3, . . . . The literal representation of an integer is a finite-length sequence of decimal digit characters,30

optionally preceded by a positive sign (“+”). There is no restriction on the absolute size of positiveInteger31

values in XML Schema; however, the only situations where this type is used in SBML involve very low-32

numbered integers. Consequently, applications may safely treat positiveInteger as unsigned 32-bit integers.33

3.1.5 Type double34

The XML Schema 1.0 type double is the data type of floating point fields in SBML objects. It is restricted35

to IEEE double-precision 64-bit floating point type IEEE 754-1985. The value space of double consists of36

(a) the numerical values m × 2x, where m is an integer whose absolute value is less than 253, and x is an37

integer between -1075 and 970, inclusive, (b) the special value positive infinity (INF), (c) the special value38

negative infinity (-INF), and (d) the special value not-a-number (NaN). The order relation on the values is39

the following: x < y if and only if y − x is positive for values of x and y in the value space of double.40

Positive infinity is greater than all other values other than NaN. NaN is equal to itself but is neither greater41
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nor less than any other value in the value space. (Software implementors should consult the XML Schema 1.01

definition of double for additional details about equality and relationships to IEEE 754-1985.)2

The literal representation of a double value consists of a mantissa with an optional leading sign (“+” or “-”),3

optionally followed by the character E or e followed by an integer (the exponent). The mantissa must be4

a decimal number (an integer optionally followed by a period (.) optionally followed by another integer).5

If the leading sign is omitted, “+” is assumed. An omitted E or e and exponent means that a value of 0 is6

assumed for the exponent. If the E or e is present, it must be followed by an integer or an error results. The7

integer acting as an exponent must consist of a decimal number optionally preceded by a leading sign (“+”8

or “-”). If the sign is omitted, “+” is assumed. The following are examples of legal literal double values:9

-1E4, +4, 234.234e3, 6.02E-23, 0.3e+11, 2, 0, -0, INF, -INF, NaN10

As described in Section 3.5, SBML uses a subset of the MathML 2.0 standard (W3C, 2000b) for expressing11

mathematical formulas in XML. This is done by stipulating that the MathML language be used whenever12

a mathematical formula must be written into an SBML model. Doing this, however, requires facing two13

problems: first, the syntax of numbers in scientific notation (“e-notation”) is different in MathML from that14

just described for double, and second, the value space of integers and floating-point numbers in MathML15

is not defined in the same way as in XML Schema 1.0. We elaborate on these issues in Section 3.5.2; here16

we summarize the solution taken in SBML. First, within MathML, the mantissa and exponent of numbers17

in “e-notation” format must be separated by one <sep/> element. This leads to numbers of the form <cn18

type="e-notation"> 2 <sep/> -5 </cn>. Second, SBML stipulates that the representation of numbers in19

MathML expressions obey the same restrictions on values as defined for types double and int (Section 3.1.3).20

3.1.6 Type ID21

The XML Schema 1.0 type ID is identical to the XML 1.0 type ID. The literal representation of this type22

consists of strings of characters restricted as shown in Figure 1.23

24 letter ::= ’a’..’z’,’A’..’Z’
25 digit ::= ’0’..’9’
26 NCNameChar ::= letter | digit | ’.’ | ’-’ | ’ ’ | CombiningChar | Extender
27 ID ::= ( letter | ’ ’ ) NCNameChar*

Figure 1: The definition of the XML Schema type ID expressed in the variant of BNF used by the XML 1.0 specifica-
tion (Bray et al., 2000). The characters ( and ) are used for grouping, the character * indicates “zero or more times”,
and the character | indicates “or”. The CombiningChar production is a list of characters that add such things as accents
to the preceding character. (For example, the Unicode character #x030A when combined with ‘a’ produces ‘å’.) The
Extender production is a list of characters that extend the shape of the preceding character. Please consult the XML 1.0
specification (Bray et al., 2000) for the complete definition of these last two productions.

An important aspect of ID is the XML requirement that a given value of ID must be unique throughout an28

XML document. All data values of type ID are considered to reside in a single common global namespace29

spanning the entire XML document, regardless of the data fields (or XML attributes) where type ID is used30

and regardless of the level of nesting of the object structures (or XML elements).31

3.1.7 Type SId32

The type SId is the type of the id field found on the majority of SBML components. SId is a data type33

derived from the basic XML type string, but with restrictions about the characters permitted and the34

sequences in which those characters may appear. The definition of the type is shown in Figure 2.35

36 letter ::= ’a’..’z’,’A’..’Z’
37 digit ::= ’0’..’9’
38 idChar ::= letter | digit | ’ ’
39 SId ::= ( letter | ’ ’ ) idChar*

Figure 2: The definition of the type SId. (Please see the caption of Figure 1 for an explanation of the notation.)
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The equality of SId values is determined by an exact character sequence match; i.e., comparisons of these1

identifiers must be performed in a case-sensitive manner. This applies to all uses of SId.2

The SId is purposefully not derived from the XML ID type (Section 3.1.6). Using XML’s ID would force all3

SBML identifiers to exist in a single global namespace, which would affect not only the form of local parameter4

definitions but also future SBML extensions for supporting model/submodel composition. Further, the use5

of the ID type for SBML identifiers would have limited utility because MathML 2.0 ci elements are not of6

the type IDREF (see Section 3.5). Since the IDREF/ID linkage cannot be exploited in MathML constructs,7

the utility of the XML ID type is greatly reduced.8

3.1.8 Type UnitSId9

The type UnitSId is derived from SId (Section 3.1.7) and has identical syntax. The UnitSId type is used as10

the data type for the identifiers of units (Section 4.4.1) and for references to unit identifiers in SBML object11

structures. The purpose of having a separate data type for such identifiers is enable the space of possible12

unit identifier values to be separated from the space of all other identifier values in SBML. The equality of13

UnitSId values is determined by an exact character sequence match; i.e., comparisons of these identifiers14

must be performed in a case-sensitive manner.15

3.1.9 Type SBOTerm16

The type SBOTerm is used as the data type of a field called sboTerm available in many SBML objects. The17

type consists of strings of characters matching the restricted pattern described in Figure 3.18

19 SBOTerm ::= SBO:[0-9][0-9][0-9][0-9][0-9][0-9][0-9]

Figure 3: The definition of SBOTerm. The SBOTerm type consists of strings beginning with SBO: and followed by seven
decimal digits. (Please see the caption of Figure 1 for an explanation of the notation.)

Examples of valid string values of type SBOTerm are “SBO:0000014” and “SBO:0003204”. These values are20

meant to be the identifiers of terms from an ontology whose vocabulary describes entities and processes in21

computational models. Section 5 provides more information about the ontology and principles for the use22

of these terms in SBML models.23

3.1.10 Type any24

The XML Schema element type any is used to indicate that a given SBML element allows arbitrary well-25

formed XML content. The content can be a mixture of character data and XML tags. In all situations26

where any is used in SBML, certain additional conditions apply; for example, the content may be restricted27

to being within a specific XML namespace. Please consult the relevant SBML structure definitions in the28

rest of this document.29

3.2 The SBML object inheritance hierarchy30

As explained above, most base data types in SBML are taken directly from XML Schema (Biron and31

Malhotra, 2000; Fallside, 2000; Thompson et al., 2000) or are derived from XML Schema data types. SBML32

defines additional object classes beyond this. The overall SBML inheritance hierarchy is depicted in Figure 433

on the next page.34

Although not appearing explicitly in the diagram, the various listOf lists, as well as substructures35

such as trigger on Event (Section 4.14), are also derived from Sbase. However, substructures such as math,36

containing MathML content, are not derived from Sbase, nor are the notes and annotation fields defined37

in Sbase itself (discussed in Section 3.3.2 and 3.3.3).38
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RateRule
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Figure 4: A UML diagram of the inheritance hierarchy of major data types in SBML. Open arrows indicate inheritance,
pointing from inheritors to their parents (Eriksson and Penker, 1998; Oestereich, 1999). In addition to these types, all
substructures in SBML (including, for example, all the listOf lists) are also derived from Sbase. See text for details.

3.3 Type SBase1

Every structure composing an SBML Level 2 model definition has a specific data type that is derived directly2

or indirectly from a single abstract type called Sbase. In addition to serving as the parent class for most3

other classes of objects in SBML, this base type is designed to allow a modeler or a software package to4

attach arbitrary information to each major structure or list in an SBML model. The definition of Sbase is5

presented in Figure 5.6

SBase

metaid: ID { use=”optional” }
notes: (any : { namespace=”http://www.w3.org/1999/xhtml” }) { minOccurs=”0” maxOccurs=”1” }
annotation: (any) { minOccurs=”0” maxOccurs=”1” }

Figure 5: The definition of Sbase. Text enclosed in braces next to field types (e.g., {minOccurs="0"}) indicates con-
straints on the possible field values. We use the XML Schema language to express constraints because we are primarily
interested in the XML encoding of SBML. The constraint expression {use="optional"} means that the indicated field
is optional and may be omitted in a particular instance in a model. The constraint expression minOccurs="0" likewise
means the indicated field is optional; this alternate form of expression must be used for those fields that are containers
(i.e., fields encoded as subelements in XML).

Sbase contains three fields, all of which are optional: metaid, notes and annotation. These fields are7

discussed separately in the following subsections.8

3.3.1 The metaid field9

The metaid field is present for supporting metadata annotations using RDF (Resource Description Format;10

Lassila and Swick, 1999). It has a data type of XML ID (the XML identifier type), which means each metaid11

value must be globally unique within an SBML file. The metaid value serves to identify a model component12

for purposes such as referencing that component from metadata placed within annotation structures (see13

Section 3.3.3). Such metadata can use RDF description elements, in which an RDF attribute called14

“describes” contains the metaid identifier of an object defined in the SBML model. This topic is discussed15

in greater detail in Section 6.16
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3.3.2 The notes field1

The field notes in Sbase is a container for XHTML 1.0 (Pemberton et al., 2002) content. It is intended to2

serve as a place for storing optional information intended to be seen by humans. An example use of the3

notes field would be to contain formatted user comments about the model component in which the notes4

field is enclosed. Every data object derived directly or indirectly from type Sbase can have a separate value5

for notes, allowing users considerable freedom when adding comments to their models.6

XHTML 1.0 is simply a formulation of HTML 4 in XML 1.0. This means the full power of HTML formatting7

is available for use in notes content. The intention behind requiring XHTML (rather than, for example,8

plain HTML or plain text) for notes content is to balance several conflicting goals: (1) choosing a format9

for notes that is compatible with the XML form of SBML (plain HTML would not be); (2) supporting10

an international formatting standard so that users have more control over the appearance of notes and11

can predict to some degree how their notes will be displayed in different tools and environments (which12

argues against using plain-text notes); and (3) achieving these goals using an approach that is hopefully easy13

enough for software developers to support using off-the-shelf programming libraries. It is worth noting in14

passing that the requirement for XHTML does not prevent users from entering plain-text content with simple15

space/tab/newline formatting: it merely requires using the standard <pre>...</pre> element of (X)HTML.16

Modern libraries for displaying and editing (X)HTML content are commonly available in contemporary17

software programming environments, and software developers may wish to avail themselves of these facilities18

rather than implementing their own XHTML support systems.19

XML Namespace requirements for notes20

The XML content of notes elements must declare the use of the XHTML XML namespace. This can be21

done in multiple ways. One way is to place a namespace declaration for the appropriate namespace URI22

(which is http://www.w3.org/1999/xhtml) on the top-level Sbml object (see Section 4.1) and then reference23

the namespace in the notes content using a prefix. The following example illustrates this approach:24

<sbml xmlns="http://www.sbml.org/sbml/level2/version2" level="2" version="2"25

xmlns:xhtml="http://www.w3.org/1999/xhtml">26

...27

<notes>28

<xhtml:body>29

<xhtml:center><xhtml:h2>A Simple Mitotic Oscillator</xhtml:h2></xhtml:center>30

<xhtml:p>A minimal cascade model for the mitotic oscillator31

involving cyclin and cdc2 kinase</xhtml:p>32

</xhtml:body>33

</notes>34

...35

Another approach is to declare the XHTML namespace within the notes content itself, as in the following36

example:37

...38

<notes>39

<body xmlns="http://www.w3.org/1999/xhtml">40

<center><h2>A Simple Mitotic Oscillator</h2></center>41

<p>A minimal cascade model for the mitotic oscillator42

involving cyclin and cdc2 kinase</p>43

</body>44

</notes>45

...46

The xmlns="http://www.w3.org/1999/xhtml" declaration on body as shown above changes the default XML47

namespace within it, such that all of its content is by default in the XHTML namespace. This is a particularly48

convenient approach because it obviates the need to prefix every element with a namespace prefix (e.g.,49

xhtml:center as in the previous case). Other approaches are also possible.50
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The content of notes1

SBML does not require the content of notes to be any particular XHTML element; the content can be2

almost any well-formed XHTML content. There are only two simple restrictions. The first restriction comes3

from the requirements of XML: the notes element must not contain an XML declaration nor a DOCTYPE4

declaration. That is, notes must not contain5

<?xml version="1.0" encoding="UTF-8"?>6

nor (where the following is only one specific example of a DOCTYPE declaration)7

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"8

"http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">9

The second restriction is intended to balance freedom of content with the complexity of implementing software10

that can interpret the content. The content of notes in SBML can consist only of the following possibilities:11

1. A complete XHTML document (minus the XML and DOCTYPE declarations, of course), that is,12

XHTML content beginning with the html tag. The following is an example skeleton:13

<notes>14

<html xmlns="http://www.w3.org/1999/xhtml">15

...16

</html>17

</notes>18

2. The body element from an XHTML document. The following is an example skeleton:19

<notes>20

<body xmlns="http://www.w3.org/1999/xhtml">21

...22

</body>23

</notes>24

3. Any XHTML content that would be permitted within a body element. Note that if this consists of25

multiple elements, each one must declare the XML namespace separately. The following is an example26

skeleton example:27

<notes>28

<p xmlns="http://www.w3.org/1999/xhtml">29

...30

</p>31

<p xmlns="http://www.w3.org/1999/xhtml">32

...33

</p>34

</notes>35

Another way to summarize the restrictions above is simply to say that the content of an SBML notes element36

can be only be a complete html element, a body element, or whatever is permitted inside a body element. In37

practice, this does not limit in any meaningful way what can be placed inside a notes element; for example,38

if an application or modeler wants to put a complete XHTML page, including a head element, it can be39

done by putting in everything starting with the html container. However, the restrictions above do make it40

somewhat simpler to write software that can read and write the notes content. Appendix F describes one41

possible approach to doing just that.42

3.3.3 The annotation field43

Whereas the notes field described above is a container for content to be shown directly to humans, the44

annotation field is a container for optional software-generated content not meant to be shown to humans.45

Every data object derived from Sbase can have its own value for annotation. The field’s data type is46

XML type any, allowing essentially arbitrary data content. SBML places only a few restrictions on the47

organization of the content; these are intended to help software tools read and write the data as well as help48

reduce conflicts between annotations added by different tools.49
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The use of XML Namespaces in annotation1

At the outset, software developers should keep in mind that multiple software tools may attempt to read2

and write annotation content. To reduce the potential for collisions between annotations written by different3

applications, SBML Level 2 Version 2 stipulates that tools must use XML namespaces (Bray et al., 1999)4

to specify the intended vocabulary of every annotation. The application’s developers must choose a URI5

(Universal Resource Identifier ; Harold and Means 2001; W3C 2000a) reference that uniquely identifies the6

vocabulary the application will use, and a prefix string for the annotations. Here is an example. Suppose an7

application uses the URI http://www.mysim.org/ns and the prefix mysim when writing annotations related8

to screen layout. The content of an annotation might look like the following:9

<annotation>10

<mysim:nodecolors xmlns:mysim="http://www.mysim.org/ns"11

mysim:bgcolor="green"12

mysim:fgcolor="white"/>13

</annotation>14

In this particularly simple case, the content consists of a single XML element (nodecolors) with two at-15

tributes (bgcolor, fgcolor), all of which are prefixed by the string mysim. (Presumably this particular16

content would have meaning to the hypothetical application in question.) The content in this particular17

example is small, but it should be clear that there could easily have been an arbitrarily large amount of data18

placed inside the mysim:nodecolors element.19

The key point of the example above is that application-specific annotation data is entirely contained inside20

a single top-level element within the SBML annotation container. SBML Level 2 Version 2 places the21

following restrictions on annotations:22

• Within a given SBML annotation element, there can only be one top-level element using a given23

namespace. An annotation element can contain multiple top-level elements but each must be in a24

different namespace.25

• No top-level element in an annotation may use an SBML XML namespace, either explicitly by26

referencing one of the SBML XML namespace URIs or implicitly by failing to specify any names-27

pace on the annotation. (As of SBML Level 2 Version 2, the defined SBML namespaces are the28

following URIs: http://www.sbml.org/sbml/level1, http://www.sbml.org/sbml/level2, as well as29

http://www.sbml.org/sbml/level2/version2.)30

• The ordering of top-level elements within a given annotation element is not significant. An application31

should not expect that its annotation content appears first in the annotation element, nor in any other32

particular location.33

The use of XML namespaces in this manner is intended to improve the ability of multiple applications to34

place annotations on SBML model structures with reduced risks of interference or name collisions. Annota-35

tions stored by different simulation packages can therefore coexist in the same model definition. The rules36

governing the content of annotation elements are designed to enable applications to easily add, change,37

and remove their annotations from SBML elements while simultaneously preserving annotations inserted by38

other applications when mapping SBML from input to output.39

Some more examples hopefully will make this more clear. The next example is invalid because it contains40

a top-level element in the SBML XML namespace—this happens because no namespace is declared for the41

<cytoplasm> element, which means by default it falls into the SBML namespace:42

<annotation>43

<cytoplasm/>44

</annotation>45

The following example is invalid because it contains two top-level elements using the same XML names-46

pace. Note that it does not matter that these are two different top-level elements (<nodecolors> and47

<textcolors>); what matters is that these separate elements are both in the same namespace rather than48

having been collected and placed inside one overall container element for that namespace.49
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<annotation>1

<mysim:nodecolors xmlns:mysim="http://www.mysim.org/ns"2

mysim:bgcolor="green"3

mysim:fgcolor="white"/>4

<mysim:textcolors xmlns:mysim="http://www.mysim.org/ns"5

mysim:bgcolor="green"6

mysim:fgcolor="white"/>7

</annotation>8

On the other hand, the following example is valid:9

<annotation>10

<mysim:geometry xmlns:mysim="http://www.mysim.org/ns"11

mysim:bgcolor="green" mysim:fgcolor="white">12

<graph:node xmlns:graph="http://www.graph.org/ns" graph:x="4" graph:y="5" />13

</mysim:geometry>14

<othersim:icon xmlns:othersim="http://www.othersim.com/">15

WS200216

</othersim:icon>17

</annotation>18

It is worth keeping in mind that although XML namespace names must be URIs, they are (like all XML19

namespace names) not required to be directly usable in the sense of identifying an actual, retrieval document20

or resource on the Internet (Bray et al., 1999). URIs such as http://www.mysim.org/ may appear as though21

they are (e.g.,) Internet addresses, but there are not the same thing. This style of URI strings, using a22

domain name and other parts, is only a simple and commonly-used way of creating a unique name string.23

Finally, note that the namespaces being referred to here are XML namespaces specifically in the context24

of the annotation field on Sbase. The namespace issue here is unrelated to the namespaces discussed in25

Section 3.4.1 in the context of component identifiers in SBML.26

Content of annotations and implications for software tools27

The annotation field in the definition of Sbase exists in order that software developers may attach optional28

application-specific data to the structures in an SBML model. However, it is important that this facility not29

be misused. In particular, it is critical that data essential to a model definition or that can be encoded in30

existing SBML structures is not stored in annotation. Parameter values, functional dependencies between31

model structures, etc., should not be recorded as annotations. It is crucial to keep in mind the fact that data32

placed in annotations can be freely ignored by software applications. If such data affects the interpretation33

of a model, then software interoperability is greatly impeded.34

Here are examples of the kinds of data that may be appropriately stored in annotation: (a) information35

about the graphical layout of model components; (b) application-specific processing instructions that do not36

change the essential meaning of a model; (c) identification information for cross-referencing components in37

a model with items in a data resource such as a database.38

Standardized format for certain classes of annotations39

For case (c) above (i.e., information for cross-referencing components in a model to data resources), SBML40

Level 2 Version 2 recommends a standard format for use within an annotation field. This format should41

be used in preference to proprietary syntaxes to maximize the likelihood that multiple software tools will42

converge on the same syntax for this kind of information. The SBML Level 2 Version 2 recommended scheme43

is described in Section 6.44

3.4 The id and name fields on SBML components45

As will become apparent below, most structures in SBML include two common fields: id and name. These46

fields are not defined on Sbase (as explained in Section 3.4.3 below), but where they do appear, the common47

rules of usage described below apply.48
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3.4.1 The id field and identifier scoping1

The id field is a mandatory field on most structures in SBML. It is used to identify a component within the2

model definition. Other SBML structures can refer to the component using this identifier. The data type of3

id is always either Sid (Section 3.1.7) or UnitSId (Section 3.1.8), depending on the object in question.4

A model can contain a large number of components representing different parts. This leads to a problem5

in deciding the scope of an identifier: in what contexts does a given identifier X represent the same thing?6

The approaches used in existing simulation packages tend to fall into two categories which we may call7

global and local. The global approach places all identifiers into a single global space of identifiers, so that an8

identifier X represents the same thing wherever it appears in a given model definition. The local approach9

places symbols in separate identifier namespaces, depending on the context, where the context may be, for10

example, individual reaction rate expressions. The latter approach means that a user may use the same11

identifier X in different rate expressions and have each instance represent a different quantity.12

The fact that different simulation programs may use different rules for identifier resolution poses a problem13

for the exchange of models between simulation tools. Without careful consideration, a model written out in14

SBML format by one program may be misinterpreted by another program. SBML Level 2 must therefore15

include a specific set of rules for treating identifiers and their scopes.16

The scoping rules in SBML Level 2 are relatively straightforward and are intended to avoid this problem17

with a minimum of requirements on the implementation of software tools:18

• The identifier (i.e., the values of the field id) of every FunctionDefinition, CompartmentType, SpeciesType,19

Compartment, Species, Parameter, Reaction, SpeciesReference, ModifierSpeciesReference, Event, and Model,20

must be unique across the set of all such identifiers in the model. This means, for example, that a21

reaction and a species definition cannot both have the same identifier.22

• The identifier of every UnitDefinition must be unique across the set of all such identifiers in the model;23

however, unit identifiers live in a separate space of identifiers from other identifiers in the model.24

• Each Reaction instance (see Section 4.13) establishes a separate private local space for local Parameter25

identifiers. Within the definition of that reaction, local parameter identifiers override (shadow) identical26

identifiers outside of that reaction. Of course, the corollary of this is that local parameters inside a27

Reaction object instance are not visible to other objects outside of that reaction.28

The set of rules above can enable software packages using either local or global identifier spaces for parame-29

ters to exchange SBML model definitions. Software systems using local identifiers for parameters internally30

should, in principle, be able to accept SBML model definitions without needing to change component iden-31

tifiers. Environments using a common global space of identifiers for parameters internally can perform32

manipulations of the identifiers of local parameters within reaction definitions to avoid identifier collisions.33

The guidelines described here will hopefully provide a clean transition path to future levels of SBML, when34

submodels are introduced (Section 8.1). Submodels will provide the ability to compose one model from35

a collection of other models. This capability will have to be built on top of SBML Level 2’s namespace36

organization. A straightforward approach to handling namespaces is to make each submodel’s space be37

private. The rules governing identifier scoping within a submodel can simply be the Level 2 namespace rule38

described here, with each submodel having its own (to itself, global) namespace.39

3.4.2 The name field40

In contrast to the id field, the name field is optional and is not intended to be used for cross-referencing41

purposes within a model. Its purpose instead is to provide a human-readable label for the component. The42

data type of the name field is the type string defined in XML Schema (Biron and Malhotra, 2000; Thompson43

et al., 2000) and discussed further in Section 3.1. SBML imposes no restrictions as to the content of name44

fields beyond those restrictions defined by the string type in XML Schema.45

The recommended practice for handling name is as follows. If a software tool has the capability for displaying46

the content of name fields, it should display this content to the user as a component’s label instead of the47
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component’s id field. If the user interface does not have this capability (e.g., because it cannot display or1

use special characters in symbol names), or if the name field is missing on a given component, then the user2

interface should display the value of the id field instead. (Script language interpreters are especially likely3

to display id fields instead of name fields.)4

As a consequence of the above, authors of systems that automatically generate the values of id fields should5

be aware some systems may display the id’s to the user. Authors therefore may wish to take some care6

to have their software create id values that are: (a) reasonably easy for humans to type and read; and (b)7

likely to be meaningful, e.g., the id field is an abbreviated form of the name field value.8

An additional point worth mentioning is although there are restrictions on the uniqueness of id values (see9

Section 3.4.1 above), there are no restrictions on the uniqueness of name values in a model. This allows10

software packages leeway in assigning component identifiers.11

3.4.3 Why id and name are not defined on SBase12

Although many SBML components also feature two other fields named id and name, these fields are pur-13

posefully not defined on Sbase. There are several reasons for this.14

• The presence of an SBML identifier field (id) necessarily requires specifying scoping rules for the15

corresponding identifiers. However, the Sbase abstract type is used as the basis for defining components16

whose scoping rules are in some cases different from each other. (See Section 3.4.1 for more details).17

If Sbase were to have an id field, then the specification of Sbase would need a default scoping rule and18

this would then have to be overloaded on derived classes that needed different scoping. This would19

make the SBML specification more complex.20

• Identifier are optional on some SBML components and required on most others. If id were defined as21

optional on Sbase, most component classes would separately have to redefine id as being mandatory—22

hardly an improvement over the current arrangement. Conversely, if id were defined as mandatory on23

Sbase, it would prevent it from being optional on components where it is currently optional.24

• The Sbase abstract type is used as the base type for certain structures such as Sbml, Unit, AssignmentRule,25

etc., which do not have identifiers because these structures do not need to be referenced by other26

structures. If Sbase had a mandatory id field, all objects of these other types in a model would then27

need to be assigned unique identifiers. Similarly, because Sbase is the base type of the listOf28

lists (see Section 3.2), putting id on Sbase would require all of these lists in a model to be given29

identifiers. This would be a needless burden on software developers, tools, and SBML users, requiring30

them to generate and store additional identifiers for objects that never need them.31

• Sbase does not have a name simply because such a field is always paired with an id field. Without id32

on Sbase, it does not make sense to have name.33

3.5 Mathematical formulas in SBML Level 234

Mathematical expressions in SBML Level 2 are represented using MathML 2.0 (W3C, 2000b). MathML is35

an international standard for encoding mathematical expressions using XML. There are two principal facets36

of MathML, one for encoding content (i.e., the semantic interpretation of a mathematical expression), and37

another for encoding presentation or display characteristics. SBML only makes direct use of a subset of38

the content portion of MathML. By borrowing a separately-developed XML standard, we can avoid having39

to define a specialized syntax for mathematical expressions in SBML and simultaneously leverage existing40

intellectual and technological work already done in the MathML community. However, it is not possible41

to produce a completely smooth and conflict-free interface between MathML and other standards used by42

SBML (in particular, XML Schema). Two specific issues and their resolutions are discussed in Sections 3.5.2.43

The XML namespace URI for all MathML elements is http://www.w3.org/1998/Math/MathML. Everywhere44

MathML content is allowed in SBML, the MathML elements must be properly placed within the MathML 2.045

namespace. In XML, this can be accomplished in a number of ways, and the examples throughout this46
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specification illustrate the use of this namespace and MathML in SBML. Please refer to the W3C document1

by Bray et al. (1999) for more technical information about using XML namespaces.2

3.5.1 Subset of MathML used in SBML Level 23

The subset of MathML 2.0 elements used in SBML Level 2 is similar to that used by CellML (Hedley et al.,4

2001), another model definition language with similar goals as SBML. The subset of MathML elements used5

in SBML is listed below:6

• token: cn, ci, csymbol, sep7

• general : apply, piecewise, piece, otherwise, lambda (the last is restricted to use in FunctionDefinition)8

• relational operators: eq, neq, gt, lt, geq, leq9

• arithmetic operators: plus, minus, times, divide, power, root, abs, exp, ln, log, floor, ceiling,10

factorial11

• logical operators: and, or, xor, not12

• qualifiers: degree, bvar, logbase13

• trigonometric operators: sin, cos, tan, sec, csc, cot, sinh, cosh, tanh, sech, csch, coth, arcsin,14

arccos, arctan, arcsec, arccsc, arccot, arcsinh, arccosh, arctanh, arcsech, arccsch, arccoth15

• constants: true, false, notanumber, pi, infinity, exponentiale16

• annotation: semantics, annotation, annotation-xml17

The inclusion of logical operators, relational operators, piecewise, piece, and otherwise elements facilitates18

the encoding of discontinuous expressions. Note that MathML elements for representing partial differential19

calculus are not included. We anticipate that the requirements for partial differential calculus will be ad-20

dressed in proposals for future SBML geometry representations (see Section 8.1).21

As defined by MathML 2.0, the semantic interpretation of the mathematical functions listed above follows22

the definitions of the functions laid out by Abramowitz and Stegun (1977) and Zwillinger (1996). Readers are23

directed to these sources and the MathML specification for information about such things as which principle24

values of the inverse trigonometric functions to use.25

Software authors should take particular note of the MathML semantics of the N-ary operators plus, times,26

and, or and xor, when they are used with different numbers of arguments. The MathML specification (W3C,27

2000b) appendix C.2.3 describes the semantics for these operators with zero, one, and more arguments.28

The following are the only attributes permitted on MathML elements in SBML (in addition to the xmlns29

attribute on math elements):30

• style, class and id on any element;31

• encoding and definitionURL on csymbol elements; and32

• type on cn elements.33

Missing values for these attributes are to be treated in the same way as defined by MathML. These restrictions34

on attributes are designed to confine the MathML elements to their default semantics and to avoid conflicts35

in the interpretation of the type of token elements.36

3.5.2 Numbers and cn elements37

In MathML, literal numbers are written as the content portion of a particular element called cn. This38

element takes an optional attribute, type, used to indicate the type of the number (such as whether it is39

meant to be an integer or a floating-point quantity). Here is an example of its use:40

<math xmlns="http://www.w3.org/1998/Math/MathML">41

<apply>42

<times/> <cn type="integer"> 42 </cn> <cn type="real"> 3.3 </cn>43

</apply>44

</math>45
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The content of a cn element must be a number. The number can be preceded and succeeded by whitespace1

(see Section 3.5.4). The following are the only permissible values for the type attribute on MathML cn2

elements: “e-notation”, “real”, “integer”, and “rational”. The value of the type attribute defaults to3

“real” if it is not specified on a given cn element.4

Value space restrictions on cn content5

SBML imposes certain restrictions on the value space of numbers allowed in MathML expressions. According6

to the MathML 2.0 specification, the values of the content of cn elements do not necessarily have to conform7

to any specific floating point or integer representations designed for CPU implementation. For example, in8

strict MathML, the value of a cn element could exceed the maximum value that can be stored in a IEEE9

64 bit floating point number (IEEE 754). This is different from the XML Schema type double that is10

used in the definition of floating point fields of structures in SBML; the XML Schema double is restricted11

to IEEE double-precision 64-bit floating point type IEEE 754-1985. To avoid an inconsistency that would12

result between numbers elsewhere in SBML and numbers in MathML expressions, SBML Level 2 Version 213

imposes the following restriction on MathML content appearing in SBML:14

• Integer values (i.e., the content of cn elements having type=“integer”) must conform to the int type15

used elsewhere in SBML (Section 3.1.3)16

• Floating-point values (i.e., the content of cn elements having type=“real” or type=“e-notation”)17

must conform to the double type used elsewhere in SBML (Section 3.1.5)18

Syntactic differences in the representation of numbers in scientific notation19

It is important to note that MathML uses a style of scientific notation that differs from what is defined in20

XML Schema, and consequently what is used in SBML attribute values. The MathML 2.0 type “e-notation”21

requires the mantissa and exponent to be separated by one <sep/> element. The mantissa must be a real22

number and the exponent part must be a signed integer. This leads to expressions such as23

<cn type="e-notation"> 2 <sep/> -5 </cn>24

for the number 2× 10−5. It is especially important to note that the expression25

<cn type="e-notation"> 2e-5 </cn>26

is not valid in MathML 2.0 and therefore cannot be used in MathML content in SBML. However, elsewhere in27

SBML, when an attribute value is declared to have the data type double (a type taken from XML Schema),28

the compact notation “2e-5” is in fact allowed. In other words, within MathML expressions contained in29

SBML (and only within such MathML expressions), numbers in scientific notation must take the form <cn30

type="e-notation"> 2 <sep/> -5 </cn>, and everywhere else they must take the form “2e-5”.31

This is a regrettable difference between two standards that SBML replies upon, but it is not feasible to32

redefine these types within SBML because the result would be incompatible with parser libraries written to33

conform with the MathML and XML Schema standards. It is also not possible to use XML Schema to define34

a data type for SBML attribute values permitting the use of the <sep/> notation, because XML attribute35

values cannot contain XML elements—that is, <sep/> cannot appear in an XML attribute value.36

3.5.3 Use of ci elements in MathML expressions in SBML37

The content of a ci element must be an SBML identifier that is declared elsewhere in the model. The38

identifier can be preceded and succeeded by whitespace. The set of possible identifiers that can appear in a39

ci element depends on the containing structure in which the ci is used:40

• If a ci element appears in the body of a FunctionDefinition object (Section 4.3), the referenced identifier41

must be either (i) one of the declared arguments to that function, or (ii) the identifier of a previously42

defined FunctionDefinition object in the model.43
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• Otherwise, the referenced identifier must be that of a Species, Compartment, Parameter, FunctionDefinition,1

or Reaction object defined in the model. The following are the only possible interpretations of using2

such an identifier in SBML:3

– Species identifier : When a Species identifier occurs in a ci element, it represents the quantity4

of that species in terms of either amount of substance units or in terms of concentration units,5

depending on the definition of that species; see Section 4.8.5.6

– Compartment identifier : When a Compartment identifier occurs in a ci element, it represents the7

size of the compartment. The units associated with the size of the compartment are those given8

on the Compartment structure that declares the identifier; see Section 4.7.5.9

– Parameter identifier : When a Parameter identifier occurs in a ci element, it represents the numer-10

ical value assigned to that parameter. The units associated with the parameter’s value are the11

units assigned in its instance of a Parameter structure; see Section 4.9.3.12

– Function identifier : When a FunctionDefinition identifier occurs in a ci element, it represents a call13

to that function. Function references in MathML occur in the context of using MathML’s apply14

and often involve supplying arguments to the function; see Section 4.3.15

– Reaction identifier : When a Reaction identifier occurs in a ci element, it represents the rate of that16

reaction as determined by the mathematical formula in the KineticLaw object within the Reaction.17

The units associated with the reaction are substance/time, with the substance and time units18

established by the values of the SBML built-in units “substance” and “time”, respectively. These19

units may be redefined in model; see Section 4.4.3. If the reaction definition has no KineticLaw,20

the use of the reaction identifier is an error (perhaps indicating that the model is incomplete).21

The content of ci elements in MathML formulas outside of a KineticLaw or FunctionDefinition must always refer22

to objects declared in the top level global namespace; i.e., SBML uses “early binding” semantics. Inside of23

KineticLaw, a ci element can additionally refer to local parameters defined within that KineticLaw instance;24

see Section 4.13.5 for more information.25

3.5.4 Handling of whitespace26

MathML 2.0 defines “whitespace” in the same way as XML does, i.e., the space character (Unicode hex-27

adecimal code 0020), horizontal tab (code 0009), newline or line feed (code 000A), and carriage return (code28

000D). In MathML, the content of elements such as cn and ci can be surrounded by whitespace characters.29

Prior to using the content, this whitespace is “trimmed” from both ends: all whitespace at the beginning30

and end of the content is removed (Ausbrooks et al., 2003). For example, in <cn> 42 </cn>, the amount31

of white space on either side of the “42” inside the <cn> . . . </cn> container does not matter. Prior to32

interpreting the content, the whitespace is removed altogether.33

3.5.5 Use of csymbol elements in MathML expressions in SBML34

SBML Level 2 uses the MathML csymbol element to denote certain built-in mathematical entities without35

introducing reserved names into the component identifier namespace. The encoding field of csymbol should36

be set to “text”. The definitionURL should be set to one of the following predefined SBML symbol URIs:37

• http://www.sbml.org/sbml/symbols/time. This represents the current simulation time. See Sec-38

tion 3.5.6 for more information. The units of the current time entity are determined from the built-in39

time of Table 3 on page 36.40

• http://www.sbml.org/sbml/symbols/delay. This represents a delay function. The delay function has41

the form delay(x, d), taking two MathML expressions as arguments. Its value is the value of argument42

x at d time units before the current time. There are no restrictions on the form of x. The units of the d43

parameter are determined from the built-in time. The value of the d parameter, when evaluated, must44

be numerical and be greater than or equal to 0. The delay function is useful for representing biological45

processes having a delayed response, but where the detail of the processes and delay mechanism is46

not relevant to the operation of a given model. See Section 3.5.6 below for additional considerations47

surrounding the use of this csymbol.48
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The following examples demonstrate these concepts. The XML fragment below encodes the formula x + t,1

where t stands for time.2

<math xmlns="http://www.w3.org/1998/Math/MathML">3

<apply>4

<plus/>5

<ci> x </ci>6

<csymbol encoding="text" definitionURL="http://www.sbml.org/sbml/symbols/time">7

t8

</csymbol>9

</apply>10

</math>11

In the fragment above, the use of the token t is mostly a convenience for human readers—the string inside12

the csymbol could have been almost anything, because it is essentially ignored by MathML parsers and13

SBML. Some MathML and SBML processors will take note of the token and use it when presenting the14

mathematical formula to users, but the token used has no impact on the interpretation of the model and it15

does not enter into the SBML component identifier namespace. In other words, the SBML model cannot16

refer to t in the example above. The content of the csymbol element is for rendering purposes only and can17

be ignored by the parser.18

As a further example, the following XML fragment encodes the equation k + delay(x, 0.1) or alternatively19

kt + xt−0.1:20

<math xmlns="http://www.w3.org/1998/Math/MathML">21

<apply>22

<plus/>23

<ci> k </ci>24

<apply>25

<csymbol encoding="text" definitionURL="http://www.sbml.org/sbml/symbols/delay">26

delay27

</csymbol>28

<ci> x </ci>29

<cn> 0.1 </cn>30

</apply>31

</apply>32

</math>33

Note that the URI in the value of definitionURL, as all URIs, is intended to serve as a unique identifier and34

is not intended to be dereferenced as an Internet address. There is nothing actually located at the address35

http://www.sbml.org/sbml/symbols/delay.36

3.5.6 Simulation time37

The principal use of SBML is to represent quantitative dynamical models whose behaviors manifest them-38

selves over time. In defining an SBML model using constructs such as reactions, time is most often implicit39

and does not need to be referred to in the mathematical expressions themselves. However, sometimes an40

explicit time dependency needs to be stated, and for this purpose, the time csymbol (described above in Sec-41

tion 3.5.5) may be used. This time symbol refers to “instantaneous current time” in a simulation, frequently42

given the literal name t in one’s equations.43

An assumption in SBML is that “start time” or “initial time” in a simulation is zero, that is, if t0 is the44

initial time in the system, t0 = 0. This corresponds to the most common scenario. Initial conditions in45

SBML take effect at time t = 0. There is no mechanism in SBML for setting the initial time to a value other46

than 0. To refer to a different time in a model, one approach is to define a Parameter for a new time variable47

and use an AssignmentRule in which the assignment expression subtracts a value from the csymbol time. For48

example, if the desired offset is 2 time units, the MathML expression would be49

<math xmlns="http://www.w3.org/1998/Math/MathML">50

<apply>51

<minus/>52

<csymbol encoding="text" definitionURL="http://www.sbml.org/sbml/symbols/time"> t53

</csymbol>54
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<cn> 2 </cn>1

</apply>2

</math>3

SBML’s assignment rules (Section 4.11.3) can be used to express mathematical statements that hold true at4

all moments, so using an assignment rule with the expression above will result in the value being equal to5

t− 2 at every point in time. A parameter assigned this value could then be used elsewhere in the model, its6

value could be plotted by a simulator, etc.7

3.5.7 Initial conditions and special considerations8

The identifiers of Species, Compartment, Parameter, and Reaction object instances in a given SBML model refer9

to the main variables in a model. Depending on certain attributes of these objects (e.g., the constant flag10

on species, compartments and parameters—this and other conditions are explained in the relevant sections11

elsewhere in this document), some of the variables may have constant values throughout a simulation, and12

others’ values may change. These changes in values over time are determined by the system of equations13

constructed from the model’s reactions, initial assignments, rules, and events.14

As described in Section 3.5.6, an SBML model’s simulation is assumed to begin at t = 0. The availability15

of the delay csymbol (Section 3.5.5) introduces the possibility that at t = 0, mathematical expressions in a16

model may draw on values of model components from time prior to t = 0. A simulator may therefore need17

to begin calculations at some point in time ti ≤ 0 deemed sufficiently far before t = 0 to allow the estimation18

of necessary values for delay expressions in the model. If there are no delays in the model, then ti = 0.19

The following is how the definitions of the model should be applied:20

1. At time ti:21

• Every Species, Compartment, and Parameter whose definition includes an initial value is assigned22

that value. If an object is defined with constant=“false”, its value may be changed by other23

constructs or reactions in a model according to the steps below; if constant=“true”, only an24

InitialAssignment can override the value.25

• All InitialAssignment definitions take effect at ti and continue to have effect up to and including26

t = 0, overriding any initial values on Species, Compartment and Parameter. Since InitialAssignments27

contain mathematical formulas, different values may be computed at each time step t in ti ≤ t ≤ 0.28

2. For time t ≥ ti:29

• AssignmentRule and AlgebraicRule definitions are in effect from this point in time forward and may30

influence the values of Species quantity, Compartment size, and Parameter values. (Note there cannot31

be both an AssignmentRule and an InitialAssignment for the same identifier; see Section 4.11.)32

3. At time t = 0:33

• The system of equations constructed by combining AssignmentRule equations, AlgebraicRule equa-34

tions, RateRule equations, and the equations constructed from the Reaction definitions in the model,35

are used to obtain consistent initial conditions for numerical solver algorithms. (Note that there36

cannot be both an AssignmentRule and a RateRule for the same identifier, or both an AssignmentRule37

and an InitialAssignment for the same identifier; see Section 4.11.3.)38

• Constraint definitions begin to take effect (and a constraint violation may result; see Section 4.12).39

4. For time t > 0:40

• RateRule definitions can begin to take effect.41

• Event definitions can begin to take effect. (Note that an Event cannot be defined to change the42

value of a variable that is also the subject of an AssignmentRule; see Section 4.14.)43

• System simulation proceeds.44

To reiterate: in modeling situations that do not involve the use of the delay csymbol, ti = 0, but this does45

not alter the steps above.46
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3.5.8 Math expression types1

MathML operators in SBML each return results in one of two possible types: boolean and numeric. The2

following guidelines summarize the different possible cases.3

The relational operators (eq, neq, gt, lt, geq, leq), the logical operators (and, or, xor, not), and the boolean4

constants (false, true) always return boolean values.5

The type of an operator referring to an SBML FunctionDefinition is determined by the type of the top-level6

operator of the MathML expression in the math field of the function definition. This type may be boolean7

or numeric.8

All other operators, values and symbols return numeric results.9

The roots of the expression trees used in the following contexts must yield boolean values:10

• the arguments of the MathML logical operators (and, or, xor, not);11

• the second argument of a MathML piece operator;12

• the trigger field of an SBML Event structure; and13

• the math field of an SBML Constraint structure.14

The roots of the expression trees used in the following contexts can optionally yield boolean values:15

• the arguments to the eq and neq operators;16

• the first arguments of MathML piece and otherwise operators; and17

• the top level expression of a function definition.18

The roots of expression trees in other contexts must yield numeric values.19

The type of expressions should be used consistently. The set of expressions that make up the first arguments20

of the piece and otherwise operators within the same piecewise operator should all return values of the21

same type. The arguments of the eq and neq operators should return the same type.22
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4 SBML components1

In this section, we define each of the major data structures in SBML. To provide illustrations of their use,2

we give partial model definitions in XML. Section 7 provides many full examples of SBML in XML.3

In type definitions presented throughout this section, we follow a common UML convention of hiding the4

attributes derived from a parent type such as Sbase. It should be kept in mind that these attributes are5

always available.6

4.1 The SBML container7

The outermost portion of an SBML Level 2 Version 2 model definition consists of a single Sbml structure8

enclosing a single Model structure (see next Section). The definition of Sbml is shown in Figure 6. The9

element has three required fields: level, version and model. For SBML Level 2 Version 2, level and10

version must both be set to “2”.11

Sbml

level: positiveInteger { use=”required” fixed=”2” }
version: positiveInteger { use=”required” fixed=”2” }
model: Model

Figure 6: The definition of Sbml for SBML Level 2 Version 2. Following UML notation, additional fields that are inherited
from a base class, in this case Sbase, are not shown.

In the transformation of UML to XML used in SBML, the structure of Figure 6 is turned into an element12

named sbml. This element constitutes the outermost container of XML content. To be a well-formed XML13

document, this container should be preceded by a string known as the XML declaration, which specifies both14

the version of XML assumed and the document character encoding. The XML declaration begins with the15

characters <?xml. The version of XML used by the SBML Level 2 Version 2 specification is version 1.0, and16

the character encoding is required to be UTF-8. The following is an abbreviated example of these essential17

XML elements for a SBML Level 2 Version 2 document:18

<?xml version="1.0" encoding="UTF-8"?>19

<sbml xmlns="http://www.sbml.org/sbml/level2/version2" level="2" version="2">20

...21

</sbml>22

Note the additional XML attribute xmlns. This is required for XML; it declares the default XML names-23

pace used within the sbml element. The XML namespace URI for SBML Level 2 Version 2 is the string24

http://www.sbml.org/sbml/level2/version2. All Level 2 Version 2 elements must be placed in this names-25

pace either by assigning the default XML namespace as shown above, or using a tag prefix on every element.26

An SBML XML document must not contain elements or attributes in the SBML namespace that are not27

defined in this SBML Level 2 Version 2 specification. Documents containing unknown elements or attributes28

placed in the SBML namespace do not conform to the SBML Level 2 Version 2 specification.29

Readers may wonder why the SBML top-level XML element uses both a namespace URI identifying the30

SBML level and version, as well as separate XML attributes giving the level and version. Why is the31

information duplicated? There are several reasons. First, XML is only one possible serialization of SBML32

(albeit an extremely popular one at this time). Though most of this document is written with XML in33

mind, it is the intention behind the design of SBML that its object structure should be implementable in34

other languages and software systems. Programmatic access is easier if the level and version information35

are accessible directly as data rather than have to be extracted from a string. Second, generic high-level36

XML parsers may not give their calling programs access to the value of the xmlns attribute. Providing37

the information via separate attributes is a good backup measure. And finally, earlier in the history of38

SBML, it was expected that only the level needed to be encoded as part of the namespace URI (e.g.,39

http://www.sbml.org/sbml/level1) because it was hoped that changes within levels would not require40

XML Schema changes. This has proven to be false, but SBML Level 1 (both versions) and the first version41

27



of SBML Level 2 still subscribe to this principle. This means that for these variants of SBML, software tools1

must look for a version attribute on the top-level element. For backwards compatibility with software that2

expects this, it makes more sense to keep the version and level attributes.3

4.2 Model4

The Model structure is the highest-level construct in an SBML data stream or document. Its definition is5

shown in Figure 7. Only one component of type Model is allowed per instance of an SBML Level 2 Version 26

document or data stream, although it does not necessarily need to represent a single biological entity.7

Model

id: SId { use=”optional” }
name: string { use=”optional” }
sboTerm: SBOTerm { use=”optional” }
functionDefinition: FunctionDefinition[0..*]
unitDefinition: UnitDefinition[0..*]
compartmentType: CompartmentType[0..*]
speciesType: SpeciesType[0..*]
compartment: Compartment[0..*]
species: Species[0..*]
parameter: Parameter[0..*]
initialAssignment: InitialAssignment[0..*]
rule: Rule[0..*]
constraint: Constraint[0..*]
reaction: Reaction[0..*]
event: Event[0..*]

Figure 7: The definition of Model. Following UML notation, additional fields that are inherited from a base class, in this
case Sbase, are not shown.

Model serves as a container for components of object classes FunctionDefinition, UnitDefinition, CompartmentType,8

SpeciesType, Compartment, Species, Parameter, InitialAssignment, Rule, Constraint, Reaction and Event. All of these9

components are optional; that is, the lists in each of the respective fields are permitted to have zero length.10

(However, there are dependencies between components, such that defining some requires defining others.11

For example, as explained in other sections below, defining a species requires defining a compartment, and12

defining a reaction requires defining a species.)13

The Model structure has an optional field, id, used to give the model an identifier. The identifier must be a14

text string conforming to the syntax permitted by the SId data type described in Section 3.1.7. Model also15

has an optional name field, of type string. The name and id fields must be used as described in Section 3.4.16

In the XML encoding of an SBML model, the lists of compartment types, compartments, species types,17

species, unit definitions, parameters, initial assignments, reactions, function definitions, constraints, rules18

and events are translated into lists of XML elements enclosed within elements of the form listOf s,19

where the blank is replaced by the name of the component type. If the word already ends in “s”, such as20

“species”, then the extra letter is omitted from the end, leading to listOfSpecies. The resulting XML data21

object has the form illustrated by the following skeletal model:22

<model id="My_Model">23

<listOfFunctionDefinitions>24

...25

</listOfFunctionDefinitions>26

<listOfUnitDefinitions>27

...28

</listOfUnitDefinitions>29

<listOfCompartmentTypes>30

...31

</listOfCompartmentTypes>32
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<listOfSpeciesTypes>1

...2

</listOfSpeciesTypes>3

<listOfCompartments>4

...5

</listOfCompartments>6

<listOfSpecies>7

...8

</listOfSpecies>9

<listOfParameters>10

...11

</listOfParameters>12

<listOfInitialAssignments>13

...14

</listOfInitialAssignments>15

<listOfRules>16

...17

</listOfRules>18

<listOfConstraints>19

...20

</listOfConstraints>21

<listOfReactions>22

...23

</listOfReactions>24

<listOfEvents>25

...26

</listOfEvents>27

</model>28

Readers may wonder about the motivations for the listOf s notation. A simpler approach to creating29

the lists of components would be to place them all directly at the top level under <model> ... </model>.30

We chose instead to group them within XML elements named after listOf s, because we believe this31

helps organize the components and makes visual reading of model definitions easier. These listOf s32

elements are derived from Sbase which enables each list to contain its own metaid, notes and annotation33

fields. Further details of how listOf s elements implement UML lists is described in Section 1.4.34

4.2.1 The sboTerm field35

The Model structure has an optional sboTerm field of type SBOTerm (see Sections 3.1.9 and 5). When a value36

is given to this field in a model, the value must be an SBO identifier (http://www.biomodels.net/SBO/)37

referring to a modeling framework defined in SBO (i.e., terms derived from SBO:0000004, “modeling frame-38

work”). The SBO term chosen should be the most precise (narrow) term that defines the mathematical39

framework assumed by the entire model. An example framework might be “discrete stochastic”, which40

would mean the entire model was created under the assumption it will be simulated in a tool that turns41

substance quantities into discrete numbers and applies a stochastic simulation algorithm (e.g., Gillespie,42

1977) to the model. Other frameworks are possible.43

The value given to sboTerm on a Model interacts with the SBO labels on the model’s Reaction elements in the44

following way. The label on Model should apply to the model as a whole, meaning that all reactions in the45

model assume the same framework. In that case, the sboTerm values on individual Reaction elements may be46

omitted, but only the Reaction SBO labels can be thus omitted; the SBO labels on KineticLaw within Reaction47

must still be supplied, as must the terms on other components of the model, in order to characterize the48

model completely.49

The absence of an sboTerm value on a Model instance means that either the model has not been labeled50

with SBO terms at all, or there was no available SBO modeling framework term at the time the model was51

created that was deemed suitable for characterizing the model as a whole. If Model has no value for sboTerm,52

the sboTerm fields on each Reaction in a model may still indicate the framework assumed for each reaction53

separately.54

As discussed in Section 5, SBO labels are optional information on a model. Applications are free to ignore55

sboTerm values, and a model must be interpretable without the benefit of SBO labels.56
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4.3 Function definitions1

The FunctionDefinition structure associates an identifier with a function definition. This identifier can then be2

used as the function called in subsequent MathML apply elements. FunctionDefinition is shown in Figure 8.3

FunctionDefinition

id: SId
name: string { use=”optional” }
math: (lambda:Lambda) { namespace=”http://www.w3.org/1998/Math/MathML” }
sboTerm: SBOTerm { use=”optional” }

Figure 8: The definition of FunctionDefinition. Following UML notation, additional fields that are inherited from a base
class, in this case Sbase, are not shown.

Function definitions in SBML (also informally known as “user-defined functions”) have relatively limited4

capabilities. As is made more clear below, a function cannot reference parameters or other model quantities5

outside of itself; values must be passed as parameters to the function. Moreover, recursive and mutually-6

recursive functions are not permitted. The purpose of these limitations is to balance power against complexity7

of implementation. With the restrictions as they are, function definitions could be implemented as textual8

substitutions—they are simply macros. Software implementations therefore do not need the full function-9

definition machinery typically associated with programming languages.10

The FunctionDefinition structure has three fields: id, name and math. Their purposes are explained in the11

following subsections.12

4.3.1 The id and name fields13

The id and name fields have types SId and string, respectively, and operate in the manner described in14

Section 3.4. MathML ci elements in an SBML model can refer to the function defined by a FunctionDefinition15

using the value of its id field.16

4.3.2 The math field17

The math field is a container for MathML content that defines the function. The content of this field can18

only be a MathML lambda element. The lambda element must begin with zero or more bvar elements,19

followed by any other of the elements in the MathML subset listed in Section 3.5.1 except lambda (i.e., a20

lambda element cannot contain another lambda element). This is the only place in SBML where a lambda21

element can be used. The function defined by a FunctionDefinition is only available for use in other MathML22

elements that follow the FunctionDefinition definition in the model. (These restrictions prevent recursive and23

mutually-recursive functions from being expressed.)24

A further restriction on the content of the math field is that it cannot contain references to variables other than25

the variables declared to the lambda itself. That is, the contents of MathML ci elements inside the body of26

the lambda can only be the variables declared by its bvar elements, or the identifiers of other FunctionDefinitions27

defined earlier in the model. This implies that functions must be written so that all variables or parameters28

used in the MathML content are passed to them via their function parameters.29

4.3.3 The sboTerm field30

FunctionDefinition has an optional sboTerm field of type SBOTerm (see Sections 3.1.9 and 5). When a value is31

given to this field in a FunctionDefinition instance, the value must be an SBO identifier referring to a mathe-32

matical expression (i.e., terms derived from SBO:0000064, “mathematical expression”). The relationship is33

of the form “the function definition is a X”, where X is the SBO term. The term chosen should be the most34

precise (narrow) one that captures the role of the function in the model.35

As discussed in Section 5, SBO labels are optional information on a model. Applications are free to ignore36

sboTerm values. A model must be interpretable without the benefit of SBO labels.37
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4.3.4 Examples1

The following abbreviated SBML example shows a FunctionDefinition structure defining pow3 as the identifier2

of a function computing the mathematical expression x3, and after that, the invocation of that function in3

the mathematical formula of a rate law. Note how the invocation of the function uses its identifier4

<model>5

...6

<functionDefinition id="pow3">7

<math xmlns="http://www.w3.org/1998/Math/MathML">8

<lambda>9

<bvar><ci> x </ci></bvar>10

<apply>11

<power/>12

<ci> x </ci>13

<cn> 3 </cn>14

</apply>15

</lambda>16

</math>17

</functionDefinition>18

...19

<listOfReactions>20

<reaction id="reaction_1">21

...22

<kineticLaw>23

<math xmlns="http://www.w3.org/1998/Math/MathML">24

<apply>25

<ci> pow3 </ci>26

<ci> S1 </ci>27

</apply>28

</math>29

</kineticLaw>30

...31

</reaction>32

</listOfReactions>33

...34

</model>35

4.4 Unit definitions36

Units of measurement may be supplied in a number of contexts in an SBML model. The units of the following37

mathematical entities can be specified explicitly: the size of a Compartment, the initial amount of a Species,38

the units of constant and variable Parameter values, the units of time and of substance in which a reaction39

rate is expressed, the units of time in an event’s execution delay, and the results of mathematical formulas.40

Rather than requiring a complete unit definition on every structure, SBML provides a facility for defining41

units that can be referenced throughout a model. In addition, every kind of SBML mathematical entity has42

units assigned to it from a set of built-in defaults (see Section 4.4.3 below, and also Sections 4.7.5, 4.8.543

and 4.13.5). By redefining these built-in default units, it is possible to change the units used throughout a44

model in a simple and consistent manner.45

The SBML unit definition facility uses two classes of objects, UnitDefinition and Unit. Their definitions are46

shown in Figure 9 and explained in more detail in Sections 4.4.1 and 4.4.2 below.47

UnitDefinition

id: UnitSId
name: string { use=”optional” }
unit: Unit[1..*]

Unit

kind: UnitKind
exponent: int { use=”optional” default=”1” }
scale: int { use=”optional” default=”0” }
multiplier: double { use=”optional” default=”1” }

Figure 9: The definition of UnitDefinition and Unit. Following UML notation, additional fields that are inherited from a base
class, in this case Sbase, are not shown.
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The approach to defining units in SBML is compositional; for example, meter second−2 is constructed by1

combining a Unit object representing meter with another Unit object representing second−2. The combina-2

tion is wrapped inside a UnitDefinition, which provides for assigning an identifier and optional name to the3

combination. The identifier can then be referenced from elsewhere in a model.4

The vast majority of modeling situations requiring new SBML unit definitions involve simple multiplicative5

combinations of base units and factors. An example of this might be “moles per litre per second”. What6

distinguishes these sorts of simpler unit definitions from more complex ones is that they may be expressed7

without the use of an additive offset from a zero point. The use of offsets complicates all unit definition8

system, yet in the domain of SBML the real-life cases requiring offsets are few (and in fact, to the best of our9

knowledge, only involve temperature). Consequently, the SBML unit system has been consciously designed10

in a way that attempts to simplify implementation of unit support for the most common cases in systems11

biology, at the cost of requiring units with offsets to be handled explicitly by the modeler.12

4.4.1 The UnitDefinition structure13

A unit definition in SBML consists of an instance of a UnitDefinition object, shown in Figure 9.14

The id and name fields15

The required field id and optional field name have data types UnitSId and string, respectively. The id field16

is used to give the defined unit a unique identifier by which other parts of an SBML model definition can17

refer to it. The name field is intended to be used for giving the unit definition an optional human-readable18

name; see Section 3.4.2 for more guidelines about the use of names.19

There are two important restrictions and guidelines about the use of unit definition id values:20

1. The id of a UnitDefinition must not contain a value from Table 2 (i.e., the enumeration of predefined21

UnitKind values). This constraint simply prevents the redefinition of the SBML base units.22

2. There is a set of predefined identifiers for the built-in default units in SBML; these identifiers are23

“substance”, “volume”, “area”, “length”, and “time”. Using one of these values for id in a UnitDef-24

inition has the effect of redefining the model-wide default units for the corresponding quantities. We25

discuss this in more detail in Section 4.4.3.26

The list of Units27

A UnitDefinition object must contain one or more Unit objects within the unit container. In the XML form of28

SBML, this container becomes a listOfUnits element. Section 4.4.2 explains the meaning and use of Unit.29

Example30

The following skeleton of a unit definition illustrates an example use of UnitDefinition:31

<listOfUnitDefinitions>32

<unitDefinition id="unit1">33

<listOfUnits>34

...35

</listOfUnits>36

</unitDefinition>37

<unitDefinition id="unit2">38

<listOfUnits>39

...40

</listOfUnits>41

</unitDefinition>42

</listOfUnitDefinitions>43

4.4.2 The Unit structure44

A Unit structure represents a (possibly transformed) reference to a base unit chosen from UnitKind (Table 2).45

The field kind indicates the chosen base unit, whereas the three fields exponent, scale, and multiplier46

define how the base unit is being transformed. These various fields are described in detail below.47
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Compatibility note: in SBML Level 2 Version 1, Unit had an additional field called offset. This field has1

been removed entirely from SBML Level 2 Version 2. Modelers and software authors are instead directed to2

use other methods of encoding units requiring offsets. The reasons for this change, and some suggestions for3

how to achieve equivalent effects of unit offsets, are discussed in more detail below.4

The kind field5

The Unit data structure has one required field, kind, whose value must be taken from UnitKind, an enumer-6

ation of base units. The possible values of UnitKind are given in Table 2.7

8 ampere gram katal metre second watt

9 becquerel gray kelvin mole siemens weber

10 candela henry kilogram newton sievert

11 coulomb hertz litre ohm steradian

12 dimensionless item lumen pascal tesla

13 farad joule lux radian volt

Table 2: The possible values of kind in a UnitKind structure. All are names of base or derived SI units (Bureau
International des Poids et Mesures, 2000), except for “dimensionless” and “item”, which are SBML additions important
for handling certain common situations. “Dimensionless” is intended for cases where a quantity does not have units, and
“item” for expressing such things as “N items” (e.g., “100 molecules”). Also, note that the gram and litre are not strictly
part of SI; however, they are frequently used in SBML’s areas of application and therefore are included as predefined
unit identifiers. (The standard SI unit of mass is in fact the kilogram, and volume is defined in terms of cubic metres.)
Comparisons of values from UnitKind must performed in a case-sensitive manner.

Note that the set of acceptable values for the field kind does not include units defined by UnitDefinition14

structures. This means that the units definition system in SBML is not hierarchical: user-defined units cannot15

be built on top of other user-defined units, only on top of base units. SBML differs from CellML Hedley16

et al. (2001) in this respect; CellML allows the construction of hierarchical unit definitions.17

The exponent, scale and multiplier fields18

The optional exponent field on Unit represents an exponent on the unit. Its default value is “1” (one). A Unit19

structure also has an optional scale field; its value must be an integer exponent for a power-of-ten multiplier20

used to set the scale of the unit. For example, a unit having a kind value of “gram” and a scale value of21

“-3” signifies 10−3 ∗ gram, or milligrams. The default value of scale is “0” (zero), because 100 = 1. Lastly,22

the optional multiplier field can be used to multiply the kind unit by a real-numbered factor; this enables23

the definition of units that are not power-of-ten multiples of SI units. For instance, a multiplier of 0.304824

could be used to define “foot” as a measure of length in terms of a metre. The multiplier field has a25

default value of “1” (one).26

The unit system allows model quantities to be expressed in units other than the base units of Table 2. For27

analyses and computations, the consumer of the model (be it a software tool or a human) will want to convert28

all model quantities to base SI units for purposes such as verifying the consistency of units throughout the29

model. Suppose we begin with a quantity having numerical value y when expressed in units {u}. The30

relationship between y and a quantity yb expressed in base units {ub} is31

yb {ub} = y {u}
(

w {ub}
{u}

)
(1)32

The term in the parentheses on the right-hand side is a factor w for converting a quantity in units {u} to33

another quantity in units {ub}. The ratio of units leads to canceling of {u} in the equation above and leaves34

a quantity in units {ub}. It remains to define this factor. In terms of the SBML unit system, it is:35

{u} = (multiplier · 10scale {ub})exponent (2)36

where the dot (·) represents simple scalar multiplication. The variables multiplier, scale, and exponent37

in the equation above correspond to the fields with the same names in the Unit structure defined in Figure 9.38
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The exponent in the equation above may make it more difficult to grasp the relationship immediately; so let1

us suppose for the moment that exponent=“1”. Then, it is easy to see that2

{u} = multiplier · 10scale {ub}3

Dividing both sides by {u} produces the ratio in the parenthesized portion of Equation 1, which means that4

w = multiplier ·10scale. To take a concrete example, one foot expressed in terms of the metre (a base unit)5

requires multiplier=“0.3048”, exponent=“1”, and scale=“0”:6

foot = 0.3048 · 100 ·metre7
8

leading to a conversion between quantities of9

yb metres = 0.3048 · y feet10
11

Given a quantity of, say, y = 2, the conversion results in yb = 0.6096. To relate this to SBML terms more12

concretely, the following fragment of SBML illustrates how this is represented using the Unit and UnitDefinition13

constructs:14

<listOfUnitDefinitions>15

<unitDefinition id="foot">16

<listOfUnits>17

<unit kind="metre" multiplier="0.3048"/>18

</listOfUnits>19

</unitDefinition>20

</listOfUnitDefinitions>21

The case above is the simplest possible situation, involving the transformation of quantities from a single22

defined unit {u} into a quantity expressed in a single base unit {ub}. If, instead, multiple base units23

{ub1}, {ub2}, . . . , {ubn
} are involved, the following equation holds (where the mi terms are the multiplier24

values, the si terms are the scale values, and the xi terms are the exponent values):25

{u} = (m1 · 10s1{ub1})x1 · (m2 · 10s2{ub2})x2 · . . . · (mn · 10sn{ubn
})xn

26

= mx1
1 ·mx2

2 · . . . ·mxn
n · 10(s1x1+s2x2+...+snxn){ub1}x1{ub2}x2 . . . {ubn

}xn (3)27
28

Software developers should take care to track the exponents carefully because they can be negative integers.29

The overall use of Equation 3 is analogous to that of Equation 2, and leads to the following final expression.30

First, to simplify, let31

m = mx1
1 ·mx2

2 · . . . ·mxn
n32

p = s1x1 + s2x2 + . . . + snxn33
34

then,35

yb {ub1}{ub2} . . . {ubn} = y {u}
(

m · 10p{ub1}x1{ub2}x2 . . . {ubn}xn

{u}

)
(4)36

37

Some additional points are worth discussing about the unit scheme introduced so far. First, and most38

importantly, the equations above are formulated with the assumption that the base units do not require39

an additive offset as part of their definition. When temperature values in units other than kelvin are being40

considered, then a different interpretation must be made, as discussed below.41

A second point is that care is needed to avoid seemingly-obvious but incorrect translations of units described42

in textbooks. The scheme above makes it easy to formulate statements such as “1 foot = 0.3048 metres”43

in the most natural way. However, the most common expression of the relationship between temperature in44

Fahrenheit and kelvin, “TFahrenheit = 1.8 · (Tkelvin − 273.15) + 32” might lead one to believe that defining45

Fahrenheit degrees in terms of kelvin degrees involves using multiplier=“1.8”. Not so, when degree changes46
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are being considered and not temperature values. Converting temperature values is different from expressing1

a relationship between degree measurements. The proper value for the multiplier in the latter case is 5/9,2

i.e., multiplier=“0.555556” (where we picked an arbitrary decimal precision). If, on the other hand, the3

actual temperature is relevant to a quantity (e.g., if a model uses a quantity that has particular values at4

particular temperatures), then offsets are required in the unit calculations and a formula must be used as5

discussed above.6

Handling units requiring the use of offsets in SBML Level 2 Version 27

Unit definitions and conversions requiring offsets cannot be done using the simple approach above. The8

most general case, involving offsets, multipliers and exponents, requires a completely different approach to9

defining units than what has been presented up to this point.10

In previous versions of SBML, not only was the general case incorrectly presented (i.e., in the same terms11

described above, when in reality a different approach is required), but few if any developers even attempted12

to support offset-based units in their software. In the development of SBML Level 2 Version 2, a consensus13

among SBML developers has emerged that a fully generalized unit scheme is so confusing and complicated14

that it actually impedes interoperability. Level 2 Version 2 acknowledges this reality by reducing and15

simplifying the unit system, specifically by removing the offset field on Unit and Celsius as a pre-defined16

unit, and by describing approaches for handling Celsius and other temperature units. This is a backwards-17

incompatible change relative to SBML Level 2 Version 1 and SBML Level 1 Version 2, but it is believed18

to have limited real-life impact because so few tools and models appeared to have employed this feature19

anyway. By simplifying the unit system to the point that it only involves multiplicative factors as described20

above, we expect that more software tools will be able to support the SBML unit system from this point21

forward, ultimately improving interoperability.22

We first address the question of how to handle units that do require offsets:23

• Handling Celsius. A model in which certain quantities are temperatures measured in degrees Celsius24

can be converted straightforwardly to a model in which those temperatures are in kelvin. A software25

tool could do this by performing a straightforward substitution using the following relationship:26

Tkelvin = TCelsius + 273.15 (5)27

In every mathematical formula of the model where a quantity (call it x) in degrees Celsius appears,28

replace x with xk + 273.15 where xk is now in kelvin. An alternative approach would be to use a29

FunctionDefinition to define a function encapsulating this relationship above and then using that in the30

rest of the model as needed. Since Celsius is a commonly-used unit, software tools could help users by31

providing users with the ability to express temperatures in Celsius in the tools’ interfaces, and making32

substitutions automatically when writing out the SBML.33

• Handling other units requiring offsets. The only other units requiring offsets in SBML’s domain of34

common applications are other temperature units such as Fahrenheit. Few modern scientists employ35

Fahrenheit degrees; therefore, this is an unusual situation. The complication inherent in converting36

between degrees Fahrenheit and kelvin is that both a multiplier and an offset are required:37

Tkelvin =
TF + 459.67

1.8
(6)38

One approach to handling this is to use a FunctionDefinition to define a function encapsulating the39

relationship above, then to substitute a call to this function wherever the original temperature in40

Fahrenheit appears in the model’s mathematical formulas. Here is a candidate definition as an example:41

<functionDefinition id="Fahrenheit_to_kelvin">42

<math xmlns="http://www.w3.org/1998/Math/MathML">43

<lambda>44

<bvar><ci> temp_in_fahrenheit </ci></bvar>45

<apply>46

<divide/>47
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<apply>1

<plus/>2

<ci> temp_in_fahrenheit </ci>3

<cn> 459.67 </cn>4

</apply>5

<cn> 1.8 </cn>6

</apply>7

</lambda>8

</math>9

</functionDefinition>10

11

An alternative approach not requiring the use of function definitions is to use an AssignmentRule for12

each variable in Fahrenheit units. The AssignmentRule could compute the conversion from Fahrenheit13

to (say) kelvin, assign its value to a variable (in Kelvin units), and then that variable could be used14

elsewhere in the model. Still another approach is to rewrite the mathematical formulas of a model to15

directly incorporate the conversion Equation 6 wherever the quantity appears.16

All of these approaches provide general solutions to the problem of supporting any units requiring17

offsets in the unit system of SBML Level 2 Version 2. It can be used for other temperature units18

requiring an offset (e.g., degrees Rankine, degrees Réaumur), although the likelihood of a real-life19

model requiring such other temperature units seems exceedingly small.20

In summary, the removal of offset in SBML Level 2 Version 2 does not impede the creation of models21

using alternative units. If conversions are needed, then converting between temperature in degrees Celsius22

and thermodynamic temperature can be handled rather easily by the simple substitution described above.23

For the rarer case of Fahrenheit and other units requiring combinations of multipliers and offsets, users are24

encouraged to employ the power of FunctionDefinition, AssignmentRule, or other constructs in SBML.25

Examples26

The following example illustrates the definition of an abbreviation “mmls” for the units mmol l−1 s−1:27

<listOfUnitDefinitions>28

<unitDefinition id="mmls">29

<listOfUnits>30

<unit kind="mole" scale="-3"/>31

<unit kind="litre" exponent="-1"/>32

<unit kind="second" exponent="-1"/>33

</listOfUnits>34

</unitDefinition>35

</listOfUnitDefinitions>36

4.4.3 Built-in units37

There are five special unit identifiers in SBML, listed in Table 3, corresponding to the five types of quantities38

that can play roles in SBML reactions: substance, volume, area, length and time. All SBML mathematical39

entities apart from parameters have default units drawn from these predefined values. Table 3 lists the40

default values; all of the defaults have multiplier=“1” and scale=“0”.41

42 Identifier Possible Scalable Units Default Units

43 substance mole, item, gram, kilogram, dimensionless mole
44 volume litre, cubic metre, dimensionless litre
45 area square metre, dimensionless square metre
46 length metre, dimensionless metre
47 time second, dimensionless second

Table 3: SBML’s built-in units.
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Redefinition of built-in units1

Table 3 also lists alternative base units that are allowed as the basis of redefined values. For example, a2

redefinition of the built-in unit of time must be based on units of seconds. Within certain limits, a model3

may change the built-in units by reassigning the keywords substance, length, area, time, and volume in a4

UnitDefinition. The limitations on redefinitions of base units are the following:5

1. The UnitDefinition of a redefined built-in unit can only contain a single Unit object within it.6

2. The value of the unitKind field in the Unit object must be drawn from one of the values in the second7

column of the appropriate row of Table 3.8

Examples9

The following example illustrates how to change the built-in units of volume to be millilitres. If this definition10

appeared in a model, the units of volume on all components that did not explicitly specify different units11

would be changed to millilitres.12

<model>13

...14

<listOfUnitDefinitions>15

<unitDefinition id="volume">16

<listOfUnits>17

<unit kind="litre" scale="-3"/>18

</listOfUnits>19

</unitDefinition>20

</listOfUnitDefinitions>21

...22

</model>23

4.4.4 References to units24

A field that defines the units of a mathematical entity (e.g., the field units on Parameter) can refer to a25

defined unit whose identifier is chosen from among the following:26

• A new unit identifier defined by a UnitDefinition as described at the start of Section 4.4;27

• The predefined units from Table 2 on page 33; and28

• The predefined units defined in Section 4.4.3 and listed in Table 3. (These are “substance”, “volume”,29

“area”, “length”, and “time”.)30

Software developers are asked to pay special attention to the units used in an SBML model. Different31

users and developers sometimes are accustomed to making different assumptions about units, and these32

assumptions may not correspond to what is actually defined in SBML. The numerical values in a model33

become meaningless if the corresponding units are not those being assumed. Sections 3.5.3, 4.8.5 and 4.13.534

have particularly important notes about the usage of units in SBML.35

4.5 Compartment types36

A compartment type in SBML is a grouping construct used to establish a relationship between multiple37

compartments (Section 4.7). A compartment type is represented by the CompartmentType data structure,38

defined in Figure 10 on the next page.39

In SBML Level 2 Version 2, a compartment type only has an identity, and this identity can only be used40

to indicate that particular compartments belong to this type. This may be useful for conveying a modeling41

intention, such as when a model contains many similar compartments, either by their biological function or42

the reactions they carry; without a compartment type construct, it would be impossible in the language of43

SBML to indicate that all of the compartments share an underlying conceptual relationship because each44

SBML compartment must be given a unique and separate identity.45
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CompartmentType

id: SId
name: string { use=”optional” }

Figure 10: The definition of CompartmentType. Following UML notation, additional fields that are inherited from a base
class, in this case Sbase, are not shown.

Compartment types have no mathematical meaning in SBML Level 2 Version 2—they have no effect on a1

model’s mathematical interpretation. Simulators and other numerical analysis software may ignore Compart-2

mentType structures and references to them in a model.3

There is no mechanism in SBML for representing hierarchies of compartment types. One CompartmentType4

structure cannot be the subtype of another CompartmentType structure; SBML provides no means of defining5

such relationships.6

4.5.1 The id and name fields7

As with other major structures in SBML, CompartmentType has a mandatory field, id, used to give the8

compartment type an identifier. The identifier must be a text string conforming to the syntax permitted9

by the SId data type described in Section 3.1.7. CompartmentType also has an optional name field, of type10

string. The name and id fields must be used as described in Section 3.4.11

4.5.2 Examples12

The following partial SBML example illustrates a compartment type used to relate together many individual13

compartments in a hypothetical model.14

<model>15

...16

<listOfCompartmentTypes>17

<compartmentType id="mitochondria"/>18

</listOfCompartmentTypes>19

<listOfCompartments>20

<compartment id="m1" size="0.013" compartmentType="mitochondria" outside="cell"/>21

<compartment id="m2" size="0.013" compartmentType="mitochondria" outside="cell"/>22

<compartment id="m3" size="0.013" compartmentType="mitochondria" outside="cell"/>23

<compartment id="m4" size="0.013" compartmentType="mitochondria" outside="cell"/>24

<compartment id="cell" size="190.0"/>25

</listOfCompartments>26

...27

</model>28

4.6 Species types29

The term species type refers to reacting entities independent of location. These include simple ions (e.g.,30

protons, calcium), simple molecules (e.g., glucose, ATP), large molecules (e.g., RNA, polysaccharides, and31

proteins), and others. The SpeciesType data structure is intended to represent these entities. Its definition32

is shown in Figure 11.33

SpeciesType

id: SId
name: string { use=”optional” }

Figure 11: The definition of SpeciesType. Following UML notation, additional fields that are inherited from a base class,
in this case Sbase, are not shown.

SpeciesType structures are included in SBML to enable Species (Section 4.8) of the same type to be related34

together. It is a conceptual construct; the existence of SpeciesType structures in a model has no effect on35

the model’s numerical interpretation. Except for the requirement for uniqueness of species/species type36
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combinations located in compartments (described in Section 4.8.2), simulators and other numerical analysis1

software may ignore SpeciesType structures and references to them in a model.2

There is no mechanism in SBML for representing hierarchies of species types. One SpeciesType structure3

cannot be the subtype of another SpeciesType structure; SBML provides no means of defining such relation-4

ships.5

4.6.1 The id and name fields6

As with other major structures in SBML, SpeciesType has a mandatory field, id, used to give the species7

type an identifier. The identifier must be a text string conforming to the syntax permitted by the SId data8

type described in Section 3.1.7. SpeciesType also has an optional name field, of type string. The name and9

id fields must be used as described in Section 3.4.10

4.6.2 Example11

The following XML fragment is an example of two SpeciesType structures embedded in an SBML model.12

<listOfSpeciesTypes>13

<speciesType id="Glucose"/>14

<speciesType id="Glucose_6_P"/>15

</listOfSpeciesTypes>16

4.7 Compartments17

A compartment in SBML represents a bounded space in which species are located. Compartments do not18

necessarily have to correspond to actual structures inside or outside of a biological cell, although models are19

often designed that way. The definition of Compartment is shown in Figure 12.20

Compartment

id: SId
name: string { use=”optional” }
compartmentType: SId { use=”optional” }
spatialDimensions: int { maxInclusive=”3” minInclusive=”0” use=”optional” default=”3” }
size: double { use=”optional” }
units: UnitSId { use=”optional” }
outside: SId { use=”optional” }
constant: boolean { use=”optional” default=”true” }

Figure 12: The definition of Compartment. Following UML notation, additional fields that are inherited from a base class,
in this case Sbase, are not shown.

It is important to note that although compartments are optional in the overall definition of Model (see21

Section 4.2), every species in an SBML model must be located in a compartment. This in turn means that22

if a model defines any species, the model must also define at least one compartment. The reason is simply23

that species represent physical things, and therefore must exist somewhere. Compartments represent the24

somewhere.25

4.7.1 The id and name fields26

Compartment has one required field, id, of type SId, to give the compartment a unique identifier by which27

other parts of an SBML model definition can refer to it. A compartment can also have an optional name field28

of type string. Identifiers and names must be used according to the guidelines described in Section 3.4.29

4.7.2 The compartmentType field30

Each compartment in a model may optionally be designated as belonging to a particular compartment31

type. The optional field compartmentType of type SId is used identify the compartment type represented by32
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the Compartment structure. The compartmentType field’s value must be the identifier of a CompartmentType1

instance defined in the model. If the compartmentType field is not present on a particular compartment2

definition, a unique virtual compartment type is assumed for that compartment, and no other compartment3

can belong to that compartment type.4

The values of compartmentType attributes on compartments have no effect on the numerical interpretation5

of a model. Simulators and other numerical analysis software may ignore compartmentType attributes.6

4.7.3 The spatialDimensions field7

A Compartment structure has an optional field spatialDimensions, whose value must be a positive integer8

indicating the number of spatial dimensions possessed by the compartment. The maximum value is “3”,9

meaning a three-dimensional structure (a volume). Other permissible values are “2” (for a two-dimensional10

area), “1” (for a one-dimensional curve), and “0” (for a point). The default value is “3”. Note that the11

number of spatial dimensions possessed by a compartment affects certain aspects of the compartment’s size12

and units-of-size; see the following two subsections.13

4.7.4 The size field14

Each compartment has an optional floating-point field named size, representing the initial total size of the15

compartment. The size may be a volume (if the compartment is a three-dimensional one), or it may be an16

area (if the compartment is two-dimensional), or a length (if the compartment is one-dimensional).17

It is important to note that in SBML Level 2, a missing size value does not imply that the compartment size18

is 1. There is no default value of compartment size. (This is unlike the definition of compartment volume19

in SBML Level 1.) When the spatialDimensions field does not have a value of “0”, a missing value for20

size for a given compartment signifies that the value either is unknown, or to be obtained from an external21

source, or determined by an initial assignment (Section 4.10) or a rule (Section 4.11) elsewhere in the model.22

The size field must not be present if the spatialDimensions field has a value of “0”; otherwise, a logical23

inconsistency would exist because a zero-dimensional object cannot have a physical size.24

A compartment’s size is set by its size field exactly once. If the compartment’s constant field has the25

value “true” (the default), then the size is fixed and cannot be changed except by an InitialAssignment in26

the model (and in the case where spatialDimensions=“0”, it cannot be changed by any InitialAssignment27

either). These two methods of setting the compartment size differ in that the size field can only be used28

to set the compartment size to a literal scalar value, whereas InitialAssignment allows the value to be set29

using an arbitrary mathematical expression. If the compartment’s constant field has the value “false”,30

the compartment’s size value may be overridden by an InitialAssignment or changed by an AssignmentRule or31

AlgebraicRule, and in addition, for simulation time t > 0, it may also be changed by a RateRule or Events.32

(However, some of these constructs are mutually exclusive; see Sections 4.11 and 4.14.) It is not an error to33

define size on a compartment and also redefine the value using an InitialAssignment, but the size value in34

that case is ignored. Section 3.5.7 provides additional information about the semantics of assignments, rules35

and values for simulation time t ≤ 0.36

For the reasons given above, the size field on a compartment must be defined as optional; however, it is37

extremely good practice to specify values for compartment sizes when such values are available. There are38

two major technical reasons for this. First, models ideally should be instantiable in a variety of simulation39

frameworks. A commonly-used one is the discrete stochastic framework (Gillespie, 1977; Wilkinson, 2006)40

in which species are represented as item counts (e.g., molecule counts). If species’ initial quantities are given41

in terms of concentrations or densities, it is impossible to convert the values to item counts without knowing42

compartment sizes. Second, and more importantly, if a model contains multiple compartments whose sizes43

are not all identical to each other, it is impossible to quantify the reaction rate expressions without knowing44

the compartment volumes. The reason for the latter is that reaction rates in SBML are defined in terms45

of substance/time (see Section 4.13.5), and when species quantities are given in terms of concentrations or46

densities, the compartment sizes become factors in the reaction rate expressions.47
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4.7.5 The units field1

The units associated with the compartment’s size value may be set using the optional field units. The2

default units, and the kinds of units allowed as values of the field units, interact with the number of spatial3

dimensions of the compartment. The value of the units field of a Compartment object must be one of the base4

units from Table 2 on page 33, or the built-in units “volume”, “area”, “length” or “dimensionless”, or a5

new unit defined by a unit definition in the enclosing model, subject to the restrictions detailed in Table 4.6

7 Value of field Field size Field units Default value
8 spatialDimensions allowed? allowed? Allowable kinds of units of field units

9 “3” yes yes units of volume, or dimensionless “volume”
10 “2” yes yes units of area, or dimensionless “area”
11 “1” yes yes units of length, or dimensionless “length”
12 “0” no no (no units allowed)

Table 4: The types of units permitted for the units of compartment size. If the value of spatialDimensions is “0”, the
units field must not be present because a compartment with no dimensions has no size and units cannot be meaningfully
associated with the (non-existent) size. Units of volume means litres, cubic metres, or units derived from them; units of
area means square metres or units derived from square metres; and units of length means metres or units derived from
metres. (See also Table 3 on page 36 and Table 2 on page 33.)

The units of the compartment size, as defined by the units field, are used in the following ways when the13

compartment has a spatialDimensions value greater than “0”:14

• The value of the units field is used as the units of the size field of the compartment structure (see15

Section 4.7.4).16

• The value of the units field is used as the units of the compartment identifier when it appears as a17

numerical quantity in a mathematical formula expressed in MathML (discussed in Section 3.5.3).18

• The value of the units field is used as the units of the math field provided on AssignmentRule and19

InitialAssignment structures for setting a compartment’s size (see Section 4.11.3).20

• In a RateRule structure that sets the rate of change of the compartment’s size (Section 4.11.4), the21

units on the rule’s math field are those in the compartment’s units field divided by the default time22

units. (In other words, the units for the rate of change of compartment size are compartment size/time23

units.)24

Compartments with spatialDimensions=“0” require special treatment in this framework. If a compart-25

ment has no size or dimensional units, how should such a compartment’s identifier be interpreted when it26

appears in mathematical formulas? The answer is that such a compartment’s identifier should not appear in27

mathematical formulas in the first place—it has no value, and its value cannot change (Section 4.7.6). Note28

also that a zero-dimensional compartment is a point, and species located at points can only be described in29

terms of amounts, not spatially-dependent measures such as concentration. Since SBML KineticLaw formulas30

are already in terms of substance/time and not (say) concentration/time, volume or other factors in principle31

are not needed for species located in zero-dimensional compartments.32

4.7.6 The constant field33

A Compartment also has an optional boolean field called constant that indicates whether the compartment’s34

size stays constant or can vary during a simulation. A value of “false” indicates the compartment’s size35

can be changed by other constructs in SBML. A value of true indicates the compartment’s size cannot36

be changed by any other construct except InitialAssignment. In the special case of spatialDimensions=“0”,37

the value cannot be changed by InitialAssignment either. The default value for the constant field is “true”38

because in the most common modeling scenarios at the time of this writing, compartment sizes remain39

constant. The constant field must default to or be set to “true” if the value of the spatialDimensions40

field is “0”, because a zero-dimensional compartment cannot ever have a size.41
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4.7.7 The outside field1

The optional field outside of type SId can be used to express containment relationships between compart-2

ments. If present, the value of outside for a given compartment must be the id field value of another3

compartment already defined in the model. Doing so means that the other compartment contains it or is is4

“outside” of it. This enables the representation of simple topological relationships between compartments,5

for those simulation systems that can make use of the information (e.g., for drawing simple diagrams of6

compartments).7

There are two restrictions on the containment relationships permitted in an SBML model. First, because a8

compartment with spatialDimensions of “0” has no size, such a compartment cannot act as the container of9

any other compartment except compartments that also have spatialDimensions values of “0”. Second, the10

directed graph formed by representing Compartment structures as vertexes and the outside attribute values11

as edges must be acyclic. The latter condition is imposed to prevent a compartment from being contained12

inside itself.13

Although containment relationships are partly taken into account by the compartmental localization of14

reactants and products, it is not always possible to determine purely from the reaction equations whether15

one compartment is meant to be located within another. In the absence of a value for outside, compartment16

definitions in SBML Level 2 do not have any implied spatial relationships between each other. For many17

modeling applications, the transfer of substances described by the reactions in a model sufficiently express the18

relationships between the compartments. (As discussed in Section 8.1, SBML Level 3 is expected introduce19

the ability to define geometries and spatial qualities.)20

4.7.8 Examples21

The following example illustrates two compartments in an abbreviated SBML example of a model definition:22

<model>23

...24

<listOfCompartments>25

<compartment id="cytosol" size="2.5"/>26

<compartment id="mitochondria" size="0.3"/>27

</listOfCompartments>28

...29

</model>30

The following is an example of using outside to model a cell membrane. To express that a compartment31

with identifier “B” has a membrane that is modeled as another compartment “M”, which in turn is located32

within another compartment “A”, one would write:33

<model>34

...35

<listOfCompartments>36

<compartment id="A"/>37

<compartment id="M" spatialDimensions="2" outside="A"/>38

<compartment id="B" outside="M"/>39

</listOfCompartments>40

...41

</model>42

4.8 Species43

A species refers to a pool of reacting entities of a specific species type that take part in reactions and are44

located in a specific compartment. The Species data structure is intended to represent these pools. Its45

definition is shown in Figure 13 on the next page.46

Although the exact definition of Species given here has changed from the definition in the specification of47

SBML Level 2 Version 1 (i.e., through the introduction of SpeciesType), the concept represented by Species48

remains the same.49
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Species

id: SId
name: string { use=”optional” }
speciesType: SId { use=”optional” }
compartment: SId
initialAmount: double { use=”optional” }
inintialConcentration: double { use=”optional” }
substanceUnits: UnitSId { use=”optional” }
spatialSizeUnits: UnitSId { use=”optional” }
hasOnlySubstanceUnits: boolean { use=”optional” default=”false” }
boundaryCondition: boolean { use=”optional” default=”false” }
charge: int { use=”optional” } deprecated
constant: boolean { use=”optional” default=”false” }

Figure 13: The definition of Species. Following UML notation, additional fields that are inherited from a base class, in this
case Sbase, are not shown.

4.8.1 The id and name fields1

As with other major structures in SBML, Species has a mandatory field, id, used to give the species an2

identifier. The identifier must be a text string conforming to the syntax permitted by the SId data type3

described in Section 3.1.7. Species also has an optional name field, of type string. The name and id fields4

must be used as described in Section 3.4.5

4.8.2 The speciesType field6

Each species in a model may optionally be designated as belonging to a particular species type. The optional7

field speciesType of type SId is used to identify the species type of the chemical entities that make up the8

pool represented by the Species structure. The field’s value must be the identifier of an existing SpeciesType9

structure. If the speciesType field is not present on a particular species definition, it means the pool contains10

chemical entities of a type unique to that pool; in effect, a virtual species type is assumed for that species,11

and no other species can belong to that species type.12

There can be only one species of a given species type in any given compartment of a model. More specifically,13

for all Species structures having a value for the speciesType field, the pair14

(speciesType field value, compartment field value)15

must be unique across the set of all Species structures in a model.16

The value of speciesType attributes on species have no effect on the numerical interpretation of a model.17

Simulators and other numerical analysis software may ignore speciesType attributes.18

4.8.3 The compartment field19

The required field compartment, also of type SId, is used to identify the compartment in which the species20

is located. The field’s value must be the identifier of an existing Compartment structure. It is important to21

note that there is no default value for the compartment field on Species; every species in an SBML model22

must be assigned a compartment, and consequently, a model must define at least one compartment if that23

model contains any species.24

4.8.4 The initialAmount and initialConcentration fields25

The optional fields initialAmount and initialConcentration, both having a data type of double, are used26

to set the initial quantity of the species in the compartment where the species is located. These fields are27

mutually exclusive; i.e., only one can have a value on any given instance of a Species structure.28

Missing initialAmount and initialConcentration values implies that their values either are unknown, or29

to be obtained from an external source, or determined by an initial assignment (Section 4.10) or rule (Sec-30
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tion 4.11) elsewhere in the model. In the case where a species’ compartment has a spatialDimensions value1

of “0”, the species cannot have a value for initialConcentration because the concepts of “concentration”2

and “density” break down when a container has zero dimensions.3

A species’ initial quantity is set by the initialAmount or initialConcentration fields exactly once. If the4

species’ constant field has the value “true” (the default), then the size is fixed and cannot be changed except5

by an InitialAssignment. These two methods of setting the species quantity differ in that the initialAmount6

and initialConcentration fields can only be used to set the species quantity to a literal scalar value,7

whereas InitialAssignment allows the value to be set using an arbitrary mathematical expression. If the species’8

constant field has the value “false”, the species’ quantity value may be overridden by an InitialAssignment9

or changed by AssignmentRule or AlgebraicRule, and in addition, for t > 0, it may also be changed by a10

RateRule or Events. (However, some of these constructs are mutually exclusive; see Sections 4.11 and 4.14.)11

It is not an error to define initialAmount or initialConcentration on a species and also redefine the12

value using an InitialAssignment, but the initialAmount or initialConcentration setting in that case is13

ignored. Section 3.5.7 provides additional information about the semantics of assignments, rules and values14

for simulation time t ≤ 0.15

The units of the value in the initialAmount field are set by the substanceUnits field of the species structure.16

The units of the value in the initialConcentration field are substance/size units. The units of substance17

are those defined in the substanceUnits, and the size units are those given in the spatialSizeUnits field18

as described in Section 4.8.5 below.19

4.8.5 The substanceUnits, spatialSizeUnits and hasOnlySubstanceUnits fields20

The units associated with a species’ quantity, referred to as the units of the species, are determined via the21

optional fields substanceUnits, spatialSizeUnits and hasOnlySubstanceUnits.22

The field hasOnlySubstanceUnits takes on boolean values and defaults to “false”. This field’s role is to23

indicate whether the units of the species, when the species identifier appears in mathematical formulas, are24

intended to be concentration or amount. Although it may seem as though this intention could be determined25

based on whether initialConcentration or initialAmount is set, the fact that these two fields are optional26

means that a separate flag is needed. (Consider the situation where neither is set, and instead the species’27

quantity is established by an InitialAssignment or AssignmentRule.)28

The possible values of units of the species are summarized in Table 5. The units of the species are of the form29

substance/size units (i.e., concentration units, using a broad definition of concentration) if the compartment’s30

spatialDimensions is non-zero and hasOnlySubstanceUnits has the value “false”. The units of the species31

are of the form substance if hasOnlySubstanceUnits has the value “true” or spatialDimensions is zero.32

(This dependence is due to the fact that a zero-dimensional compartment cannot support concentrations33

or densities.) The units of substance are those defined by the substanceUnits field, and the size units are34

those defined by the spatialSizeUnits field of a Species instance.35

36 value of units of the species when units of the species when
37 hasOnlySubstanceUnits spatialDimensions is greater than 0 spatialDimensions is 0

38 false (default) substance/size substance
39 true substance substance

Table 5: How to interpret the value the hasOnlySubstanceUnits field of the Species structure.

For both substanceUnits and spatialSizeUnits, the value chosen must be either a base unit from Table 240

on page 33, a built-in unit from Table 3 on page 36, or a new unit defined by a unit definition in the enclosing41

model. The chosen units for substanceUnits must be be dimensionless, mole, item, kilogram, gram, or42

units derived from these. The substanceUnits field defaults to the the built-in unit “substance” shown in43

Table 3 on page 36.44

44



The type of units assigned to the spatialSizeUnits field must agree with the number of spatial dimensions1

of the species’ compartment. Specifically, they must be units of volume or “dimensionless” if the value2

of the compartment’s spatialDimensions is “3”; they must be units of area or “dimensionless” if the3

value of spatialDimensions is “2”; and they must be units of length or “dimensionless” if the value of4

spatialDimensions is “1”. The spatialSizeUnits field must not have a value if spatialDimensions on5

the compartment has a value of “0”, or if the species’ hasOnlySubstanceUnits field has a value of “true”.6

The default value of the spatialSizeUnits is the value of the units field of the species’ compartment.7

The units of the species are used in the following ways:8

• The species identifier has these units when it appears as a numerical quantity in a mathematical formula9

expressed in MathML (discussed in Section 3.5.3).10

• The math field of AssignmentRule and InitialAssignment structures determining the species’ quantity (see11

Section 4.11.3) has these units.12

• In RateRule structures that set the rate of change of the species’ quantity (Section 4.11.4), the units on13

the rule’s math field are the units of the species divided by the built-in time units.14

4.8.6 The constant and boundaryCondition fields15

The Species structure has two optional boolean fields named constant and boundaryCondition, used to16

indicate whether and how the quantity of that species can vary during a simulation. Table 6 shows how to17

interpret the combined values of the boundaryCondition and constant fields.18

19 can have can be
20 constant boundaryCondition assignment reactant or species’ quantity
21 value value or rate rule product can be changed by

22 true true no yes (never changes)
23 false true yes yes rules and events
24 true false no no (never changes)
25 false false yes yes reactions or rules (but not both), and events

Table 6: How to interpret the values of the constant and boundaryCondition fields of the Species structure. Note
that column four is specifically about reactants and products and not also about species acting as modifiers; the latter are
by definition unchanged by reactions.

By default, when a species is a product or reactant of one or more reactions, its quantity is determined by26

those reactions. In SBML, it is possible to indicate that a given species’ quantity is not determined by the set27

of reactions even when that species occurs as a product or reactant; i.e., the species is on the boundary of the28

reaction system, and its quantity is not determined by the reactions. The boolean field boundaryCondition29

can be used to indicate this. The value of the field defaults to “false”, indicating the species is part of the30

reaction system.31

The constant field indicates whether the species’ quantity can be changed at all, regardless of whether by32

reactions, rules, or constructs other than InitialAssignment. The default value is “false”, indicating that the33

species’ quantity can be changed, since the purpose of most simulations is precisely to calculate changes in34

species quantities. Note that the initial quantity of a species can be set by an InitialAssignment irrespective of35

the value of the constant field.36

In practice, a boundaryCondition value of “true” means a differential equation derived from the reaction37

definitions should not be generated for the species. However, the species’ quantity may still be changed by38

AssignmentRule, RateRule, AlgebraicRule, Event, and InitialAssignment constructs if its constant field is “false”.39

Conversely, if the species’ constant field is “true”, then its value cannot be changed by anything except40

InitialAssignment.41

A species having boundaryCondition=“false” and constant=“false” can appear as a product and/or42

reactant of one or more reactions in the model. If the species is a reactant or product of a reaction, it must43
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not also appear as the target of any AssignmentRule or RateRule structure in the model. If instead the species1

has boundaryCondition=“false” and constant=“true”, then it cannot appear as a reactant or product,2

or as the target of any AssignmentRule, RateRule or EventAssignment structure in the model.3

The example model in section 7.6 contains all four possible combinations of the boundaryCondition and4

constant fields on species elements. Section 7.7 gives an example of how one can translate into ODEs a5

model that uses boundaryCondition and constant fields.6

4.8.7 The charge field7

The optional field charge takes an integer indicating the charge on the species (in terms of electrons, not8

the SI unit coulombs). This may be useful when the species is a charged ion such as calcium (Ca2+). The9

charge field is deprecated in SBML Level 2 Version 2.10

4.8.8 Example11

The following example shows two species definitions within an abbreviated SBML model definition. The12

example shows that species are listed under the heading listOfSpecies in the model:13

<model>14

...15

<listOfSpecies>16

<species id="Glucose" compartment="cell" initialConcentration="4"/>17

<species id="Glucose_6_P" compartment="cell" initialConcentration="0.75"/>18

</listOfSpecies>19

...20

</model>21

4.9 Parameters22

A Parameter structure is used to declare a variable for use in mathematical formulas in an SBML model23

definition. By default, parameters have constant value for the duration of a simulation and for this reason24

are called “parameters” instead of variables in SBML. The definition of Parameter is shown in Figure 14.25

Parameter

id: SId
name: string { use=”optional” }
value: double { use=”optional” }
units: UnitSId { use=”optional” }
constant: boolean { use=”optional” default=”true” }
sboTerm: SBOTerm { use=”optional” }

Figure 14: The definition of Parameter. Following UML notation, additional fields that are inherited from a base class, in
this case Sbase, are not shown.

Parameters can be defined in two places in SBML: in lists of parameters defined at the top level in a Model26

structure, and within individual reaction definitions (as described in Section 4.13). Parameters defined at27

the top level are global to the whole model; parameters that are defined within a reaction are local to the28

particular reaction and (within that reaction) override any global parameters having the same identifiers29

(See Section 3.4.1 for further details).30

4.9.1 The id and name fields31

Parameter has one required field, id, of type SId, to give the parameter a unique identifier by which other32

parts of an SBML model definition can refer to it. A parameter can also have an optional name field of type33

string. Identifiers and names must be used according to the guidelines described in Section 3.4.34
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4.9.2 The value field1

The optional field value determines the value (of type double) assigned to the identifier. A missing value2

implies that the value either is unknown, or to be obtained from an external source, or determined by an3

initial assignment (Section 4.10) or a rule (Section 4.11) elsewhere in the model.4

A parameter’s value is set by its value field exactly once. If the parameter’s constant field has the value5

“true” (the default), then the value is fixed and cannot be changed except by an InitialAssignment. These two6

methods of setting the parameter’s value differ in that the value field can only be used to set it to a literal7

scalar value, whereas InitialAssignment allows the value to be set using an arbitrary mathematical expression.8

If the parameter’s constant field has the value “false”, the parameter’s value may be overridden by an9

InitialAssignment or changed by AssignmentRule or AlgebraicRule, and in addition, for simulation time t > 0, it10

may also be changed by a RateRule or Events. (However, some of these constructs are mutually exclusive;11

see Sections 4.11 and 4.14.) It is not an error to define value on a parameter and also redefine the value12

using an InitialAssignment, but the value in that case is ignored. Section 3.5.7 provides additional information13

about the semantics of assignments, rules and values for simulation time t ≤ 0.14

4.9.3 The units field15

The units associated with the value of the parameter are specified by the field units. These units are relevant16

when the parameter identifier appears in: (a) RateRule, AssignmentRule, InitialAssignment and EventAssignment17

structures setting the value of the parameter; and (b) MathML expressions elsewhere in the model. A18

RateRule structure that may determine the value of the parameter has units parameter units/time, where19

parameter units are the units assigned to the parameter using the units field and time is the built-in time20

units. The value assigned to the parameter’s units field must be chosen from one of the following possibilities:21

one of the base unit identifiers from Table 2 on page 33; one of the built-in unit identifiers appearing in first22

column of Table 3 on page 36; or the identifier of a new unit defined in the list of unit definitions in the23

enclosing Model structure. There are no constraints on which units can be chosen from these sets. There are24

no default units for parameters.25

4.9.4 The constant field26

The Parameter structure has an optional boolean field named constant which indicates whether the param-27

eter’s value can vary during a simulation. The field’s default value is “true”. A value of “false” indicates28

the parameter’s value can be changed by rules (see Section 4.11) and that the value is actually intended to29

be the initial value of the parameter.30

Parameters local to a reaction (i.e., those defined within a Reaction’s KineticLaw structure, as described in31

Section 4.13.5) cannot be changed by rules and therefore are implicitly always constant; thus, parameter32

definitions within Reaction structures should not have their constant field set to “false”.33

What if a global parameter has its constant field set to “false”, but the model does not contain any rules,34

events or other constructs that ever change its value over time? Although the model may be suspect, this35

situation is not strictly an error. A value of “false” for constant only indicates that a parameter can36

change value, not that it must.37

4.9.5 The sboTerm field38

The Parameter structure has an optional sboTerm field of type SBOTerm (see Sections 3.1.9 and 5). When39

a value is given to this field in a parameter definition, the value must be an SBO identifier referring to a40

quantitative parameter defined in SBO (i.e., terms derived from SBO:0000002, “quantitative parameter”).41

The relationship is of the form “the SBML parameter is a X”, where X is the SBO term. The term chosen42

should be the most precise (narrow) one that captures the role of the parameter in the model.43

As discussed in Section 5, SBO labels are optional information on a model. Applications are free to ignore44

sboTerm values. A model must be interpretable without the benefit of SBO labels.45
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4.9.6 Example1

The following is an example of parameters defined at the Model level:2

<model>3

...4

<listOfParameters>5

<parameter id="tau1" value="2.3" units="second"/>6

<parameter id="Km1" value="10.7" units="moleperlitre"/>7

</listOfParameters>8

...9

</model>10

4.10 Initial assignments11

SBML Level 2 Version 2 provides two ways of assigning initial values to entities in a model. The simplest and12

most basic is to set the values of the appropriate double fields in the relevant components; for example, the13

initial value of a model parameter (whether it is a constant or a variable) can be assigned by setting its value14

field directly in the model definition (Section 4.9). However, this approach is not suitable when the value15

must be calculated, because the initial value fields on different components such as species, compartments,16

and parameters are single values and not mathematical expressions. This is the reason for the introduction17

of InitialAssignment: to permit the calculation of the value of a constant or the initial value of a variable from18

the values of other quantities in a model. The definition of InitialAssignment is shown in Figure 15.19

InitialAssignment

symbol: SId
math: Math { namespace=”http://www.w3.org/1998/Math/MathML” }
sboTerm: SBOTerm { use=”optional” }

Figure 15: The definition of InitialAssignment. Following UML notation fields that are inherited from a base class are not
shown.

As explained below, the provision of InitialAssignment does not mean that models necessarily must use this20

construct when defining initial values of quantities in a model. If a value can be set directly using the21

relevant field of a component in a model, then that approach may be more efficient and more portable to22

other software tools. InitialAssignment should be used when the other mechanism is insufficient for the needs23

of a particular model.24

Initial assignments have some similarities to assignment rules (Section 4.11.3). The main differences are25

(a) an InitialAssignment can set the value of a constant whereas an AssignmentRule cannot, and (b) unlike26

AssignmentRule, an InitialAssignment definition only applies up to and including the beginning of simulation27

time, i.e., t ≤ 0, while an AssignmentRule applies at all times.28

4.10.1 The symbol field29

InitialAssignment contains the field symbol, of type SId. The value of this field in an InitialAssignment object30

can be the identifier (i.e., the value of the id field) of a Compartment, Species or Parameter elsewhere in the31

model. The purpose of the InitialAssignment is to define the initial value of the constant or variable referred32

to by the symbol field. (The field’s name is symbol rather than variable because it may assign values to33

constants as well as variables in a model; see Section 4.10.4 below.)34

An initial assignment cannot be made to reaction identifiers, that is, the symbol field value of an InitialAs-35

signment cannot be an identifier that is the id field value of a Reaction object in the model. This is identical36

to a restriction placed on rules (see Section 4.11.5).37

4.10.2 The math field38

The math field contains a MathML expression that is used to calculate the value of the constant or the initial39

value of the variable. The units of the value computed by the formula in the math field are taken to be the40
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units associated with the identifier given in the symbol field. (That is, the units are the units of the species,1

compartment, or parameter, as appropriate for the kind of object identified by the value of symbol.)2

4.10.3 The sboTerm field3

InitialAssignment has an optional sboTerm field of type SBOTerm (see Sections 3.1.9 and 5). When a value4

is given to this field in an initial assignment definition, the value must be a valid SBO identifier referring5

to a mathematical expression (i.e., terms derived from SBO:0000064, “mathematical expression”). The6

InitialAssignment object should have a “is a” relationship with the SBO term, and the term should be the7

most precise (narrow) term that captures the role of the InitialAssignment in the model.8

As discussed in Section 5, SBO labels are optional information on a model. Applications are free to ignore9

sboTerm values. A model must be interpretable without the benefit of SBO labels.10

4.10.4 Semantics of initial assignments11

The value calculated by an InitialAssignment object overrides the value assigned to the given symbol by the12

object defining that symbol. For example, if a Compartment’s size is set in its definition, and the model13

also contains an InitialAssignment having that compartment’s id as its symbol value, then the interpretation14

is that the size assigned in the Compartment definition should be ignored and the value assigned based on15

the computation defined in the InitialAssignment. Initial assignments can take place for Compartment, Species16

and Parameter objects regardless of the value of their constant field.17

This does not mean that a definition of a symbol can be omitted if there is an InitialAssignment object for18

that symbol; the symbols must always be defined even if they are assigned a value separately. For example,19

there must be a Parameter definition for a given parameter if there is an InitialAssignment for that parameter.20

The actions of all InitialAssignment objects are in general terms the same, but differ in the precise details21

depending on the type of variable being set:22

• In the case of a species, an InitialAssignment sets the referenced species’ initial quantity (concentration23

or amount of substance) to the value determined by the formula in math. (See Section 4.8.5 for an24

explanation of how the units of the species’ quantity are determined.)25

• In the case of a compartment, an InitialAssignment sets the referenced compartment’s initial size to the26

size determined by the formula in math. The overall units of the formula are the units specified for the27

size of the compartment. (See Section 4.7.5 for an explanation of how the units of the compartment’s28

size are determined.)29

• In the case of a parameter, an InitialAssignment sets the referenced parameter’s initial value to that30

determined by the formula in math. The overall units of the formula are the units defined for the31

parameter. (See Section 4.9.3 for an explanation of how the units of the parameter are determined.)32

In the context of a simulation, initial assignments establish values that are in effect prior to and including33

the start of simulation time, i.e., t ≤ 0. Section 3.5.7 provides information about the interpretation of34

assignments, rules, and entity values for simulation time up to and including the start time t = 0; this is35

important for establishing the initial conditions of a simulation if the model involves expressions containing36

the delay csymbol (Section 3.5.5).37

There cannot be two initial assignments for the same symbol in a model; that is, a model must not contain38

two or more InitialAssignment objects that both have the same identifier as their symbol field value. A model39

must also not define initial assignments and assignment rules for the same entity. That is, there cannot40

be both an InitialAssignment and an AssignmentRule for the same symbol in a model, because both kinds of41

constructs apply prior to and at the start of simulated time—allowing both to exist for a given symbol would42

result in indeterminism). (See also Section 4.11.5.)43

The ordering of InitialAssignment objects is not significant. The combined set of InitialAssignment, AssignmentRule44

and KineticLaw objects form a set of assignment statements that must be considered as a whole. The combined45

set of assignment statements should not contain algebraic loops: a chain of dependency between these46
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statements should terminate. (More formally, consider the directed graph of assignment statements where1

nodes are a model’s assignment statements and directed arcs exist for each occurrence of a symbol in an2

assignment statement math field. The directed arcs in this graph start from the statement assigning the3

symbol and end at the statement that contains the symbol in their math fields. Such a graph must be4

acyclic.) Examples of valid and invalid set of assignment statements are given in Section 4.11.5.5

Finally, it is worth being explicit about the expected behavior in the following situation. Suppose (1) a given6

symbol has a value x assigned to it in its definition, and (2) there is an initial assignment having the identifier7

as its symbol value and reassigning the value to y, and (3) the identifier is also used in the mathematical8

formula of a second initial assignment. What value should the second initial assignment use? It is y, the9

value assigned to the symbol by the first initial assignment, not whatever value was given in the symbol’s10

definition. This follows directly from the behavior at the defined at the beginning of this section and in11

Section 3.5.7: if an InitialAssignment object exists for a given symbol, then the symbol’s value is overridden12

by that initial assignment.13

4.10.5 Example14

The following example shows how the species “x” can assigned the initial value 2 × y, where “y” is an15

identifier defined elsewhere in the model:16

<model>17

...18

<listOfSpecies>19

<species id="x" initialConcentration="5"/>20

</listOfSpecies>21

...22

<listOfInitialAssignments>23

<initialAssignment symbol="x">24

<math xmlns="http://www.w3.org/1998/Math/MathML">25

<apply>26

<times/>27

<ci> y </ci>28

<cn> 2 </cn>29

</apply>30

</math>31

</initialAssignment>32

</listOfInitialAssignments>33

...34

</model>35

The next example illustrates the more complex behavior discussed above, when a symbol has a value assigned36

in its definition but there also exists an InitialAssignment for it and another InitialAssignment uses its value in37

its mathematical formula.38

<model>39

...40

<listOfSpecies>41

<species id="x" initialConcentration="5"/>42

</listOfSpecies>43

...44

<listOfInitialAssignments>45

<initialAssignment symbol="x">46

<math xmlns="http://www.w3.org/1998/Math/MathML">47

<cn> 2 </cn>48

</math>49

</initialAssignment>50

<initialAssignment symbol="othersymbol">51

<math xmlns="http://www.w3.org/1998/Math/MathML">52

<apply>53

<times/>54

<ci> x </ci>55

<cn> 2 </cn>56

</apply>57

</math>58

</initialAssignment>59
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</listOfInitialAssignments>1

...2

</model>3

The value of “othersymbol” in the SBML excerpt above will be “4”. The case illustrates the rule of thumb4

that if there is an initial assignment for a symbol, the value assigned to the symbol in its definition must be5

ignored and the value created by the initial assignment used instead.6

4.11 Rules7

In SBML, Rules provide additional ways to define the values of variables in a model, their relationships,8

and the dynamical behaviors of those variables. Rules enable the encoding of relationships that cannot be9

expressed using reactions alone (Section 4.13) nor by the assignment of an initial value to a variable in a10

model (Section 4.10).11

SBML separates rules into three subclasses for the benefit of model analysis software. The three subclasses12

are based on the following three different possible functional forms (where x is a variable, f is some arbitrary13

function returning a numeric result, V is a vector of variables that does not include x, and W is a vector of14

variables that may include x):15

16 Algebraic left-hand side is zero: 0 = f(W)
17 Assignment left-hand side is a scalar: x = f(V)
18 Rate left-hand side is a rate-of-change: dx/dt = f(W)

In their general form given above, there is little to distinguish between assignment and algebraic rules. They19

are treated as separate cases for the following reasons:20

• Assignment rules can simply be evaluated to calculate intermediate values for use in numerical methods;21

• SBML needs to place restrictions on assignment rules, for example the restriction that assignment rules22

cannot contain algebraic loops (discussed further in Section 4.11.5);23

• Some simulators do not contain numerical solvers capable of solving unconstrained algebraic equations,24

and providing more direct forms such as assignment rules may enable those simulators to process models25

they could not process if the same assignments were put in the form of general algebraic equations;26

• Those simulators that can solve these algebraic equations make a distinction between the different27

categories listed above; and28

• Some specialized numerical analyses of models may only be applicable to models that do not contain29

algebraic rules.30

The approach taken to covering these cases in SBML is to define an abstract Rule structure containing a field,31

math, to hold the right-hand side expression, then to derive subtypes of Rule that add fields to distinguish32

the cases of algebraic, assignment and rate rules. Figure 16 on the following page gives the definitions of Rule33

and the subtypes derived from it. The figure shows there are three subtypes, AlgebraicRule, AssignmentRule34

and RateRule derived directly from Rule. These correspond to the cases Algebraic, Assignment, and Rate35

described above respectively.36

4.11.1 Common fields in Rule37

The subtypes derived from Rule inherit two fields: math and sboTerm.38

The math field39

A Rule structure has a required field called math, containing a MathML expression defining the mathematical40

formula of the rule. This MathML formula must return a numerical value. The formula can be an arbitrary41

expression referencing the variables and other entities in an SBML model. The interpretation of math and42

the units of the formula are described in more detail in Sections 4.11.2, 4.11.3 and 4.11.4 below.43
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Rule

math: Math { namespace=”http://www.w3.org/1998/Math/MathML” }
sboTerm: SBOTerm { use=”optional” }

AlgebraicRule AssignmentRule

variable: SId

AssignmentRule

variable: SId

Figure 16: The definition of Rule and derived types. Following UML notation fields that are inherited from a base class
are not shown.

The sboTerm field1

The Rule structure has an optional sboTerm field of type SBOTerm (see Sections 3.1.9 and 5). When a value2

is given to this field, it must be a valid SBO identifier referring to a mathematical expression defined in3

SBO (i.e., terms derived from SBO:0000064, “mathematical expression”). The AlgebraicRule, AssignmentRule,4

or RateRule object should have a “is a” relationship with the SBO term, and the term should be the most5

precise (narrow) term that captures the role of that rule in the model.6

As discussed in Section 5, SBO labels are optional information on a model. Applications are free to ignore7

sboTerm values. A model must be interpretable without the benefit of SBO labels.8

4.11.2 AlgebraicRule9

The rule type AlgebraicRule is used to express equations that are neither assignments of model variables nor10

rates of change. AlgebraicRule does not add any fields to the basic Rule; its role is simply to distinguish this11

case from the other cases. An example of the use of AlgebraicRule structures is given in Section 7.5.12

In the context of a simulation, algebraic rules are in effect at all times, t ≥ 0. For purposes of evaluating13

expressions that involve the delay csymbol (Section 3.5.5), algebraic rules are considered to apply also at14

t ≤ 0. Section 3.5.7 provides additional information about the semantics of assignments, rules, and entity15

values for simulation time t ≤ 0.16

The ability to define arbitrary algebraic expressions in an SBML model introduces the possibility that a17

model is mathematically overdetermined by the overall system of equations constructed from its rules and18

reactions. An SBML model must not be overdetermined; this is discussed in Section 4.11.5 below.19

4.11.3 AssignmentRule20

The rule type AssignmentRule is used to express equations that set the values of variables. The left-hand side21

(the variable field) of an assignment rule can refer to the identifier of a Species, Compartment, or Parameter22

object in the model (but not a reaction). The entity identified must not have its constant field set to “true”.23

The effects of an AssignmentRule are in general terms the same, but differ in the precise details depending on24

the type of variable being set:25

• In the case of a species, an AssignmentRule sets the referenced species’ quantity (concentration or amount26

of substance) to the value determined by the formula in math. The units of the formula in math must27

be the same as the units of the species (Section 4.8.5) for the species identified by the variable field28

of the AssignmentRule.29

Restrictions: There must not be both an AssignmentRule variable field and a SpeciesReference species30

field having the same value, unless that species has its boundaryCondition field set to “true”. In other31

words, an assignment rule cannot be defined for a species that is created or destroyed in a reaction32

unless that species is defined as a boundary condition in the model.33

• In the case of a compartment, an AssignmentRule sets the referenced compartment’s size to the value34

determined by the formula in math. The overall units of the formula in math must be the same as the35

units of the size of the compartment (Section 4.7.5).36
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• In the case of a parameter, an AssignmentRule sets the referenced parameter’s value to that determined1

by the formula in math. The overall units of the formula in math must be the same as the units defined2

for the parameter (Section 4.9.3).3

In the context of a simulation, assignment rules are in effect at all times, t ≥ 0. For purposes of evaluating4

expressions that involve the delay csymbol (Section 3.5.5), assignment rules are considered to apply also at5

t ≤ 0. Section 3.5.7 provides additional information about the semantics of assignments, rules, and entity6

values for simulation time t ≤ 0.7

A model must not contain more than one AssignmentRule or RateRule object having the same value of8

variable; in other words, in the set of all assignment rules and rate rules in an SBML model, each variable9

appearing in the left-hand sides can only appear once. This simply follows from the fact that an indetermi-10

nate system would result if a model contained more than one assignment rule for the same variable or both11

an assignment rule and a rate rule for the same variable.12

Similarly, a model must also not contain both an AssignmentRule and an InitialAssignment for the same variable,13

because both kinds of constructs apply prior to and at the start of simulation time, i.e., t ≤ 0. If a model14

contained both an initial assignment and an assignment rule for the same variable, an indeterminate system15

would result. (See also Section 4.10.4.)16

The value calculated by an AssignmentRule object overrides the value assigned to the given symbol by the17

object defining that symbol. For example, if a Compartment’s size is set in its definition, and the model18

also contains an AssignmentRule having that compartment’s id as its variable value, then the size assigned19

in the Compartment definition is ignored and the value assigned based on the computation defined in the20

AssignmentRule. This does not mean that a definition for a given symbol can be omitted if there is an21

AssignmentRule object for it. For example, there must be a Parameter definition for a given parameter if there22

is an AssignmentRule for that parameter.23

4.11.4 RateRule24

The rule type RateRule is used to express equations that determine the rates of change of variables. The25

left-hand side (the variable field) can refer to the identifier of a species, compartment, or parameter (but26

not a reaction). The entity identified must have its constant field set to “false”. The effects of a RateRule27

are in general terms the same, but differ in the precise details depending on which variable is being set:28

• In the case of a species, a RateRule sets the rate of change of the species’ quantity (concentration or29

amount of substance) to the value determined by the formula in math. The overall units of the formula30

in math must be species quantity/time, where the time units are the built-in units of time described in31

Section 4.4 and the species quantity units are the units of the species as defined in Section 4.8.5.32

Restrictions: There must not be both a RateRule variable field and a SpeciesReference species field33

having the same value, unless that species has its boundaryCondition field is set to “true”. This34

means a rate rule cannot be defined for a species that is created or destroyed in a reaction, unless that35

species is defined as a boundary condition in the model.36

• In the case of a compartment, a RateRule sets the rate of change of the compartment’s size to the value37

determined by the formula in math. The overall units of the formula must be size/time, where the time38

units are the built-in units of time described in Section 4.4 and the size units are the units of size on39

the compartment (Section 4.7.5).40

• In the case of a parameter, a RateRule sets the rate of change of the parameter’s value to that determined41

by the formula in math. The overall units of the formula must be x/time, where x are the units of the42

parameter (Section 4.9.3).43

In the context of a simulation, rate rules are in effect for simulation time t > 0. Other types of rules and44

initial assignments are in effect at different times; Section 3.5.7 describes these conditions.45

As mentioned in Section 4.11.3 for AssignmentRule, a model must not contain more than one RateRule or46

AssignmentRule object having the same value of variable; in other words, in the set of all assignment rules47
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and rate rules in an SBML model, each variable appearing in the left-hand sides can only appear once. This1

simply follows from the fact that an indeterminate system would result if a model contained more than one2

assignment rule for the same variable or both an assignment rule and a rate rule for the same variable.3

4.11.5 Additional restrictions on rules4

An important design goal of SBML rule semantics is to ensure that a model’s simulation and analysis results5

will not be dependent on when or how often rules are evaluated. To achieve this, SBML needs to place6

two additional restrictions on rule use in addition to the conditions described above regarding the use of7

AlgebraicRule, AssignmentRule and RateRule. The first concerns algebraic loops in the system of assignments8

in a model, and the second concerns overdetermined systems.9

The model must not contain algebraic loops10

The combined set of InitialAssignment, AssignmentRule and KineticLaw objects constitute a set of assignment11

statements that should be considered as a whole. (A KineticLaw object is counted as an assignment because12

it assigns a value to the symbol contained in the id field of the Reaction object in which it is defined.)13

This combined set of assignment statements must not contain algebraic loops—dependency chains between14

these statements must terminate. To put this more formally, consider a directed graph in which nodes are15

assignment statements and directed arcs exist for each occurrence of an SBML species, compartment or16

parameter symbol in an assignment statement’s math field. Let the directed arcs point from the statement17

assigning the symbol to the statements that contain the symbol in their math field expressions. This graph18

must be acyclic.19

SBML does not specify when or how often rules should be evaluated. Eliminating algebraic loops ensures20

that assignment statements can be evaluated any number of times without the result of those evaluations21

changing. As an example, consider the following equations:22

x = x + 1, y = z + 200, z = y + 10023

If this set of equations were interpreted as a set of assignment statements, it would be invalid because the24

rule for x refers to x (exhibiting one type of loop), and the rule for y refers to z while the rule for z refers25

back to y (exhibiting another type of loop).26

Conversely, the following set of equations would constitute a valid set of assignment statements:27

x = 10, y = z + 200, z = x + 10028

The model must not be overdetermined29

An SBML model must not be overdetermined; that is, a model must not define more equations than there30

are unknowns in a model. An SBML model that does not contain AlgebraicRule structures cannot be overde-31

termined.32

Assessing whether a given continuous, deterministic, mathematical model is overdetermined does not require33

dynamic analysis; it can be done by analyzing the system of equations created from the model. One approach34

is to construct a bipartite graph in which one set of vertices represents the variables and the other the set of35

vertices represents the equations. Place edges between vertices such that variables in the system are linked36

to the equations that determine them. For algebraic equations, there will be edges between the equation and37

each variable occurring in the equation. For ordinary differential equations (such as those defined by rate38

rules or implied by the reaction rate definitions), there will be a single edge between the equation and the39

variable determined by that differential equation. A mathematical model is overdetermined if the maximal40

matchings (Chartrand, 1977) of the bipartite graph contain disconnected vertexes representing equations.41

(If one maximal matching has this property, then all the maximal matchings will have this property; i.e., it42

is only necessary to find one maximal matching.) Appendix D describes a method of applying this procedure43

to specific SBML data objects.44
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4.11.6 Example of rule use1

This section contains an example set of rules. Consider the following set of equations:2

k =
k3

k2
, s2 =

k · x
1 + k2

, A = 0.10 · x3

This can be encoded by the following scalar rule set (where the definitions of x, s, k, k2, k3 and A are4

assumed to be located elsewhere in the model and not shown in this abbreviated example):5

<listOfRules>6

<assignmentRule variable="k">7

<math xmlns="http://www.w3.org/1998/Math/MathML">8

<apply>9

<divide/>10

<ci> k3 </ci>11

<ci> k2 </ci>12

</apply>13

</math>14

</assignmentRule>15

<assignmentRule variable="s2">16

<math xmlns="http://www.w3.org/1998/Math/MathML">17

<apply>18

<divide/>19

<apply>20

<times/>21

<ci> k </ci>22

<ci> x </ci>23

</apply>24

<apply>25

<plus/>26

<cn> 1 </cn>27

<ci> k2 </ci>28

</apply>29

</apply>30

</math>31

</assignmentRule>32

<assignmentRule variable="A">33

<math xmlns="http://www.w3.org/1998/Math/MathML">34

<apply>35

<times/>36

<cn> 0.10 </cn>37

<ci> x </ci>38

</apply>39

</math>40

</assignmentRule>41

</listOfRules>42

4.12 Constraints43

The Constraint structure is a mechanism for stating the assumptions under which a model is designed to44

operate. The constraints are statements about permissible values of different quantities in a model. Figure 1745

shows the definition of the Constraint data structure.46

Constraint

math: Math { namespace=”http://www.w3.org/1998/Math/MathML” }
message: (any: { namespace=”http://www.w3.org/1999/xhtml” }) { minOccurs=”0” maxOccurs=”1” }
sboTerm: SBOTerm { use=”optional” }

Figure 17: The definition of Constraint. Following UML notation fields that are inherited from a base class are not shown.
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4.12.1 The math field1

A Constraint structure has a required field, math, containing a MathML formula defining the condition of2

the constraint. This formula must return a boolean value of “true” when the model is a valid state. The3

formula can be an arbitrary expression referencing the variables and other entities in an SBML model. The4

evaluation of math and behavior of constraints are described in more detail in Section 4.12.4 below.5

4.12.2 The message field6

A Constraint structure has an optional field called message. This can contain a message in XHTML format7

that may be displayed to the user when the condition of the constraint in math evaluates to a value of8

“false”. Software tools are not required to display the message, but it is recommended that they do so as9

a matter of best practice.10

4.12.3 The sboTerm field11

The Constraint structure has an optional sboTerm field of type SBOTerm (see Sections 3.1.9 and 5). When a12

value is given to this field in a constraint definition, the value must be a valid SBO identifier referring to a13

mathematical expression (i.e., terms derived from SBO:0000064, “mathematical expression”). The Constraint14

should have an “is a” relationship with the SBO term, and the term should be the most precise (narrow)15

term that captures the role of the Constraint in the model.16

As discussed in Section 5, SBO labels are optional information on a model. Applications are free to ignore17

sboTerm values. A model must be interpretable without the benefit of SBO labels.18

4.12.4 Semantics of constraints19

In the context of a simulation, a Constraint has effect at all times t >= 0. Each Constraint’s math field is first20

evaluated after any InitialAssignment definitions in a model at t = 0 and can conceivably trigger at that point.21

(In other words, a simulation could fail a constraint immediately.)22

Constraint structures cannot and should not be used to compute the dynamical behavior of a model as part23

of, for example, simulation. Constraints may be used as input to non-dynamical analysis, for instance by24

expressing flux constraints for flux balance analysis.25

The results of a simulation of a model containing a constraint are invalid from any simulation time at and26

after a point when the function given by the math returns a value of “false”. Invalid simulation results27

do not make a prediction of the behavior of the biochemical reaction network represented by the model.28

The precise behavior of simulation tools is left undefined with respect to constraints. If invalid results are29

detected with respect to a given constraint, the message field (Section 4.12.2) may optionally be displayed to30

the user. The simulation tool may also halt the simulation or clearly delimit in output data the simulation31

time point at which the simulation results become invalid.32

SBML does not impose restrictions on duplicate Constraint definitions or the order of evaluation of Constraint33

objects in a model. It is possible for a model to define multiple constraints all with the same math field. Since34

the failure of any constraint indicates that the model simulation has entered an invalid state, a system is not35

required to attempt to detect whether other constraints in the model have failed once any one constraint36

has failed.37

4.12.5 Example38

As an example, the following SBML fragment demonstrates the constraint that species S1 should only have39

values between 1 and 100:40

<listOfConstraints>41

<constraint>42

<math xmlns="http://www.w3.org/1998/Math/MathML">43

<apply>44

<and/>45

<apply>46
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<lt/>1

<cn> 1 </cn>2

<ci> S1 </ci>3

</apply>4

<apply>5

<lt/>6

<ci> S1 </ci>7

<cn> 100 </cn>8

</apply>9

</apply>10

</math>11

<message>12

<p xmlns="http://www.w3.org/1999/xhtml"> Species S1 is out of range. </p>13

</message>14

</constraint>15

</listOfConstraints>16

4.13 Reactions17

A reaction represents any transformation, transport or binding process, typically a chemical reaction, that18

can change the quantity of one or more species. In SBML, a reaction is defined primarily in terms of the19

participating reactants and products (and their corresponding stoichiometries), along with optional modifier20

species, an optional rate at which the reaction takes place, and optional parameters. These various parts21

of a reaction are recorded in the SBML Reaction structure and other supporting data structures, defined in22

Figure 18.23

Reaction

id: SId
name: string { use=”optional” }
reactant: SpeciesReference[0..*]
product: SpeciesReference[0..*]
modifier: ModifierSpeciesReference[0..*]
kineticLaw: KineticLaw { minOccurs=”0” maxOccurs=”1” }
reversible: boolean { use=”optional” default=”true” }
fast: boolean { use=”optional” default=”false” }
sboTerm: SBOTerm { use=”optional” }

SimpleSpeciesReference

id: SId { use=”optional” }
name: string { use=”optional” }
species: SId
sboTerm: SBOTerm { use=”optional” }

SpeciesReference

stoichiometry: double { use=”optional” default=”1” }
stoichiometryMath: StoichiometryMath { use=”optional” }

ModifierSpeciesReference

KineticLaw

math: Math { namespace=”http://www.w3.org/1998/Math/MathML” }
parameter: Parameter[0..*]
sboTerm: SBOTerm { use=”optional” }

StoichiometryMath

math: Math { namespace=”http://www.w3.org/1998/Math/MathML” }

Figure 18: The definitions of Reaction, KineticLaw, SpeciesReference and ModifierSpeciesReference. Following UML
notation fields that are inherited from a base class are not shown.
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4.13.1 The Reaction structure1

Each reaction in an SBML model is defined using an instance of a Reaction structure. As shown in Figure 182

on the page before, it contains several scalar fields and several lists of objects.3

The id and name fields4

As with most other main structures in SBML, the Reaction data structure includes a mandatory field called5

id, of type SId, and an optional field name, of type string. The id field is used to give the reaction a unique6

identifier in the model. This identifier can be used in mathematical formulas elsewhere in an SBML model7

to represent the rate of that reaction; this usage is explained in detail in Section 4.13.7 below. The name8

field can be used to give the reaction a more free-form, descriptive name. The name and id fields must be9

used as described in Section 3.4.10

The lists of reactants, products and modifiers11

The species participating as reactants, products, and/or modifiers in a reaction are declared using lists of12

SpeciesReference and/or ModifierSpeciesReference instances stored in listOfReactants, listOfProducts and13

listOfModifiers. The SpeciesReference and ModifierSpeciesReference structures are described in more detail14

in Sections 4.13.3 and 4.13.4 below.15

Certain restrictions are placed on the appearance of species in reaction definitions:16

• The ability of a species to appear as a reactant or product of any reaction in a model is governed by17

certain flags in that species’ definition; see Section 4.8.6 for more information.18

• Any species appearing in the mathematical formula of the kineticLaw of a Reaction instance must be19

declared in at least one of that Reaction’s lists of reactants, products, and/or modifiers. Put another20

way, it is an error for a reaction’s kinetic law formula to refer to species that have not been declared21

for that reaction.22

• A reaction definition can contain an empty list of reactants or an empty list of products, but it must23

have at least one reactant or product; in other words, a reaction without any reactant or product24

species is not permitted. (This restriction does not apply to modifier species, which remain optional25

in all cases.)26

The kineticLaw field27

A reaction can contain up to one KineticLaw structure in the kineticLaw field of the Reaction. This “kinetic28

law” defines the speed at which the process defined by the reaction takes place. A detailed description of29

KineticLaw is left to Section 4.13.5 below.30

Note that the inclusion of a KineticLaw structure in an instance of a Reaction component is optional; however,31

in general there is no useful default that can be substituted in place of a missing rate expression in a reaction.32

Moreover, a reaction’s rate cannot be defined in any other way in SBML—InitialAssignment, AssignmentRule,33

RateRule, AlgebraicRule, Event, and other constructs in SBML cannot be used to set the reaction rate separately.34

Nevertheless, for some modeling applications, reactions without any defined rate can be perfectly acceptable.35

The reversible field36

The optional boolean field reversible indicates whether the reaction is reversible. The default is “true”.37

To say that a reaction is reversible is to say it can proceed in either the forward or the reverse direction.38

Although the reversibility of a reaction can sometimes be deduced by inspecting its rate expression, this is39

not always the case, especially for complicated expressions. Having a separate field supports the ability to40

perform some kinds of model analyses in the absence of performing a time-course simulation of the model.41

Moreover, the need in SBML to allow rate expressions (i.e., KineticLaw) to be optional leads to the need for42

a separate flag indicating reversibility. Information about reversibility in the absence of a KineticLaw in a43

Reaction is useful in certain kinds of structural analyses such as elementary mode analysis.44
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Mathematically, the reversible field on Reaction has no impact on the construction of the equations giving1

the overall rates of change of each species quantity in a model. A concrete explanation may help illustrate2

this. Suppose a model consists of multiple reactions, of which two particular irreversible reactions Rf and3

Rr are actually the forward and reverse processes of the same underlying reaction. The product species4

of Rf necessarily will be the reactants of Rr, and the reactants of Rf will be the products of Rr. Let5

ff (X) and fr(X) be the SBML kinetic rate formulas of Rf and Rr, respectively, with X representing the6

species, parameters and compartments in the model. For the sake of this example, suppose we are using a7

continuous differential equation framework to simulate the system of reactions. Then for each species, we8

need to construct an expression representing the overall rate of change of that species’ amount in the model.9

This overall expression will be a sum of the contributions of all the relevant rate formulas,10

dS

dt
= . . .− n·ff (X) + n·fr(X) + . . .11

where S is a reactant species of Rf and a product of Rr, n is the effective stoichiometry of S in Rf (which12

by implication must be the same as its stoichiometry in Rr), and “. . . ” indicates other rate formulas in the13

model involving the particular species S. Now, contrast this to the case of an identical second SBML model,14

except that instead of having separate Reaction definitions for the forward and reverse reactions, this model15

has a single Reaction Rc labeled as reversible and whose reactants and products are the same as those of16

Rf in the first model. The rate of this reaction will be a formula fc = ff (X) − fr(X). In constructing an17

expression representing the overall rate of change for the species S involved in that reaction, we will have18

dS

dt
= . . .− n·fc(X) + . . .

= . . .− n·ff (X) + n·fr(X) + . . .
19

In other words, the result is the same final expression for the rate of change of a species. Although in20

this simple example we used an expression for fc that had clearly separated terms, in the general case the21

expression may have a more complicated form.22

Note that labeling a reaction as irreversible is an assertion that the reaction always proceeds in the given23

forward direction. (Why else would it be flagged as irreversible?) This implies the rate expression in the24

KineticLaw always has a non-negative value during simulations. Software tools could provide a means of25

optionally testing that this condition holds. The presence of reversibility information in two places (i.e., the26

rate expression and the reversible flag) leaves open the possibility that a model could contain contradictory27

information, but the creation of such a model would be an error on the part of the software generating it.28

The fast field29

The optional boolean field fast is another optional boolean field in the Reaction data structure. The field’s30

default value is “false”.31

Previous definitions of SBML indicated that software tools could ignore this field if they did not implement32

support for the corresponding concept; however, further research has revealed that this is incorrect and fast33

cannot be ignored if it is set to “true”. SBML Level 2 Version 2 therefore stipulates that if a model has34

any reactions with fast set to “true”, a software tool must be able to respect the field or else indicate to35

the user that it does not have the capacity to do so. Analysis software cannot ignore the value of the fast36

attribute because doing so may lead to different results as compared to a software system that does make37

use of fast.38

When a model contains values for fast on any of its reactions, it is an indication that the creator of the39

model is distinguishing different time scales of reactions in the system. The model’s reaction definitions are40

divided into two sets by the values of the fast fields. The set of reactions having fast=“true” (known as41

fast reactions) should be assumed to be operating on a time scale significantly faster than the other reactions42

(the slow reactions). Fast reactions are considered to be instantaneous relative to the slow reactions.43

Software tools must use a pseudo steady-state approximation for the set of fast reactions when constructing44

the system of equations for the model. More specifically, the set of reactions that have the fast attribute45
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set to “true” forms a subsystem that should be described by a pseudo steady-state approximation in rela-1

tionship to all other reactions in the model. Under this description, relaxation from any initial condition or2

perturbation from any intermediate state of this subsystem would be infinitely fast. Appendix E provides a3

technical explanation of an approach to solving systems with fast reactions.4

The correctness of the approximation requires a significant separation of time scales between the fast reactions5

and other processes. This is not trivial to estimate a priori, and may even change over the course of a6

simulation, but can reasonably be assessed a posteriori in most cases.7

The sboTerm field8

The Reaction structure has an optional sboTerm field of type SBOTerm (see Sections 3.1.9 and 5). When a9

value is given to this field in a reaction definition, the value must be a valid SBO identifier referring to a10

modeling framework (i.e., terms derived from SBO:0000004, “modeling framework”). The Reaction structure11

should have an “is a” relationship with the SBO term. The SBO term chosen should be the most precise12

(narrow) term that defines the mathematical framework used in the reaction.13

As discussed in Section 4.2.1, the value given to sboTerm on a Reaction object interacts with the value of the14

sboTerm field on the Model element. If the Model’s sboTerm field has a value, it should be interpreted to mean15

that all the reactions in a model assume the same modeling framework. In that case, the sboTerm labels on16

individual reactions may be omitted, but only the Reaction sboTerm labels can be thus omitted; the sboTerm17

field on KineticLaw within Reaction must still be given a value, as must the terms on other components of the18

model, in order to characterize the model completely. (See Section 4.2.1 for more discussion about this.)19

SBO labels are optional information on a model. Applications are free to ignore sboTerm values, and a20

model must be interpretable without the benefit of SBO labels. Section 5 gives more information about this21

principle and the use of SBO.22

4.13.2 The SimpleSpeciesReference abstract type23

As mentioned above, every species that enters into a given reaction must appear in that reaction’s lists of24

reactants, products and/or modifiers. In an SBML model, all species that may participate in any reaction25

are listed in the listOfSpecies field of the top-level Model data structure (see Section 4.2). Lists of products,26

reactants and modifiers in Reaction structures do not introduce new species, but rather, they refer back to27

those listed in the model’s top-level listOfSpecies. For reactants and products, the connection is made28

using the SpeciesReference data structure; for modifiers, it is made using the ModifierSpeciesReference data29

structure. SimpleSpeciesReference, defined in Figure 18 on page 57, is an abstract type that serves as the30

parent class of both SpeciesReference and ModifierSpeciesReference. It is used simply to hold the fields species,31

id, name, and sboTerm that are common to the latter two structures.32

The id and name fields33

The optional identifier stored in the id field allows SpeciesReference and ModifierSpeciesReference instances34

to be referenced from other structures. No SBML structures currently do this; however, such structures35

are anticipated in future SBML Levels. The value of id must be a text string conforming to the syntax36

permitted by the SId data type described in Section 3.1.7. The id value (whether it is in a SpeciesReference37

or ModifierSpeciesReference object) exists in the global namespace of the model, as described in Section 3.4.38

The id and name fields must be used as described in Section 3.4.39

The species field40

The SimpleSpeciesReference structure has a mandatory field, species, of type SId. As with the other fields,41

this field is inherited by the SpeciesReference and ModifierSpeciesReference subtypes derived from Simple-42

SpeciesReference. The value of species must be the identifier of a species defined in the enclosing Model.43

The species is thereby declared as participating in the reaction being defined. The precise role of that species44

as a reactant, product, or modifier in the reaction is determined by the subtype of SimpleSpeciesReference45

(i.e., either SpeciesReference or ModifierSpeciesReference) in which the identifier appears.46
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The sboTerm field1

The SimpleSpeciesReference structure has an optional sboTerm field of type SBOTerm (see Sections 3.1.92

and 5). This means that the object classes derived from SimpleSpeciesReference, namely SpeciesReference3

and ModifierSpeciesReference, all have sboTerm fields. When a value is given to this field, it must be a valid4

SBO referring to a participant role. The appropriate term depends on whether the object is a reactant,5

product or modifier. If a reactant, then it should be a term in the SBO:0000010, “reactant” hierarchy;6

if a product, then it should be a term in the SBO:0000011, “product” hierarchy; and if a modifier, then it7

should be a term in the SBO:0000019, “modifier” hierarchy. The SpeciesReference and ModifierSpeciesReference8

structures should have an “is a” relationship to the term identified by the SBO term identifier. The SBO9

terms chosen should be the most precise (narrow) one that defines the role of the species in the reaction.10

A product term must only be used when the SpeciesReference structure is contained in the product field of11

the containing Reaction structure. Similarly, a reactant term must only be used when the SpeciesReference12

structure is contained in the reactant field of the containing Reaction structure.13

As discussed in Section 5, SBO labels are optional information on a model. Applications are free to ignore14

sboTerm values. A model must be interpretable without the benefit of SBO labels.15

4.13.3 SpeciesReference16

The Reaction structure provides a way to express which species act as reactants and which species act as17

products in a reaction. In a given reaction, references to those species acting as reactants and/or products18

are made using instances of SpeciesReference structures in Reaction’s lists of reactants and products. The19

SpeciesReference structure inherits the mandatory field species and optional fields id, name, and sboTerm,20

from the parent type SimpleSpeciesReference; see Section 4.13.2 for their definitions. It also defines two new21

fields, stoichiometry and stoichiometryMath, described below.22

The value of the species field must be the identifier of an existing species defined in the enclosing Model; this23

species is thereby designated as a reactant or product in the reaction. Which one it is (reactant or product)24

is determined by whether the SpeciesReference instance appears in the Reaction’s reactant or product lists.25

The stoichiometry and stoichiometryMath fields26

Product and reactant stoichiometries can be specified using either stoichiometry or stoichiometryMath27

in the SpeciesReference structure. The stoichiometry field is of type double and should contain values28

greater than zero (0). The stoichiometryMath field is implemented as an element containing a MathML29

expression. These two fields are mutually exclusive; only one of stoichiometry or stoichiometryMath should30

be defined in a given SpeciesReference instance. When neither field is present, the value of stoichiometry31

in the SpeciesReference instance defaults to “1”.32

For maximum interoperability, the stoichiometry field should be used in preference to stoichiometryMath33

when a species’ stoichiometry is a simple scalar number (integer or decimal). When the stoichiometry is34

a rational number, or when it is a more complicated formula, stoichiometryMath must be used. The35

MathML expression in stoichiometryMath may also refer to identifiers of entities in a model (except re-36

action identifiers), as discussed in Section 3.5.3. However, the only species identifiers that can be used in37

stoichiometryMath are those referenced in the Reaction list of reactants, products and modifiers.38

The following is a simple example of a species reference for species “X0”, with stoichiometry “2”, in a list of39

reactants within a reaction having the identifier “J1”:40

<model>41

...42

<listOfReactions>43

<reaction id="J1">44

<listOfReactants>45

<speciesReference species="X0" stoichiometry="2">46

</listOfReactants>47

...48

</reaction>49

...50
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</listOfReactions>1

...2

</model>3

The following is a more complex example of a species reference for species “X0”, with a stoichiometry formula4

consisting of the parameter x:5

<model>6

...7

<listOfReactions>8

<reaction id="J1">9

<listOfReactants>10

<speciesReference species="X0">11

<stoichiometryMath>12

<math xmlns="http://www.w3.org/1998/Math/MathML">13

<ci>x</ci>14

</math>15

</stoichiometryMath>16

</speciesReference>17

</listOfReactants>18

...19

</reaction>20

...21

</listOfReactions>22

...23

</model>24

A species can occur more than once in the lists of reactants and products of a given Reaction instance.25

The effective stoichiometry for a species in a reaction is the sum of the stoichiometry values given on26

the SpeciesReference structures in the list of products minus the sum of stoichiometry values given on the27

SpeciesReference structures in the list of reactants. A positive value indicates the species is effectively a28

product and a negative value indicates the species is effectively a reactant. SBML places no restrictions on29

the effective stoichiometry of a species in a reaction; for example, it can be zero. In the following SBML30

fragment, the two reactions have the same effective stoichiometry for all their species:31

<reaction id="x">32

<listOfReactants>33

<speciesReference species="a"/>34

<speciesReference species="a"/>35

<speciesReference species="b"/>36

</listOfReactants>37

<listOfProducts>38

<speciesReference species="c"/>39

<speciesReference species="b"/>40

</listProducts>41

</reaction>42

<reaction id="y">43

<listOfReactants>44

<speciesReference species="a" stoichiometry="2"/>45

</listOfReactants>46

<listOfProducts>47

<speciesReference species="c"/>48

</listProducts>49

</reaction>50

4.13.4 The ModifierSpeciesReference structure51

Sometimes a species appears in the kinetic rate formula of a reaction but is itself neither created nor destroyed52

in that reaction (for example, because it acts as a catalyst or inhibitor). In SBML, all such species are simply53

called modifiers without regard to the detailed role of those species in the model. The Reaction structure54

provides a way to express which species act as modifiers in a given reaction. This is the purpose of the list55

of modifiers available in Reaction. The list contains instances of ModifierSpeciesReference structures.56

As shown in Figure 18 on page 57, the ModifierSpeciesReference structure inherits the mandatory field species57

and optional fields id, name, and sboTerm, from the parent type SimpleSpeciesReference; see Section 4.13.258

for their precise definitions.59
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The value of the species field must be the identifier of a species defined in the enclosing Model; this species1

is designated as a modifier for the current reaction. A reaction may have any number of modifiers. It is2

permissible for a modifier species to appear simultaneously in the list of reactants and products of the same3

reaction where it is designated as a modifier, as well as to appear in the list of reactants, products and4

modifiers of other reactions in the model.5

4.13.5 The KineticLaw structure6

The KineticLaw structure is used to describe the rate at which the process defined by the Reaction takes place.7

As shown in Figure 18 on page 57, KineticLaw has fields called math, parameter and sboTerm, described below.8

Previous definitions of SBML included two additional fields called substanceUnits and timeUnits, which9

allowed the substance/time units of the reaction rate expression to be defined on a per-reaction basis. SBML10

Level 2 Version 2 removes these fields for several reasons. First, the introduction in SBML Level 2 Version 211

of mass and dimensionless units as possible units of substance, coupled with the previous facility for defining12

the units of each reaction separately and the ability to use non-integer stoichiometries, lead to the possibility13

of creating a valid model whose reactions nevertheless could not be integrated into a system of equations14

without outside knowledge for converting the quantities used. (As a simple example, consider if one reaction is15

defined to be in grams per second and another in moles per second, and species are given in moles: converting16

from mass to moles would require knowing the molecular mass of the species.) Second, the ability to change17

the units of a reaction provided the potential of creating unintuitive and difficult-to-reconcile systems of18

equations, yet the feature added little functionality to SBML. The absence of substanceUnits does not19

prevent the definition of any reactions; it only results in requiring the generator of the model to be explicit20

about any necessary conversion factors. Third, few if any software tools have ever correctly implemented21

support for substanceUnits, which made the use of this field in a model an impediment to interoperability.22

Fourth, examination of real-life models revealed that a frequent reason for using substanceUnits was to23

set the units of all reactions to the same set of substance units, which is better achieved by setting the24

model-wide values of “substance”.25

The math field26

As shown in Figure 18 on page 57, the KineticLaw structure has a field called math for holding a MathML27

formula defining the rate of the reaction. The expression in math may refer to species identifiers, as discussed28

in Section 3.5.3. The only Species identifiers that can be used in math are those declared in the lists of29

reactants, products and modifiers in the Reaction structure (see Sections 4.13.2, 4.13.3 and 4.13.4). Parameter30

identifiers may be taken from the KineticLaw’s list of local parameters (see below) or the parameters defined31

globally on the Model instance.32

Section 4.13.6 provides important discussions about the meaning and interpretation of SBML “kinetic laws”.33

The list of parameters34

An instance of a KineticLaw type structure can contain a list of zero or more Parameter structures (Section 4.9)35

which define new parameters whose identifiers can be used in the math formula. As discussed in Section 3.4.1,36

reactions introduce local namespaces for parameter identifiers. This means that within a KineticLaw object,37

a local parameter whose identifier is identical to a global parameter defined in the model takes precedence38

over that global parameter.39

The type of structure used to define a parameter inside KineticLaw is the same Parameter structure used to40

define global parameters (Section 4.9). This simplifies the SBML language and reduces the number of unique41

types of data objects. However, there is a difference between local and global parameters: in the case of42

parameters defined locally to a KineticLaw, there is no means by which the parameter values can be changed.43

Consequently, such parameters’ values are always constant, and the constant field in their definitions must44

always have a value of “true” (either explicitly or left to its default value).45
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The sboTerm field1

The KineticLaw structure has an optional field called sboTerm of type SBOTerm (see Section 5). When a value2

is given to this field, the value must be an SBO identifier referring to a term from the SBO:0000001, “rate3

law” vocabulary defined in SBO. The relationship is of the form “the kinetic law is a X”, where X is the4

SBO term. The SBO term chosen should be the most precise (narrow) term that defines the type of kinetic5

law encoded by the structure.6

Example7

The following is an example of a Reaction structure that defines a reaction with identifier J1, in which8

X0 → S1 at a rate given by k [X0][S2], where S2 is a catalyst and k is a parameter, and the square9

brackets symbolizes that the species quantities have units of concentration. The example demonstrates10

the use of species references and the KineticLaw structure. The units on the species here are the defaults11

of substance/volume (see Section 4.8), and so the rate expression k [X0][S2] needs to be multiplied by the12

compartment volume (represented by its identifier, “c1”) to produce the final units of substance/time for13

the rate expression.14

<model>15

...16

<listOfUnitDefinitions>17

<unitDefinition id="per_concent_per_time">18

<listOfUnits>19

<unit kind="litre"/>20

<unit kind="mole" exponent="-1"/>21

<unit kind="second" exponent="-1"/>22

</listOfUnits>23

</unitDefinition>24

</listOfUnitDefinitions>25

...26

<listOfSpecies>27

<species id="S1" compartment="c1" initialConcentration="2.0"/>28

<species id="S2" compartment="c1" initialConcentration="0.5"/>29

<species id="X0" compartment="c1" initialConcentration="1.0"/>30

</listOfSpecies>31

...32

<listOfReactions>33

<reaction id="J1">34

<listOfReactants>35

<speciesReference species="X0"/>36

</listOfReactants>37

<listOfProducts>38

<speciesReference species="S1"/>39

</listOfProducts>40

<listOfModifiers>41

<modifierSpeciesReference species="S2"/>42

</listOfModifiers>43

<kineticLaw>44

<math xmlns="http://www.w3.org/1998/Math/MathML">45

<apply>46

<times/>47

<ci> k </ci>48

<ci> S2 </ci>49

<ci> X0 </ci>50

<ci> c1 </ci>51

</apply>52

</math>53

<listOfParameters>54

<parameter id="k" value="0.1" units="per_concent_per_time"/>55

</listOfParameters>56

</kineticLaw>57

</reaction>58

</listOfReactions>59

...60

</model>61
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4.13.6 Traditional rate laws versus SBML “kinetic laws”1

It is important to make clear that a “kinetic law” in SBML is not identical to a traditional rate law. The2

reason is that SBML must support multicompartment models, and the normally units used in traditional3

rate laws as well as some conventional single-compartment modeling packages are problematic when used4

for defining reactions between multiple compartments.5

When modeling species as continuous amounts (e.g., concentrations), the rate laws used are traditionally6

expressed in terms of amount of substance concentration per time, embodying a tacit assumption that reac-7

tants and products are all located in a single, constant volume. Attempting to describe reactions between8

multiple volumes using concentration/time (which is to say, substance/volume/time) quickly leads to diffi-9

culties. Here is an illustration of this. Suppose we have two species pools S1 and S2, with S1 located in10

a compartment having volume V1, and S2 located in a compartment having volume V2. Let the volume11

V2 = 3V1. Now consider a transport reaction S1 → S2 in which the species S1 is moved from the first com-12

partment to the second. Assume the simplest type of chemical kinetics, in which the rate of the transport13

reaction is controlled by the activity of S1 and this rate is equal to some constant k times the activity of S1.14

For the sake of simplicity, assume S1 is in a diluted solution and thus that the activity of S1 can be taken15

to be equal to its concentration [S1]. The rate expression will therefore be k · [S1]. Then:16

d[S2]
dt

= −d[S1]
dt

= k · [S1]17

So far, this looks normal—until we consider the number of molecules of S1 that disappear from the com-18

partment of volume V1 and appear in the compartment of volume V2. The number of molecules of S1 (call19

this nS1) is given by [S1] · V1 and the number of molecules of S2 (call this nS2) is given by [S2] · V2. Since20

our volumes have the relationship V2/V1 = 3, the relationship above implies that nS1 = k · [S1] ·V1 molecules21

disappear from the first compartment and nS2 = 3 ·k · [S1] ·V1 molecules appear in the second compartment.22

In other words, we have created matter out of nothing!23

The problem lies in the use of concentrations as the measure of what is transfered by the reaction, be-24

cause concentrations depend on volumes and the scenario involves multiple unequal volumes. The problem25

is not limited to using concentrations or volumes; the same problem also exists when using density, i.e.,26

mass/volume, and dependency on other spatial distributions (i.e., areas or lengths). What must be done27

instead is to consider the number of “items” being acted upon by a reaction process irrespective of their28

distribution in space (volume, area or length). An “item” in this context may be a molecule, particle, mass,29

or other “thing”, as long as the substance measurement is independent of the size of the space in which the30

items are located.31

For the current example, the expressions in terms of nS1 and nS2 are straightforward:32

dnS2

dt
= −dnS1

dt
= k · [S1] · V133

Given numbers of items, it is then easy to recover concentrations by dividing the item counts of each species34

by the volume of the compartment in which the species is located: [S1] = nS1/V1 and [S2] = nS2/V2.35

The need to support multicompartment models requires that the reaction rates in SBML to be expressed36

in terms of substance/time, rather than the more typical substance/size/time. As a result, modelers and37

software tools in general cannot insert textbook rate laws unmodified as the rate expression in the math field38

of a KineticLaw. The unusual term “kinetic law” was chosen to alert users to this difference. We explain the39

general principles of converting rate laws in the following paragraphs.40

Basic cases41

Let us expand the simple example above by adding a second reaction, to create the system42

S1 → S2 → S343

with the left-hand reaction’s rate (call this r1) being given as k1 · [S1] and the rate of the right-hand reaction44

(call it r2) as k2 · [S2]. Also assume each species is located in a different compartment:45
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1 S1 located in compartment C1 with volume V1

2 S2 located in compartment C2 with volume V2

3 S3 located in compartment C3 with volume V3

As before, converting the rate of the first reaction (S1 → S2) to units of substance/time in this case is a4

simple matter of multiplying by the volume of the compartment where the reactants are located, leading to5

the following rate formula:6

r1 = −k1 · [S1] · V17

The second rate expression becomes8

r2 = −k2 · [S2] · V29

The expressions r1 and r2 are what would be written in KineticLaw math definitions for the two reactions10

in this system. The formulas give the speed of each reaction in terms of the substance change over time.11

The reader of the SBML model needs to combine the individual contributions of each reaction to construct12

equations for the overall rates of change of each species in the model using these expressions. In terms of13

differential equations, these are:14

dnS1

dt
=− r1 = −k1 · [S1] · V1

dnS2

dt
= + r1 − r2 = +k1 · [S2] · V1 − k2 · [S2] · V2

dnS3

dt
= + r2 = + k2 · [S2] · V2

15

To recover the concentration values, we add the following to the system of equations:16

[S1] = nS1/V117

[S2] = nS2/V218

[S3] = nS3/V319
20

Note that this formulation works properly even if the compartment sizes V1, V2 and V3 vary during simulation.21

Extrapolating from this example, we can now provide a general approach to translating a system of reactions22

involving species located in multiple compartments, for the restricted case where all reactants of any given23

reaction are in the same compartment (but where the compartments involved may be different for each24

reaction). For a species Si located in a compartment of size Vi and involved in m reactions r1, r2, . . . , rm,25

where the reactants of rj are located in the compartment of size Vj ,26

dnSi

dt
= sign1 · stoich1 · r1 · V1

+sign2 · stoich2 · r2 · V2

+ . . .

+signm · stoichm · rm · Vm

[Si] = nSi/Vi

(7)27

In Equation (7), each term signj is “−” if Si is a reactant in rj and “+” if it is a product, and each term28

stoichj is the stoichiometry of Si in reaction rj .29

This approach preserves the use of concentration terms within the reaction rate expressions so that the core30

of those rate expressions can be ordinary rate laws. This is important when modeling species as continuous31

quantities, because most textbook rate expressions are measured in terms of concentrations, and most32

rate constants have units involving concentration rather than item counts. For example, the second-order33

rate constant in a mass-action rate law has units of 1/(M · s), which is to say, volume/(substance·time);34

this constant is then multiplied by two concentration terms. Reaction definitions in SBML models can be35

constructed by taking such expressions and multiplying them by the volume of the compartment in which36
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the reactants are located. By contrast, if we were to simply replace concentrations of species by item counts1

in such rate laws, it would in most cases be incorrect. At the very least, the constants in the equations would2

need to be converted in some way to make such expressions valid.3

The preceding discussion of problems involving rate laws concerns modeling approaches that use continuous4

quantities. There is an alternative approach to modeling that instead treats species as discrete popula-5

tions (Wilkinson, 2006). In those cases, the rate expressions already use substance or item counts rather6

than concentrations and there is no need to convert them.7

A full SBML example of translating a complete multicompartmental model into ODEs is given in Section 7.7.8

An example of translating a discrete model is given in Section 7.3.9

Advanced cases10

The explanation above applies to reactions where all of the reactants are in the same compartment. What11

about cases where two or more reactant species are in separate compartments?12

This is a more difficult situation, and the guidelines described above for Equation (7) cannot always be13

applied because there will be more than one compartment size term by which the core rate expression needs14

to be multiplied. Unfortunately, there is often no straightforward way to mechanically convert such models15

without requiring a more significant change to the reaction rate expression. An example will help illustrate16

the difficulty. Suppose we have a simple reaction system consisting of only17

S1 + S2 → S318

where S1, S2 and S3 are each located in separate compartments with volumes V1, V2 and V3, and the rate19

expression is given as k · [S1] · [S2]. (In reality, one would not use such a rate law in this case, but for the20

sake of this example, let us ignore the fact that a mass-action rate law would actually involve an assumption21

that all reactants are in a well-mixed solution.) A straightforward examination of the possibilities eventually22

leads to the conclusion that in order to take account of the multiple volumes, the rate expressions in terms23

of substance/time have to be written as24

dnSi

dt
= −k′(V1, V2) ·

(
[S1] · V1

)
·
(
[S2] · V2

)
25

The crux of the problem is that the new factor k′(V1, V2) is not the original k; to make the overall units of26

the expression work out, k′(V1, V2) must be a function of the volumes, and its value must change if V1 or V227

changes. It is no longer a standard rate constant. In an SBML model, it is easy to define an AssignmentRule28

to compute the value of k′ based on k, V1, V2, and possibly other variables in the system as needed, but only29

the modeler can determine the proper formula for their particular modeling situation. (For example, the30

modeler may know that in their hypothesized physical system, the reaction actually takes place completely31

in one or the other compartment and therefore the factor should be designed accordingly, or perhaps the32

reaction takes place on a membrane between compartments and a scaling factor based on the area should33

be used.)34

Thus, although these models can be represented in SBML, constructing the correct rate expression in terms35

of substance/time units depends on problem-specific knowledge, and we cannot provide a general recipe.36

Mixed species units37

The discussion so far has assumed that all of the species appearing in a given reaction’s rate expression38

had the same units, whether they be concentration or amounts or other. However, Species objects can each39

declare units separately. What happens then?40

It is important to realize that implicit conversions in this situation are not defined in SBML. A species41

identifier appearing in a mathematical expression has the units attributed to that species (see Section 4.8.542

for a definition of the the units of the species). If a reaction contains species each having different units, the43

creator of the SBML model must explicitly incorporate the necessary conversions to make the units of the44

rate expression consistent. The most appropriate way is to include the conversion factor as part of the value45

of stoichiometry or stoichiometryMath in the SpeciesReference for that species.46
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An example may help illustrate this. Suppose we have a system of two biochemical reactions with mass-action1

kinetics, written in the traditional form2

A + 2 B
k1−→ C

C
k2−→ 3 A

(8)3

Assume the reactions take place in a single compartment of volume V , but now let us throw a wrench into4

the problem: suppose that the species in the model are defined with mixed units as follows:5

6 A is in millimoles per litre
7 B is in grams per litre
8 C is in items per litre

When biochemical reaction equations of the form (8) above are written, the units of species’ quantities usually9

are assumed to be the same, and therefore the stoichiometries in the reaction equations (8) represent simple10

ratios between the quantities of the species in those units. (“One mole of this and two moles of that react11

to produce one mole of that other.”) If instead the quantities of the species are given in mixed units, as in12

the present example, the quantities not only need to be in proper stoichiometric relationships, the units also13

have to be made consistent. In SBML, this is done by appropriately setting the stoichiometry field value14

in the species references of the lists of reactants, products and modifiers in a Reaction. This then permits a15

properly balanced system of equations to be constructed for each species’ rate of change of quantity.16

In the present example, the SBML “kinetic law” formulas for the reaction rates will be written as expected,17

r1 = k1
′ · [A] · [B]2 · V

r2 = k2
′ · [C] · V

18

where k2
′ = k2 for this particular example but k1

′ will depend on other units as described in the paragraphs19

below. When these formulas are combined into overall expressions for the rates of change of A, B, and C,20

the result is21

dA

dt
= −a1 · r1 + a2 · r2

dB

dt
= −b1 · r1

dC

dt
= +c1 · r1 − c2 · r2

22

where23

24 a1 is the SBML stoichiometry of A in reaction 1
25 a2 is the SBML stoichiometry of A in reaction 2
26 b1 is the SBML stoichiometry of B in reaction 1
27 c1 is the SBML stoichiometry of C in reaction 1
28 c2 is the SBML stoichiometry of C in reaction 2

We use the term SBML stoichiometries to highlight the fact that in this example involving mixed-units29

species, the values may not be identical to the biochemical stoichiometries in the reaction equations (8).30

And just what are the SBML stoichiometries? In the kind of mixed-units situation faced in this example,31

they must encompass both the biochemical stoichiometries and any necessary unit conversions. Thus, letting32

mB stand for the molecular mass of B:33

34 a1 = 1000 (in each reaction event, 1 mole of A is consumed, with A expressed in millimoles)
35 a2 = 3000 (in each reaction event, 3 moles of A are produced, with A expressed in millimoles)
36 b1 = 2 ·mB (in each reaction event, 2 moles of B are consumed, with B expressed in grams)
37 c1 = 6.02 · 1023 (in each reaction event, 1 mole of C is produced, expressed as item counts)
38 c2 = 6.02 · 1023 (in each reaction event, 1 mole of C is consumed, expressed as item counts)

and39

k1
′ = k1 · 10−3 · 1/mB

2
40
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What happens if the definition of the SBML built-in unit “substance” is changed in the model to be1

millimoles? Then the stoichiometries must be changed to the following:2

3 a1 = 1 (in each reaction event, 1 millimole of A is consumed, expressed in millimoles)
4 a2 = 3 (in each reaction event, 3 millimoles of A are produced, expressed in millimoles)
5 b1 = 2 · 10−3 ·mB (in each reaction event, 2 millimoles of B are consumed, expressed in grams)
6 c1 = 6.02 · 1020 (in each reaction event, 1 millimole of C is produced, expressed as item counts)
7 c2 = 6.02 · 1020 (in each reaction event, 1 millimole of C is consumed, expressed as item counts)

and8

k1
′ = k1 · (103/mB)29

What happens if instead the definition of the SBML built-in unit “substance” is changed in the model to10

be “item”? Then the stoichiometries must be changed to the following:11

12 a1 = 1/(6.02 · 1020) (in each reaction event, 1 item of A is consumed, expressed in millimoles)
13 a2 = 3/(6.02 · 1020) (in each reaction event, 3 items of A are produced, expressed in millimoles)
14 b1 = 2 · 1/(6.02 · 1023) ·mB (in each reaction event, 2 items of B are consumed, expressed in grams)
15 c1 = 1 (in each reaction event, 1 items of C is produced, expressed as item counts)
16 c2 = 1 (in each reaction event, 1 items of C is consumed, expressed as item counts)

and17

k1
′ = k1 · 6.02 · 1020 ·

(
6.02 · 1023

mB

)2

18

And finally, what happens if the definition of the SBML built-in unit “substance” is changed in the model19

to be “gram”? Then the stoichiometries must be changed again, to the following:20

21 a1 = 1000 ·mA (in each reaction event, 1 gram of A is consumed, expressed in millimoles)
22 a2 = 3000 ·mA (in each reaction event, 3 grams of A are produced, expressed in millimoles)
23 b1 = 2 (in each reaction event, 2 grams of B are consumed, expressed in grams)
24 c1 = 6.02 · 1023 ·mC (in each reaction event, 1 gram of C is produced, expressed as item counts)
25 c2 = 6.02 · 1023 ·mC (in each reaction event, 1 gram of C is consumed, expressed as item counts)

and26

k1
′ = k1 · 10−3 ·mA27

where mA, mB , and mC are the molecular masses of species A, B, and C, respectively.28

In all of these cases, the computation of k1
′ could be handled nicely by using an InitialAssignment construct.29

And finally, note that if the species units were the same throughout (and in most models they are), the unit30

conversion aspects of the SBML stoichiometries would become unity, leaving only the expected biochemical31

stoichiometry values. Isn’t that nice?32

4.13.7 Use of reaction identifiers in mathematical expressions33

The value of the id field of a Reaction structure can be used as the content of a ci element in MathML34

formulas elsewhere in the model. Such a ci element or symbol represents the rate of the given reaction as35

given by the KineticLaw structure of the reaction. The symbol has the units of substance/time.36

A KineticLaw structure in effect forms an assignment statement assigning the evaluated value of the math37

field to the symbol value contained in the Reaction id field. No other structure can assign a value to such38

a reaction symbol; i.e., the variable fields of InitialAssignment, RateRule, AssignmentRule and EventAssignment39

structures cannot contain the value of a Reaction id field.40

The combined set of InitialAssignment, AssignmentRule and KineticLaw structures form a set of assignment41

statements that should be considered as a whole. The combined set of assignment rules should not contain42

algebraic loops: a chain of dependency between these statements should terminate. (More formally, consider43

the directed graph of assignment statements where nodes are statements and directed arcs exist for each44

occurrence of a symbol in a assignment statement math field. The directed arcs start from the statement45
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defining the symbol to the statements that contain the symbol in their math fields. Such a graph must be1

acyclic.) Examples of valid and invalid set of assignment statements are given in Section 4.11.5.2

4.14 Events3

Model has an optional list of Event structures that describe the time and form of explicit instantaneous4

discontinuous state changes in the model. For example, an event may describe that one species quantity is5

halved when another species quantity exceeds a given threshold value.6

An Event structure defines when the event can occur, the variables that are affected by the event, and how the7

variables are affected. The effect of the event can optionally be delayed after the occurrence of the condition8

which invokes it. The operation of an Event structure is divided into two phases (even when the event is not9

delayed): one when the event is fired and the other when the event is executed. The Event type is defined in10

Figure 19. Both Event and EventAssignment are derived from Sbase (see Section 3.3). An example of a model11

which uses events is given below.12

Event

id: SId
name: string { use=”optional” }
trigger: (math : Math { namespace=”http://www.w3.org/1998/Math/MathML” })
delay: (math : Math { namespace=”http://www.w3.org/1998/Math/MathML” }) { minOccurs=”0” maxoccurs=”1” }
timeUnits: UnitSId { use=”optional” }
eventAssignment: EventAssignment[1..*]
sboTerm: SBOTerm { use=”optional” }

EventAssignment

variable: SId
math: Math { namespace=”http://www.w3.org/1998/Math/MathML” }
sboTerm: SBOTerm { use=”optional” }

Figure 19: The definitions of Event and EventAssignment. Following UML notation, additional fields that are inherited
from a base class, in this case Sbase, are not shown.

4.14.1 Event13

An Event definition has three required parts: an identifier, a trigger condition and at least one EventAssignment.14

In addition there is an optional delay expression. These are described below.15

The id and name fields16

These optional fields are available to support external references to event structures. These fields operate in17

the manner described in Section 3.4 except that the id field is optional.18

The trigger field19

The trigger field defines when the Event structure has an effect on the model. The trigger field contains a20

MathML boolean expression. The exact instant that the expression evaluates to true is the time point when21

the Event is fired. The event only fires when the trigger makes the transition from false to true. The event22

will fire at any further time points when the trigger make this transition.23

An important question is whether an event can fire prior to or at initial simulation time, i.e., t ≤ 0. The24

answer is no: an event can only be triggered immediately after initial simulation time i.e., t > 0.25

The delay field26

The optional delay field defines a mathematical expression used to compute the length of time after the27

event has fired that the event is executed. This expression must be evaluated at the time the rule is fired.28
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The default value for the delay field is 0. The delay expression must always evaluate to a positive number1

(otherwise, a nonsensical situation would arise where an event is defined to fire before it is triggered!). The2

units of the delay field are those given on the timeUnits field.3

The timeUnits field4

The optional field timeUnits determines the units of time that apply to the delay field. The value of the5

timeUnits field must be either “second” or “dimensionless” from Table 2 on page 33, “time” from Table 36

on page 36, or a new unit defined by a unit definition in the enclosing model which must be a variant of7

“second” units. The default value of the timeUnits field is “time”.8

The sboTerm field9

The Event structure has an optional sboTerm field of type SBOTerm (see Sections 3.1.9 and 5). The term is10

associated with the trigger condition on the event. When a value is given to this field, it must be a valid SBO11

referring to a mathematical expression (i.e., terms derived from SBO:0000064, “mathematical expression”).12

The Event’s trigger should have a “is a” relationship with the SBO term, and the term should be the most13

precise (narrow) term that captures the form of the trigger formula in the model.14

As discussed in Section 5, SBO labels are optional information on a model. Applications are free to ignore15

sboTerm values. A model must be interpretable without the benefit of SBO labels.16

The eventAssignment field17

The eventAssignment field consists of a non-empty list of EventAssignment structures. This field is imple-18

mented as a listOfEventAssignments element containing one or more eventAssignment elements. The19

EventAssignment structures represent variable assignments that have effect when the event is executed.20

4.14.2 EventAssignment21

The EventAssignment structure is shown in Figure 19. It contains three fields: variable, math and sboTerm,22

described below.23

The variable field24

The variable field is of type SId and can contain the identifier of a Compartment, Species or Parameter25

instance defined in the model. When the event fires, the value of the model component identified by26

variable is changed by the EventAssignment to the value computed by the math field; that is, a species’27

quantity, compartment’s size or parameter’s value are reset to the value computed by math.28

Certain restrictions are placed on what can appear in variable:29

• The object identified by the value of the variable field must not have its constant field set to or30

default to “true”. (Constants cannot be affected by events.)31

• The variable field must not contain the identifier of a reaction; only species, compartment and pa-32

rameter values may be set by an Event.33

• The value of every variable field must be unique among the set of EventAssignment structures within34

a given Event structure. In other words, a single event cannot have multiple EventAssignments assigning35

the same variable. (All of them would be performed at the same time, when that particular Event36

triggers, resulting in indeterminacy.) Separate Event instances can refer to the same variable.37

• A variable cannot be assigned a value in an EventAssignment object instance and also be assigned a38

value by an AssignmentRule, i.e., the value of the variable attribute in an EventAssignment instance39

cannot be the same as the value of a variable attribute in a AssignmentRule instance. (Assignment40

rules hold at all times, therefore it would be inconsistent to also define an event that reassigns the41

value of the same variable.)42
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The sboTerm field1

The EventAssignment structure has an optional sboTerm field of type SBOTerm (see Sections 3.1.9 and 5). When2

a value is given to this field, it must be a valid SBO term identifier referring to a mathematical expression3

(i.e., terms derived from SBO:0000064, “mathematical expression”). The EventAssignment should have an “is4

a” relationship with the SBO term, and the term should be the most precise (narrow) term that captures5

the form of the assignment formula in the model.6

As discussed in Section 5, SBO labels are optional information on a model. Applications are free to ignore7

sboTerm values. A model must be interpretable without the benefit of SBO labels.8

The math field9

The math field contains a MathML expression that defines the new value of the variable. This expression10

is evaluated when the Event is fired but the variable only acquires the result or new value when the Event11

is executed. The order of the EventAssignment structures is not significant; the effect of one assignment12

cannot affect the result of another assignment. The identifiers occurring in the MathML ci fields of the13

EventAssignment structures represent the value of the identifier at the point when the Event is fired.14

In all cases, as would be expected, the units of the formula in an EventAssignment are identical to the units15

associated with the variable field, when that variable appears in other formulas. However, the precise16

details, which are identical to those of AssignmentRule structures, depend on the variable that is being set:17

• In the case of a species, an EventAssignment sets the referenced species’ quantity (concentration or18

amount of substance) to the value determined by the formula in math. The units of the formula are19

the units of the species as defined in Section 4.8.5.20

• In the case of a compartment, an EventAssignment sets the referenced compartment’s size to the size21

determined by the formula in math. The overall units of the formula are the units specified for the size22

of the compartment identified by the value of the EventAssignment’s variable field. (See Section 4.7.523

for an explanation of how the units of the compartment’s size are determined.)24

• In the case of a parameter, an EventAssignment sets the referenced parameter’s value to that determined25

by the formula in math. The overall units of the formula are the units defined for the parameter26

identified by the value of the EventAssignment’s variable field. (See Section 4.9.3 for an explanation of27

how the units of the parameter are determined.)28

4.14.3 Example Event structure29

A example of an Event structure follows. This structure makes the assignment k2 = 0 at the point when30

P1 ≤ t:31

<event>32

<trigger>33

<math xmlns="http://www.w3.org/1998/Math/MathML">34

<apply>35

<leq/>36

<ci> P1 </ci>37

<ci> t </ci>38

</apply>39

</math>40

</trigger>41

<listOfEventAssignments>42

<eventAssignment variable="k2">43

<math xmlns="http://www.w3.org/1998/Math/MathML">44

<cn> 0 </cn>45

</math>46

</eventAssignment>47

<listOfEventAssignments>48

</event>49

A complete example of a model using events is given in Section 7.10.50
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4.14.4 Detailed semantics of events1

The description of events above describes the action of events in isolation from each other. This section2

describes how events interact.3

Events whose trigger expression is true at the start of a simulation do not fire at the start of the simulation4

(t = 0). Events fire only when the trigger becomes true, i.e., the trigger expression transitions from false to5

true, which cannot happen at t = 0 but can happen at t > 0.6

Any transition of a trigger expression from “false” to “true” will cause an event to fire. Consider an7

event E with delay d where the trigger expression makes a transition from false to true at times t1 and8

t2. The EventAssignment structure will have effect at t1 + d and t2 + d irrespective of the relative times of t19

and t2. For example events can “overlap” so that t1 < t2 < t1 + d still causes an event assignments to occur10

at t1 + d and t2 + d.11

It is possible for events to fire other events, i.e., an event assignment can cause an event to fire, therefore it12

is possible for a model to be entirely encoded in Event structures.13

It is entirely possible for two events to be executed simultaneously in simulated time. It is assumed that,14

although the precise time at which these events are executed is not resolved beyond the given point in15

simulated time, the order in which the events occur is resolved. This order can be significant in determining16

the overall outcome of a given simulation. SBML Level 2 does not define the algorithm for determining17

this order (the tie-breaking algorithm). As a result, the results of simulations involving events may vary18

when simultaneous events occur during simulation. It is anticipated that future versions or levels of SBML19

will define a specific set of tie-breaking algorithms and a mechanism for models to indicate which algorithm20

should be applied during simulation.21

Despite the absence of a specific tie-breaking algorithm, SBML event simulation is constrained as follows.22

When an event X fires another event Y and event Y has zero delay then event Y is added to the existing23

set of simultaneous events that are pending execution. Events such as Y do not have a special priority or24

ordering within the tie-breaking algorithm. Events X and Y form a cascade of events at the same point in25

simulation time. All events in a model are open to being in a cascade. The position of an event in the event26

list does not affect whether it can be in the cascade: Y can be triggered whether it is before or after X in the27

list of events. A cascade of events can be infinite (never terminate). When this occurs a simulator should28

indicate this has occurred, i.e. it is incorrect for the simulator to arbitrarily break the cascade and continue29

the simulation without at least indicating the infinite cascade occurred. A variable can change more than30

once when processing simultaneous events at simulation time t. The model behavior (output) for such a31

variable is the value of the variable at the end of processing all the simultaneous events at time t.32
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5 The Systems Biology Ontology and the sboTerm field1

The values of id fields on SBML components allow the components to be cross-referenced within a model.2

The values of name fields on SBML components provide meaningful labels suitable for display to humans3

(Section 3.4). The specific identifiers and labels used in a model necessarily must be unrestricted by SBML, so4

that software and users are free to pick whatever they need. However, this freedom makes it more difficult for5

software tools to determine, without additional human intervention, the semantics of models more precisely6

than the semantics provided by the SBML structures defined in other sections of this document. For example,7

there is nothing inherent in a parameter with identifier “k” that would indicate to a software tool it is a8

first-order rate constant (if that’s what “k” happened to be in some given model). An advanced software9

tool might be able to deduce the semantics of some model components by detailed analysis of the kinetic10

rate expressions and other parts of the model, but this quickly becomes infeasible for any but the simplest11

of models.12

An approach to solving this problem is to associate model components with terms from a regulated, controlled13

vocabulary (CV). This is the purpose of the optional sboTerm field provided on the SBML classes Model,14

FunctionDefinition, Reaction, Parameter, InitialAssignment, AlgebraicRule, AssignmentRule, RateRule, Constraint, Re-15

action, KineticLaw, SpeciesReference, ModifierSpeciesReference, Event, and EventAssignment . The sboTerm field16

always refers to terms in the Systems Biology Ontology (SBO). In this section, we discuss the sboTerm field,17

SBO, the motivations and theory behind their introduction, and guidelines for their use.18

SBO is not part of SBML; it is being developed separately, to allow the modeling community to evolve19

the ontology independently of SBML. However, the terms in the ontology are being designed with SBML20

components in mind, and are classified into subsets that can be related one-to-one with SBML components21

such as reaction rate expressions, parameters, and a few others.22

5.1 Principles23

Labeling model components with terms from a shared controlled vocabulary allows a software tool to identify24

each component using identifiers that are not tool-specific. An example of where this is useful is the desire25

by many software developers to provide users with meaningful names for reaction rate equations. Software26

tools with model editing interfaces frequently provide these names in menus or lists of choices for users.27

However, without a standardized set of names or identifiers shared between developers, a given software28

package cannot reliably interpret the names or identifiers of reactions in models written by other tools.29

The first solution that might come to mind is to stipulate that certain common reactions always have the30

same name (e.g., “Michaelis-Menten”), but this is simply impossible to do: not only do humans often disagree31

on the names themselves, but it would not allow for correction of errors or updates to the list of predefined32

names except by issuing new revisions of the SBML specification—to say nothing of many other limitations33

with this approach. Moreover, the parameters and variables that appear in rate expressions also need to be34

identified in a way that software tools can interpret mechanically, implying that the names of these entities35

would also need to be regulated.36

The Systems Biology Ontology (SBO) provides vocabularies for identifying common reaction rate expres-37

sions, common reactant/product/modifier roles in reactions, common parameter types and their roles in38

rate expressions, and common modeling frameworks (e.g., “continuous”, “discrete”, etc.). The relationship39

implied by an sboTerm value on an SBML model component is “is a”: the thing defined by that SBML40

component “is a” instance of the thing defined in SBO having the identifier given by the sboTerm field value.41

By adding SBO term references on the components of a model, a software tool can provide additional details42

using an independent, shared vocabulary that can enable other software tools to recognize precisely what43

the component is meant to be. Those tools can then act on that information. For example, if the SBO44

identifier SBO:0000049 is assigned to the concept of “first-order irreversible mass-action kinetics, continuous45

framework”, and a given KineticLaw object in a model has an sboTerm field with this value, then regardless46

of the identifier and name given to the reaction itself, a software tool could use this to inform users that the47

reaction is a first-order irreversible mass-action reaction. This kind of reverse engineering of the meaning of48

reactions in a model would be difficult to do otherwise, especially for more complex reaction types.49
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The presence of the label on a kinetic expression can also allow software tools to make more intelligent1

decisions about reaction rate expressions. For example, an application could recognize certain identifiers2

as being ones it knows how to solve with optimized procedures. The application could then use internal,3

optimized code implementing the rate formula indexed by identifiers such as SBO:0000049 appearing in4

SBML models.5

Although the use of SBO labels can be beneficial, it is critical to keep in mind that the presence of an sboTerm6

value on an object must not change the fundamental mathematical meaning of the model. An SBML model7

must be defined such that it stands on its own and does not depend on additional information added by8

SBO terms for a correct mathematical interpretation. SBO term definitions will not imply any alternative9

mathematical semantics for any SBML structure labeled with that term. Two important reasons motivate10

this principle. First, it would be too limiting to require that all software tools be able to understand the SBO11

vocabularies in addition to understanding SBML Level 2 Version 2. Supporting SBO is not only additional12

work for the software developer; for some kinds of applications, it may not make sense. If the SBO terms13

on a model are optional, it follows that the SBML model must remain unambiguous and fully interpretable14

without them, because an application reading the model may ignore the terms. Second, we believe allowing15

the use of sboTerm to alter the mathematical meaning of a model would give software authors too much16

leeway to shoehorn inconsistent concepts into SBML structures, ultimately reducing the interoperability of17

the models.18

5.2 Using SBO and sboTerm19

The sboTerm field data type is always SBOTerm, defined in Section 3.1.9. When present in a given model20

object instance, the field’s value must be an identifier taken from the Systems Biology Ontology (SBO;21

http://www.biomodels.net/SBO/). This identifier must refer to a single SBO term that best defines the22

entity encoded by the SBML object in question. An example of the type of relationship intended is: the23

KineticLaw in reaction R1 is a first-order irreversible mass action rate law.24

Note the careful use of the words “defines” and “entity encoded by the SBML object” in the paragraph25

above. As mentioned, the relationship between the SBML object and the URI is:26

The “thing” encoded by this SBML object is an instance of the “thing” represented by the27

referenced SBO term.28

5.2.1 The structure of the Systems Biology Ontology29

The goal of SBO labeling for SBML is to clarify to the fullest extent possible the nature of each reaction30

rate equation in a model. The approach taken in SBO begins with a hierarchically-structured set of con-31

trolled vocabularies with four main divisions: (1) modeling framework, (2) participant role, (3) quantitative32

parameter, and (4) mathematical expression. Figure 20 illustrates the highest level of SBO.33

SBO

participant role quantitative parameter modeling framework mathematical expression

Figure 20: The four controlled vocabularies (CVs) that make up the main branches of SBO. (Other CVs in SBO may
evolve in time, but are not discussed here.)

Each of the four branches of Figure 20 have a hierarchy of terms underneath them. At this time, we34

can only begin to list some initial concepts and terms in SBO; what follows is not meant to be com-35

plete, comprehensive or even necessarily consistent with future versions of SBO. The web site for SBO36

(http://www.biomodels.net/SBO/) should be consulted for the current version of the ontology. Section 5.4.137

describes how the impact of SBO changes on software applications is minimized.38

Figure 21 shows the anticipated structure for the participant role CV which reflects the hierarchical con-39

ceptual groupings of the concepts. For example, in reaction rate expressions, there are a variety of possible40
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participant role

reactant product modifier

catalyst inhibitor potentiator

Figure 21: Partial expansion of some of the terms in the participant role CV of SBO.

modifiers. Some classes of modifiers can be further subdivided and grouped. All of this is easy to capture in1

the CV. As more agreement is reached in the modeling community about how to define and name modifiers2

for different cases, the CV can grow to accommodate it.3

quantitative parameter

kinetic constant Michaelis constant

unimolecular 
rate constant

bimolecular 
rate constant

trimolecular
rate constant

forward unimolecular 
rate constant

backward unimolecular 
rate constant

Figure 22: Partial expansion of some of the terms in the quantitative parameter CV.

Similar to the above, the controlled vocabulary for quantitative parameters also has a hierarchical structure,4

as illustrated in Figure 22. Note the separation of kinetic constant into separate terms for unimolecular,5

bimolecular, etc. reactions, as well as for for forward and reverse reactions. The need to have separate6

terms for forward and reverse rate constants arises in reversible mass-action reactions. This distinction is7

not always necessary for all quantitative parameters; for example, there is no comparable concept for the8

Michaelis constant. Another distinction for some quantitative parameters is a decomposition into different9

versions based on the modeling framework being assumed. For example, different terms for continuous and10

discrete formulations of kinetic constants represent specializations of the constants for particular simulation11

frameworks. Not all quantitative parameters will need to be distinguished along this dimension.12

modeling framework

continuous framework discrete framework

Figure 23: Partial expansion of some of the
terms in the modeling framework CV.

The modeling framework controlled vocabulary is needed13

to support labeling models and reactions with the frame-14

work for which they are designed. Figure 23 illustrates15

the structure of this CV, which is at this point extremely16

simple, but we expect that more terms will evolve in the17

future.18

Finally, there is the mathematical expression framework. This controlled vocabulary encompasses the various19

mathematical expressions that constitute a model. Figure 24 illustrates a portion of the hierarchy. Rate20

law formulas are part of the mathematical expression hierarchy, and subdivided by successively more refined21

distinctions until the leaf terms represent precise statements of common reaction types. Other types of22

mathematical expressions are likely to be included in order to be able to characterize other mathematical23

components of a model, namely initial assignments, assignment rules, rate rules, algebraic rules, constraints,24

and event triggers and assignments.25
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mathematical expression

rate law

mass-action kinetics kinetics of unireactant enzymes

irreversible mass-action kinetics reversible mass-action kinetics

zeroth-order irreversible
mass-action kinetics

first-order irreversible
mass-action kinetics

second-order irreversible
mass-action kinetics

third-order irreversible
mass-action kinetics

first-order irreversible
mass-action kinetics,
continuous framework

first-order irreversible
mass-action kinetics,
discrete framework

Figure 24: Partial expansion of some of the terms in the mathematical expression CV.

The leaf terms of the rate law portion of the SBO mathematical expression framework contain the mathe-1

matical formulas for the rate laws encoded using MathML 2.0. There are many potential uses for this. One2

is to allow a software application to obtain the formula and insert it into a model. In effect, the formulas3

given in the CV act as templates for what to put into an SBML KineticLaw definition. The MathML definition4

also acts as a precise statement about the rate law in question.5

To make this discussion concrete, here is an example definition of an entry in the SBO rate law hierarchy6

at the time of this writing. This term represents second-order, irreversible, mass-action kinetics with one7

reactant, formulated for use in a continuous modeling framework:8

ID : SBO:00000529

Name: second order irreversible mass action kinetics, one reactant, continuous scheme10

Definition: Reaction scheme where the products are created from the reactants and the change11

of a product quantity is proportional to the product of reactant activities. The reaction12

scheme does not include any reverse process that creates the reactants from the products,13

and the change of a product quantity is proportional to the square of one reactant quantity.14

It is to be used in a reaction modeled using a continuous framework.15

Parent(s): SBO:0000052, first-order irreversible mass-action kinetics (is a)16

MathML:17

<math xmlns="http://www.w3.org/1998/Math/MathML">18

<lambda>19

<bvar><ci definitionURL="http://biomodels.net/SBO/#SBO:0000036">k</ci></bvar>20

<bvar><ci definitionURL="http://biomodels.net/SBO/#SBO:0000010">R</ci></bvar>21

<apply>22

<times/>23

<ci>k</ci>24

<ci>R</ci>25

<ci>R</ci>26

</apply>27

</lambda>28

</math>29

In the MathML definition of the term shown above, the bound variables in the lambda expression are30

tagged with references to terms in the SBO quantitative parameter (for k) and SBO participant role (for31
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R) vocabularies. This makes it possible for software applications to interpret the intended meanings of the1

parameters in the expression.2

One of the goals of SBO is to permit a tool to traverse up and down the hierarchy in order to find equivalent3

terms in different frameworks. The hope is that when a software tool encounters a given rate formula in a4

model, the formula will be a specific form (say, “mass-action kinetics, second order, one reactant, for discrete5

simulation”), but by virtue of the consistent organization of the reaction rate CV into framework-specific6

definitions, the tool should in principle be able to determine the definitions for other frameworks (say, “mass-7

action kinetics, second order, one reactant for continuous simulation”). If the software tool is designed for8

continuous simulation and it encounters an SBML model with rate laws formulated for discrete simulation, it9

could in principle look up the rate laws’ identifiers in the CV and search for alternative definitions intended10

for discrete simulation. And of course, the converse is true, for when a tool designed for discrete simulation11

encounters a model with rate laws formulated for continuous simulation.12

5.2.2 Relationships between individual SBML components and SBO terms13

The availability of sboTerm fields on various SBML components is limited to those for which an SBO label14

is appropriate given the goals and principles of SBO’s use in SBML (Section 5.1). Table 7 summarizes the15

relationship between SBML components having sboTerm fields and the vocabularies within SBO that apply16

to that component.17

18 SBML Component SBO Vocabulary Parent SBO Identifier

19 Model modeling framework SBO:0000004

20 Reaction modeling framework SBO:0000004

21 Parameter quantitative parameter SBO:0000002

22 SpeciesReference participant role SBO:0000003

23 ModifierSpeciesReference participant role SBO:0000003

24 FunctionDefinition mathematical expression SBO:0000064

25 KineticLaw mathematical expression SBO:0000064

26 InitialAssignment mathematical expression SBO:0000064

27 AlgebraicRule mathematical expression SBO:0000064

28 AssignmentRule mathematical expression SBO:0000064

29 RateRule mathematical expression SBO:0000064

30 Constraint mathematical expression SBO:0000064

31 Event mathematical expression SBO:0000064

32 EventAssignment mathematical expression SBO:0000064

Table 7: SBML components and the main types of SBO terms that may be assigned to them. The parent identifiers are
provided for guidance, but actual annotations should use more specific child terms. See text for explanation.

The parent identifiers shown in Table 7 are provided for reference. They are the highest-level terms in their33

respective vocabularies; however, these are not the terms that would be used to annotate an element in34

SBML, because there are more specific terms underneath the parents shown here. A software tool should35

use the most specific SBO term available for a given concept rather than using the top-level identifier acting36

as the root of that particular vocabulary.37

5.3 Relationships to the SBML annotation field38

Another means of providing this kind of information would be to place it inside the annotation field (Sec-39

tions 3.3 and 6). Although sboTerm is just another kind of optional annotation in SBML, the SBO references40

are separated out and given a separate field on SBML components, both to simplify their use for software41

tools and because they assert a slightly stronger and more focused connection in a more regimented fashion.42

SBO term references are intended to allow a modeler to make a statement of the form “this object is identical43

in meaning and intention to the definition of X in the SBO vocabulary” and do so in a way that a software44

tool can interpret unambiguously.45
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5.3.1 Tradeoffs in using SBO terms1

The SBO-based approach to annotating SBML components with controlled terms has the following strengths:2

1. The syntax is minimally intrusive and maximally simple, requiring only one string-valued attribute.3

2. It supports a significant fraction of what SBML users have wanted to do with controlled vocabularies.4

3. It does not interfere with any other scheme. The more general annotation-based approach described5

in Section 6 can still be used simultaneously in the same model.6

The scheme has the following weaknesses:7

1. An object can only have one sboTerm field, therefore, it can only be related to a single term in SBO.8

(This also impacts the design of SBO: it must be structured such that a class of SBML elements can9

logically only be associated with one class of terms in the ontology.)10

2. The only relationship that can be expressed by sboTerm is “is a”. It is not possible to represent different11

relationships (known as verbs in ontology-speak). This limits what can be expressed.12

The weaknesses are not shared by the annotation scheme described in Section 6. If an application’s needs13

cannot be met using SBO terms, software developers should examine the approach described in Section 6.14

5.3.2 When to use SBO and when to use other annotations15

The general annotation guidelines described in Section 6 could also be used to make references to SBO16

terms. However, in the interest of making the use of SBO in SBML maximally interoperable between17

software tools, the best-practice recommendation is to place SBO references in the sboTerm field rather than18

in the annotation field of an object.19

Some software applications may have their own vocabulary of terms similar in purpose to SBO. For maximal20

software interoperability, the best-practice recommendation in SBML is nonetheless to use SBO terms in21

preference to using application-specific annotation schemes. Software applications should therefore attempt22

to translate their private terms to and from SBO terms when writing and reading SBML, respectively.23

5.4 Discussion24

Here we discuss some additional points about the SBO-based approach.25

5.4.1 Frequency of change in the ontology26

The SBO development approach follows conventional ontology development approaches in bioinformatics.27

One of the principles being followed is that identifiers and meanings of terms in the CVs never change28

and the terms are never deleted. Where some terms are deemed obsolete, the introduction of new terms29

refine or supersede existing terms, but the existing identifiers are left in the CV. Thus, references never30

end up pointing to nonexistent entries. In the case where synonymous terms are merged after agreement31

that multiple terms are identical, the term identifiers are again left in the CV and they still refer to the32

same concept as before. Out-of-date terms cached or hard-coded by an application remain usable in all33

cases. (Also, with machine-readable CV encodings and appropriate software design, it should be possible to34

develop API libraries that automatically map older terms to newer terms as the CVs evolve.)35

Therefore, a model is never in danger of ending up with SBO identifiers that cannot be dereferenced. If an36

application finds an old model with a term SBO:0000065, it can be assured that it will be able to find this37

term in SBO, even if it has been superseded by other, more preferred terms.38

5.4.2 Consistency of information39

If you have a means of linking (say) a reaction rate formula to a term in a CV, is it possible to have an40

inconsistency between the formula in the SBML model and the one defined for the CV term? Yes, but this41
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is not a new problem; it arises in other situations involving SBML models already. The guideline for these1

situations is that the model must be self-contained and stand on its own. Therefore, in cases where they2

differ, the definitions in the SBML model take precedence over the definitions referenced by the CV. In other3

words, the model (and its MathML) is authoritative.4

5.4.3 Implications for network access5

Must a software tool have the ability to access the network or read the CV every time it encounters a model6

or otherwise works with SBML? No. Since the SBO will likely stabilize and change infrequently once a core7

set of terms is defined, applications can cache the controlled vocabulary and not make network accesses to8

the master SBO copy unless something forces them to (e.g., detecting a reference in a model to an SBO9

term that the application does not recognize). In addition, applications could have user preference settings10

indicating how often the CV definitions should be refreshed (similar to how modern applications provide a11

setting dictating how often they should check for new versions of themselves). Simple applications may go12

further and hard code references to terms in SBO that have reached stability and community consensus.13

5.4.4 Implications for software tools14

What if a software tool does not pay attention to the SBO annotations described here? Then one is faced15

with exactly the situation that exists today: the SBML model must be interpreted as-is, without benefit of16

the information added by the SBO terms. The purpose of introducing an ontology scheme and guidelines for17

its use is to give tools enough information that they could perform added processing, if they were designed18

to take advantage of that information.19

5.4.5 Is another ontology really needed?20

It may seem that developing a new, separate ontology is overkill for the intended purpose. However, it turns21

out that no existing ontology contains the necessary details for this role in SBML. In particular, none of the22

existing ontologies provide mathematical formulas for reaction rates.23
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6 A standard format for the annotation field1

This section describes the standard non-proprietary format for annotation elements when (a) referring to2

controlled vocabulary terms and database identifiers which define and describe biological and biochemical en-3

tities; and (b) describing the creator of a model and its modification history. Such a structured format should4

facilitate the generation of models compliant with the MIRIAM guidelines for model curation (Le Novère5

et al., 2005).6

This format should not be used to refer to SBO terms (Section 5), because SBO defines terms about7

mathematical modeling constructs and not the biological and biochemical entities that the mathematics8

represent.9

This format describes the form of one of the top level elements that could reside in a given annotation10

structure. As such this format is compliant with the constraints placed on the form of annotation elements11

described in Section 3.3.3.12

6.1 Motivation13

The SBML structures described elsewhere in this document do not have any biochemical or biological se-14

mantics. The format described in this section provides a scheme for linking SBML structures to external15

resources so that those structures can have such semantics. The motivation for the introduction of this16

scheme is similar to that given for the introduction of sboTerm however this scheme is significantly more17

flexible.18

6.2 XML Namespaces in the standard annotation19

This format uses a restricted form of Dublin Core (Dublin Core Metadata Initiative, 2005) and BioModels20

qualifier elements (see http://sbml.org/wiki/Biomodels_Qualifiers) embedded in RDF (W3C, 2004b). It21

uses a number of external XML standards and associated XML namespaces. Table 8 lists these namespaces22

and relevant documentation on those namespaces. The format constrains the order of elements in these23

namespaces beyond the constraints defined in the standard definitions for those namespaces. For each24

standard listed, the format only uses a subset of the possible syntax defined by the given standard. Thus it25

is possible for an annotation element to include XML that is compliant with those external standards but26

is not compliant with the format described here. Parsers wishing to support this format should be aware27

that a valid annotation element may contain an rdf:RDF element which is not compliant with the format28

described here. A parser should check that all aspects of the syntax defined here before assuming that the29

contained data is encoded in the format.30

31 Namespace Prefix Namespace URI Definition Document

32 dc http://purl.org/dc/elements/1.1/ (Powell and Johnston, 2003)
33 rdf http://www.w3.org/1999/02/22-rdf-syntax-ns# (W3C, 2004a)
34 dcterms http://purl.org/dc/terms/ (Kokkelink and Schwänzl, 2002)
35 (DCMI Usage Board, 2005)
36 vcard http://www.w3.org/2001/vcard-rdf/3.0# (Iannella, 2001)
37 bqbiol http://biomodels.net/biology-qualifiers/

38 bqmodel http://biomodels.net/model-qualifiers/

Table 8: The XML standards used in the SBML standard format for annotation. The namespace prefix are shown to
indicate only the prefix used in the main text.

6.3 General syntax for the standard annotation39

An outline of the format syntax is shown below.40
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<SBML_ELEMENT +++ metaid="SBML_META_ID" +++ >1

+++2

<annotation>3

+++4

<rdf:RDF5

xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"6

xmlns:dc="http://purl.org/dc/elements/1.1/"7

xmlns:dcterm="http://purl.org/dc/terms/"8

xmlns:vcard="http://www.w3.org/2001/vcard-rdf/3.0#"9

xmlns:bqbiol="http://biomodels.net/biology-qualifiers/"10

11

xmlns:bqmodel="http://biomodels.net/model-qualifiers/"12

13

>14

<rdf:Description rdf:about="#SBML_META_ID">15

[MODEL_HISTORY]16

<RELATION_ELEMENT>17

<rdf:Bag>18

<rdf:li rdf:resource="URI" />19

...20

</rdf:Bag>21

</RELATION_ELEMENT>22

...23

</rdf:Description>24

+++25

</rdf:RDF>26

+++27

</annotation>28

+++29

</SBML_ELEMENT>30

The above outline shows the order of the elements. The capitalized identifiers refer to generic strings31

of a particular type: SBML ELEMENT refers to any SBML element name that can contain an annotation32

element; SBML META ID is a XML ID string; RELATION ELEMENT refers to element names in either the namespace33

http://biomodels.net/biology-qualifiers/ or http://biomodels.net/model-qualifiers/; and URI is a34

URI. [MODEL HISTORY] refers to an optional section described in Section 6.6 which can only be present within35

SBML model elements. ‘+++’ is a placeholder for either no content or valid XML syntax that is not defined36

by the standard annotation scheme but is consistent with the relevant standards for the enclosing elements.37

‘...’ is a placeholder for zero or more elements of the same form as the immediately preceding element.38

The precise form of whitespace and the XML namespace prefix definitions is not constrained however the39

elements and attributes must be in the namespaces shown. The rest of this section describes the format40

formally in English.41

In this format the annotation of an element is located in a single rdf:RDF element contained within an42

SBML annotation element. The annotation element can contain other elements in any order as described43

in Section 3.3.3. The format described in this section only defines the form of the rdf:RDF element. The44

containing SBML Sbase element must have a metaid field value. (As this attribute is of the type ID its value45

must unique to the entire SBML document.)46

The first element of the rdf:RDF element must be an rdf:Description element with an rdf:about attribute.47

(This format doesn’t define the form of subsequent elements of the rdf:RDF element.) The value of the48

rdf:about attribute must be of the form #<string> where the string component is equal to the value of the49

metaid field of the containing SBML element.50

The rdf:Description element can contain only an optional model history section (see Section 6.6) followed51

by a sequence of zero or more BioModels relation elements. The optional model history section can only be52

present within an SBML Model element. The specific type of the relation elements will vary depending on53

the relationship between the SBML component and referenced information or resource.54

Although Section 6.5 describes the detailed semantics of each of the relation element types, the content of55

these elements follows the same form. The BioModels qualifiers relation elements must only contain a single56

rdf:Bag element which in turn must only contain one or more rdf:li elements. The rdf:li elements must57

only have a rdf:resource attribute containing a URI referring to an information resource (See Section 6.4).58
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Annotations in this format can be located at different depths within a model component as is appropriate.1

6.4 Use of URIs2

The format represents a set of relationships between the SBML element and the resources referred to by the3

contained rdf:resource attribute values. The BioModels relation elements simply define the type of the4

relationship.5

For instance a Species element representing a protein could be annotated with a reference to the database6

UniProt by the http://www.uniprot.org/#P12999 resource identifier, identifying exactly the protein de-7

scribed by the Species element. This identifier maps to a unique entry in UniProt which is never deleted8

from the database. In the case of UniProt, this is the “accession” of the entry. When the entry is merged9

with another one, both “accession” are conserved. Similarly in a controlled vocabulary resource, each term10

is associated with a perennial identifier. The UniProt entry also possess an “entry name” (the Swiss-Prot11

“identifier”), a “protein name”, “synonyms” etc. Only the “accession” is perennial and should be used.12

The value of a rdf:resource attribute is a URI that both uniquely identifies the resource, and the data in13

the resource. In this case the resource constraining the identifier precedes the ’#’ symbol and the term or14

database identifier follows the ’#’ symbol. In the above example, the resource http://www.uniprot.org/15

includes the entry P12999.16

The value of the rdf:resource attribute is a URI, not a URL; as such, a URI does not have to reference a17

physical web object but simply identifies a controlled vocabulary term or database object (a URI is a label18

that, in this case, just happens to look like a URL). For instance, a true URL for an Internet resource such as19

http://www.uniprot.org/entry/P12999 might correspond to the URI http://www.uniprot.org/#P12999.20

SBML does not specify how a parser is to interpret a URI. In the case of a transformation into a physical21

URL, there could be several solutions. For instance, the URI http://www.geneontology.org/#GO:000726822

can be translated into:23

http://www.ebi.ac.uk/ego/DisplayGoTerm?selected=GO:000726824

http://www.godatabase.org/cgi-bin/amigo/go.cgi?view=details&query=GO:000726825

http://www.informatics.jax.org/searches/GO.cgi?id=GO:000726826

Similarly the URI http://www.ec-code.org/#3.5.4.4 can refer to:27

http://www.ebi.ac.uk/intenz/query?cmd=SearchEC&ec=3.5.4.428

http://www.expasy.org/cgi-bin/nicezyme.pl?3.5.4.429

http://www.chem.qmul.ac.uk/iubmb/enzyme/EC3/5/4/4.html30

http://www.genome.jp/dbget-bin/www bget?ec:3.5.4.431

etc.32

To enable interoperability, the community has agreed on an initial set of standardized valid URI syntax rules33

which may be used within the standard annotation format. This set of rules is not part of the SBML standard34

but will grow independently from specific SBML Levels and Versions. As the set changes a given URI syntax35

rule will not be modified although the physical resource associated with the rule may change. These URIs36

will always be composed as resource#id. The web page http://sbml.org/wiki/MIRIAM_URI_Set lists URI37

syntaxes and possible physical links to controlled vocabulary and databases. Each entry contains a list of38

SBML and relation elements in which the given URI can be appropriately embedded. To enable consistent39

and thus useful links to external resources, the URI syntax rule set must have a consistent view of the40

concepts represented by the different SBML elements for the purposes of this format. For example as the41

rule set is designed to link SBML biological and biochemical resources the rule set assumes that a Species42

element represents the concept of a biochemical entity type rather than mathematical symbol. The URI43

rule list will evolve with the evolution of databases and resources. The annotation format described in this44

section does not require a simple parser of this format to access this list.45
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6.5 Relation elements1

To enable the format to encode different types of relationships between SBML elements and resources,2

different BioModel qualifier elements are used to enclose a set of rdf:li elements. The relation elements3

imply a specific relationship between the enclosing SBML element and the resources referenced by the rdf:li4

elements.5

The detailed semantics (i.e. from the perspective of automatic parser) of the relation elements is defined6

by the URI list at http://sbml.org/wiki/MIRIAM_URI_Set, and thus is outside the scope of SBML. The7

URI list generally assumes that the biological entity represented by the element is the concept linked to the8

reference resource.9

Several relation elements with a given tag, enclosed in the same SBML element, each represent an alternative10

annotation to the SBML element. For example two bqbiol:hasPart elements within a Species SBML element11

represent two different sets of references to the parts making up the the chemical entity represented by the12

species. (The species is not made up of all the entities represented by all the references combined).13

The complete list of the qualifier elements in the Biomodels qualifier namespaces is documented at http:14

//sbml.org/wiki/Biomodels_Qualifiers. The list is divided into two namespaces one for model qualifiers15

http://biomodels.net/biology-qualifiers/ (prefix used here bqbiol) and the other for biological quali-16

fiers http://biomodels.net/model-qualifiers/) (prefix used here bqmodel. This list will only grow i.e no17

element will be removed from the list. The following is the list of elements at the time of writing:18

• bqmodel:is The modeling object encoded by the SBML component is the subject of the referenced19

resource. For instance, this qualifier might be used to link the model to a model database.20

• bqmodel:isDescribedBy The modeling object encoded by the SBML component is described by the21

referenced resource. This relation might be used to link SBML components to the literature that22

describes this model or this kinetic law.23

• bqbiol:is The biological entity represented by the SBML component is the subject of the referenced24

resource. This relation might be used to link a reaction to its exact counterpart in KEGG or Reactome25

for instance.26

• bqbiol:hasPart The biological entity represented by the SBML component includes the subject of the27

referenced resource, either physically or logically. This relation might be used to link a complex to the28

description of its components.29

• bqbiol:isPartOf The biological entity represented by the SBML component is a physical or logical30

part of the subject of the referenced resource. This relation might be used to link a component to the31

description of the complex is belongs to.32

• bqbiol:isVersionOf The biological entity represented by the SBML component is a version or an33

instance of the subject of the referenced resource.34

• bqbiol:hasVersion The subject of the referenced resource is a version or an instance of the biological35

entity represented by the SBML component.36

• bqbiol:isHomologTo The biological entity represented by the SBML component is homolog, to the37

subject of the referenced resource, i.e. they share a common ancestor.38

• bqbiol:isDescribedBy The biological entity represented by the SBML component is described by the39

referenced resource. This relation should be used for instance to link a species or a parameter to the40

literature that describes the quantity of the species or the value of the parameter.41

6.6 Model history42

When enclosed in an SBML Model element, the format described in previous sections can include additional43

elements to describe the history of the model. This history data must occur immediately before the first44
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BioModels relation elements. These additional elements encode information on the model creator and a1

sequence of dates recording changes to the model. The syntax for this section is outlined below.2

<dc:creator rdf:parseType="Resource">3

<rdf:Bag>4

<rdf:li rdf:parseType="Resource">5

[[6

+++7

<vCard:N rdf:parseType="Resource">8

<vCard:Family>FAMILY_NAME</vCard:Family>9

<vCard:Given>GIVEN_NAME</vCard:Given>10

</vCard:N>11

+++12

[<vCard:EMAIL>EMAIL_ADDRESS</vCard:EMAIL>]13

+++14

[<vCard:ORG>15

<vCard:Orgname>ORGANIZATION_NAME</vCard:Orgname>16

</vCard:ORG>]17

+++18

]]19

</rdf:li>20

...21

</rdf:Bag>22

</dc:creator>23

<dcterms:created rdf:parseType="Resource">24

<dcterms:W3CDTF>DATE<dcterms:W3CDTF>25

</dcterms:created>26

<dcterms:modified rdf:parseType="Resource">27

<dcterms:W3CDTF>DATE<dcterms:W3CDTF>28

</dcterms:modified>29

The order of elements is as shown above except that elements of the format contained between [[ and ]]30

can occur in any order. The capitalized identifiers refer to generic strings of a particular type: FAMILY NAME31

is the family name of a person who created the model; GIVEN NAME is the first name of the same person32

who created the model; EMAIL ADDRESS is the email address of the same person who created the model; and33

ORGANIZATION NAME is the name of the organization with which the same person who created the model is34

affiliated DATE is a date in W3C date format (Wolf and Wicksteed, 1998). W3CDTF, N, ORG and EMAIL are35

literal strings. The elements of the format contained between [ and ] are optional. ‘+++’ is a placeholder36

for either no content or valid XML syntax that is not defined by the standard annotation scheme but is37

consistent with the relevant standards for the enclosing elements. ‘...’ is a placeholder for zero or more38

elements of the same form as the immediately preceding element. The precise form of whitespace and the39

XML namespace prefix definitions is not constrained. The remaining text in this section describes the syntax40

formally in English.41

The additional elements of the model history sub-format consist in sequence of a dc:creator element, a42

dcterms:created element and zero or more dcterms:modified elements. All these elements must have the43

attribute rdf:parseType set to Resource.44

The dc:creator element describes the person who created the SBML encoding of the model and contains a45

single rdf:Bag element. The rdf:Bag element can contain any number of elements however the first element46

must be a rdf:li element. The rdf:li element can contain any number of elements in any order. The47

set of elements contained with the rdf:li element can include the following informative elements: vCard:N,48

vCard:EMAIL and vCard:ORG. The vCard:N contains the name of the creator and must consist of a sequence49

of two elements: vCard:Family and the vCard:Given whose content is the family (surname) and given (first)50

names of the creator respectively. The vCard:N must have the attribute rdf:parseType set to Resource. The51

content of the vCard:EMAIL element must be the email address of the creator. The content of the vCard:ORG52

element must contain a single vCard:Orgname element. The vCard:Orgname element must contain the name53

of an organization to which the creator is affiliated.54

The dcterms:created and dcterms:modified elements must each contain a single dcterms:W3CDTF element55

whose content is a date in W3C date format (Wolf and Wicksteed, 1998) which is a a profile of (restricted56

form of) ISO 8601.57
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6.7 Examples1

The following shows the annotation of a model with model creation data and links to external resources:2

<model metaid="_180340" id="GMO" name="Goldbeter1991_MinMitOscil">3

<annotation>4

<rdf:RDF5

xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"6

xmlns:dc="http://purl.org/dc/elements/1.1/"7

xmlns:dcterms="http://purl.org/dc/terms/"8

xmlns:vCard="http://www.w3.org/2001/vcard-rdf/3.0#"9

xmlns:bqbiol="http://biomodels.net/biology-qualifiers/"10

xmlns:bqmodel="http://biomodels.net/model-qualifiers/"11

>12

<rdf:Description rdf:about="#_180340">13

<dc:creator rdf:parseType="Resource">14

<rdf:Bag>15

<rdf:li rdf:parseType="Resource">16

<vCard:N rdf:parseType="Resource">17

<vCard:Family>Shapiro</vCard:Family>18

<vCard:Given>Bruce</vCard:Given>19

</vCard:N>20

<vCard:EMAIL>bshapiro@jpl.nasa.gov</vCard:EMAIL>21

<vCard:ORG>22

<vCard:Orgname>NASA Jet Propulsion Laboratory</vCard:Orgname>23

</vCard:ORG>24

</rdf:li>25

</rdf:Bag>26

</dc:creator>27

<dcterms:created rdf:parseType="Resource">28

<dcterms:W3CDTF>2005-02-06T23:39:40</dcterms:W3CDTF>29

</dcterms:created>30

<dcterms:modified rdf:parseType="Resource">31

<dcterms:W3CDTF>2005-09-13T13:24:56</dcterms:W3CDTF>32

</dcterms:modified>33

<bqmodel:is>34

<rdf:Bag>35

<rdf:li rdf:resource="http://www.ebi.ac.uk/biomodels/#BIOMD0000000003"/>36

</rdf:Bag>37

</bqmodel:is>38

<bqmodel:isDescribedBy>39

<rdf:Bag>40

<rdf:li rdf:resource="http://www.pubmed.gov/#1833774"/>41

</rdf:Bag>42

<bqmodel:isDescribedBy>43

<bqbiol:isVersionOf>44

<rdf:Bag>45

<rdf:li rdf:resource="http://www.genome.jp/kegg/pathway/#hsa04110"/>46

<rdf:li rdf:resource="http://www.reactome.org/#69278"/>47

</rdf:Bag>48

</bqbiol:isVersionOf>49

</rdf:Description>50

</rdf:RDF>51

</annotation>52

The following example shows a Reaction structure annotated with a reference to its exact Reactome counter-53

part.54

<reaction id="cdc2Phospho" metaid="jb007">55

<annotation>56

<rdf:RDF57

xmlns:bqbiol="http://biomodels.net/biology-qualifiers/"58

xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"59

>60

<rdf:Description rdf:about="#jb007">61

<bqbiol:is>62

<rdf:Bag>63

<rdf:li rdf:resource="http://www.reactome.org/#170156"/>64

</rdf:Bag>65
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</bqbiol:is>1

</rdf:Description>2

</rdf:RDF>3

</annotation>4

<listOfReactants>5

<speciesReference species="cdc2"/>6

</listOfReactants>7

<listOfProducts>8

<speciesReference species="cdc2-Y15P"/>9

</listOfProducts>10

<listOfModifiers>11

<modifierSpeciesReference species="wee1"/>12

</listOfModifiers>13

</reaction>14

The following example describes a species that represents a complex between the protein calmodulin and15

calcium ions:16

<species id="Ca_calmodulin" metaid="cacam">17

<annotation>18

<rdf:RDF19

xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"20

xmlns:bqbiol="http://biomodels.net/biology-qualifiers/"21

>22

<rdf:Description rdf:about="#cacam">23

<bqbiol:hasPart>24

<rdf:Bag>25

<rdf:li rdf:resource="http://www.uniprot.org/#P62158"/>26

<rdf:li rdf:resource="http://www.genome.jp/kegg/compound/#C00076"/>27

</rdf:Bag>28

</bqbiol:hasPart>29

</rdf:Description>30

</rdf:RDF>31

</annotation>32

</species>33

The following example describes a species that represents either “Calcium/calmodulin-dependent protein34

kinase type II alpha chain” or “Calcium/calmodulin-dependent protein kinase type II beta chain”. This is35

the case for instance in the somatic cytoplasm of striatal medium-size spiny neurons, where both are present36

but they cannot be functionally differentiated.37

<species id="calcium_calmodulin" metaid="cacam">38

<annotation>39

<rdf:RDF40

xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"41

xmlns:bqbiol="http://biomodels.net/biology-qualifiers/"42

>43

<rdf:Description rdf:about="#cacam">44

<bqbiol:hasVersion>45

<rdf:Bag>46

<rdf:li rdf:resource="http://www.uniprot.org/#Q9UQM7"/>47

<rdf:li rdf:resource="http://www.uniprot.org/#Q13554"/>48

</rdf:Bag>49

</bqbiol:hasVersion>50

</rdf:Description>51

</rdf:RDF>52

</annotation>53

</species>54

The above approach should not be used to describe “any Calcium/calmodulin-dependent protein kinase type55

II chain”, because such an annotation requires referencing the products of other genes such as gamma or delta.56

All the known proteins could be enumerated, but such an approach would almost surely lead to inaccuracies57

because biological knowledge continues to evolve. Instead, the annotation should refer to generic information58

such as Ensembl family ENSF00000000194 “CALCIUM/CALMODULIN DEPENDENT KINASE TYPE II59

CHAIN” or PIR superfamily PIRSF000594 “Calcium/calmodulin-dependent protein kinase type II”.60
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The following two examples show how to use the qualifier is Version Of. The first example is the relation-1

ship between a reaction and an EC code. An EC code describes an enzymatic activity and an enzymatic2

reaction involving a particular enzyme can be seen as an instance of this activity. For instance the following3

reaction represents the phosphorylation of a glutamate receptor by a complex calcium/calmodulin kinase II.4

<reaction id="NMDAR_phosphorylation" metaid="thx1138">5

<annotation>6

<rdf:RDF7

xmlns:bqbiol="http://biomodels.net/biology-qualifiers/"8

xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"9

>10

<rdf:Description rdf:about="#thx1138">11

<bqbiol:isVersionOf>12

<rdf:Bag>13

<rdf:li rdf:resource="http://www.ec-code.org/#2.7.1.17"/>14

</rdf:Bag>15

</bqbiol:isVersionOf>16

</rdf:Description>17

</rdf:RDF>18

</annotation>19

<listOfReactants>20

<speciesReference species="NMDAR"/>21

</listOfReactants>22

<listOfProducts>23

<speciesReference species="P-NMDAR"/>24

</listOfProducts>25

<listOfModifiers>26

<modifierSpeciesReference species="CaMKII"/>27

</listOfModifiers>28

<kineticLaw>29

<math xmlns="http://www.w3.org/1998/Math/MathML">30

<apply>31

<times/>32

<ci>CaMKII</ci>33

<ci>kcat</ci>34

<apply>35

<divide/>36

<ci>NMDAR</ci>37

<apply>38

</times>39

<ci>NMDAR</ci>40

<ci>Km</ci>41

</apply>42

</apply>43

</apply>44

</math>45

<listOfParameters>46

<parameter id="kcat" value="1"/>47

<parameter id="Km" value="5e-10"/>48

</listOfParameters>49

</kineticLaw>50

</reaction>51

The second example of the use of isVersionOf is the complex between Calcium/calmodulin-dependent protein52

kinase type II alpha chain and Calcium/calmodulin, that is only one of the “calcium- and calmodulin-53

dependent protein kinase complexes” described by the Gene Ontology term GO:0005954.54

<species id="CaCaMKII" metaid="C8H10N4O2">55

<annotation>56

<rdf:RDF57

xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"58

xmlns:bqbiol="http://biomodels.net/biology-qualifiers/"59

>60

<rdf:Description rdf:about="#C8H10N4O2">61

<bqbiol:isVersionOf>62

<rdf:Bag>63

<rdf:li rdf:resource="http://www.geneontology.org/#GO:0005954"/>64

</rdf:Bag>65
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</bqbiol:isVersionOf>1

</rdf:Description>2

</rdf:RDF>3

</annotation>4

</species>5

The previous case is different form the following one, although they could seem similar at first sight.6

The “Calcium/calmodulin-dependent protein kinase type II alpha chain” is a part of the above mentioned7

“calcium- and calmodulin-dependent protein kinase complex”.8

<species id="CaMKIIalpha" metaid="C10H14N2">9

<annotation>10

<rdf:RDF11

xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"12

xmlns:bqbiol="http://biomodels.net/biology-qualifiers/"13

>14

<rdf:Description rdf:about="#C10H14N2">15

<bqbiol:isPartOf>16

<rdf:Bag>17

<rdf:li rdf:resource="http://www.geneontology.org/#GO:0005954"/>18

</rdf:Bag>19

</bqbiol:isPartOf>20

</rdf:Description>21

</rdf:RDF>22

</annotation>23

</species>24

It is possible describe a component with several alternative sets of qualified annotations. For instance, the25

following species represents a pool of GMP, GDP and GDP. We annotate it with the three corresponding26

KEGG compound identifiers but also with the three corresponding ChEBI identifiers. The two alternative27

annotations are encoded in separate hasVersion qualifier elements.28

<species id="GXP" metaid="GXP">29

<annotation>30

<rdf:RDF31

xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"32

xmlns:bqbiol="http://biomodels.net/biology-qualifiers/"33

>34

<rdf:Description rdf:about="#GXP">35

<bqbiol:hasVersion>36

<rdf:Bag>37

<rdf:li rdf:resource="http://www.ebi.ac.uk/chebi/#CHEBI:17345"/>38

<rdf:li rdf:resource="http://www.ebi.ac.uk/chebi/#CHEBI:17552"/>39

<rdf:li rdf:resource="http://www.ebi.ac.uk/chebi/#CHEBI:17627"/>40

</rdf:Bag>41

</bqbiol:hasVersion>42

<bqbiol:hasVersion>43

<rdf:Bag>44

<rdf:li rdf:resource="http://www.genome.jp/kegg/compound/#C00035"/>45

<rdf:li rdf:resource="http://www.genome.jp/kegg/compound/#C00044"/>46

<rdf:li rdf:resource="http://www.genome.jp/kegg/compound/#C00144"/>47

</rdf:Bag>48

</bqbiol:hasVersion>49

</rdf:Description>50

</rdf:RDF>51

</annotation>52

</species>53

The following example presents a reaction being actually the combination of three different elementary54

molecular reactions. We annotate it with the three corresponding KEGG reactions, but also with the three55

corresponding enzymatic activities. Again the two hasPart elements represent two alternative annotations.56

The process represented by the Reaction structure is composed of three parts, and not six parts.57

<reaction id="adenineProd" metaid="adeprod">58

<annotation>59

<rdf:RDF60

xmlns:bqbiol="http://biomodels.net/biology-qualifiers/"61
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xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"1

>2

<rdf:Description rdf:about="#adeprod">3

<bqbiol:hasPart>4

<rdf:Bag>5

<rdf:li rdf:resource="http://www.ec-code.org/#2.5.1.22"/>6

<rdf:li rdf:resource="http://www.ec-code.org/#3.2.2.16"/>7

<rdf:li rdf:resource="http://www.ec-code.org/#4.1.1.50"/>8

</rdf:Bag>9

</bqbiol:hasPart>10

<bqbiol:hasPart>11

<rdf:Bag>12

<rdf:li rdf:resource="http://www.genome.jp/kegg/reaction/#R00178"/>13

<rdf:li rdf:resource="http://www.genome.jp/kegg/reaction/#R01401"/>14

<rdf:li rdf:resource="http://www.genome.jp/kegg/reaction/#R02869"/>15

</rdf:Bag>16

</bqbiol:hasPart>17

</rdf:Description>18

</rdf:RDF>19

</annotation>20

</reaction>21

It is possible to mix different URIs in a given set. The following example presents two alternative annotations22

of the human hemoglobin, the first with ChEBI heme and the second with KEGG heme.23

<species id="heme" metaid="heme">24

<annotation>25

<rdf:RDF26

xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"27

xmlns:bqbiol="http://biomodels.net/biology-qualifiers/"28

>29

<rdf:Description rdf:about="#heme">30

<bqbiol:hasPart>31

<rdf:Bag>32

<rdf:li rdf:resource="http://www.uniprot.org/#P69905"/>33

<rdf:li rdf:resource="http://www.uniprot.org/#P68871"/>34

<rdf:li rdf:resource="http://www.ebi.ac.uk/chebi/#CHEBI:17627">35

</rdf:Bag>36

</bqbiol:hasPart>37

<bqbiol:hasPart>38

<rdf:Bag>39

<rdf:li rdf:resource="http://www.uniprot.org/#P69905"/>40

<rdf:li rdf:resource="http://www.uniprot.org/#P68871"/>41

<rdf:li rdf:resource="http://www.genome.jp/kegg/compound/#C00032"/>42

</rdf:Bag>43

</bqbiol:hasPart>44

</rdf:Description>45

</rdf:RDF>46

</annotation>47

</species>48

As formally defined above it is possible to use different qualifiers in the same annotation element. The49

following phosphorylation is annotated by its exact KEGG counterpart and by the generic GO term “phos-50

phorylation”.51

<reaction id="phosphorylation" metaid="phosphorylation">52

<annotation>53

<rdf:RDF54

xmlns:bqbiol="http://biomodels.net/biology-qualifiers/"55

xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"56

>57

<rdf:Description rdf:about="#phosphorylation">58

<bqbiol:is>59

<rdf:Bag>60

<rdf:li rdf:resource="http://www.genome.jp/kegg/reaction/#R03313" />61

</rdf:Bag>62

</bqbiol:is>63

<bqbiol:isVersionOf>64
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<rdf:Bag>1

<rdf:li rdf:resource="http://www.geneontology.org/#GO:0016310" />2

</rdf:Bag>3

</bqbiol:isVersionOf>4

</rdf:Description>5

</rdf:RDF>6

</annotation>7

</reaction>8
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7 Example models expressed in XML using SBML1

In this section, we present several examples of complete models encoded in XML using SBML Level 2.2

7.1 A simple example application of SBML3

Consider the following representation of an enzymatic reaction:4

E + S
kon−⇀↽−
koff

ES
kcat−→ E + P5

The following is the minimal SBML document encoding the model shown above:6

<?xml version="1.0" encoding="UTF-8"?>7

<sbml level="2" version="2" xmlns="http://www.sbml.org/sbml/level2/version2">8

<model name="EnzymaticReaction">9

<listOfCompartments>10

<compartment id="cytosol" size="1e-14"/>11

</listOfCompartments>12

<listOfSpecies>13

<species compartment="cytosol" id="ES" initialAmount="0" name="ES" />14

<species compartment="cytosol" id="P" initialAmount="0" name="P" />15

<species compartment="cytosol" id="S" initialAmount="1e-20" name="S" />16

<species compartment="cytosol" id="E" initialAmount="5e-21" name="E" />17

</listOfSpecies>18

<listOfReactions>19

<reaction id="veq">20

<listOfReactants>21

<speciesReference species="E"/>22

<speciesReference species="S"/>23

</listOfReactants>24

<listOfProducts>25

<speciesReference species="ES"/>26

</listOfProducts>27

<kineticLaw>28

<math xmlns="http://www.w3.org/1998/Math/MathML">29

<apply>30

<times/>31

<ci>cytosol</ci>32

<apply>33

<minus/>34

<apply>35

<times/>36

<ci>kon</ci>37

<ci>E</ci>38

<ci>S</ci>39

</apply>40

<apply>41

<times/>42

<ci>koff</ci>43

<ci>ES</ci>44

</apply>45

</apply>46

</apply>47

</math>48

<listOfParameters>49

<parameter id="kon" value="1000000"/>50

<parameter id="koff" value="0.2"/>51

</listOfParameters>52

</kineticLaw>53

</reaction>54

<reaction id="vcat" reversible="false" >55

<listOfReactants>56

<speciesReference species="ES"/>57

</listOfReactants>58

<listOfProducts>59

<speciesReference species="E"/>60

<speciesReference species="P"/>61
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</listOfProducts>1

<kineticLaw>2

<math xmlns="http://www.w3.org/1998/Math/MathML">3

<apply>4

<times/>5

<ci>cytosol</ci>6

<ci>kcat</ci>7

<ci>ES</ci>8

</apply>9

</math>10

<listOfParameters>11

<parameter id="kcat" value="0.1"/>12

</listOfParameters>13

</kineticLaw>14

</reaction>15

</listOfReactions>16

</model>17

</sbml>18

In this example, the model has the identifier “EnzymaticReaction”. The model contains one compartment19

(with identifier “cytosol”), four species (with identifiers “ES”, “P”, “S”, and “E”), and two reactions (“veq”20

and “vcat”). The elements in the listOfReactants and listOfProducts in each reaction refer to the names21

of elements listed in the listOfSpecies. The correspondences between the various elements is explicitly22

stated by the speciesReference elements.23

The model also features local parameter definitions in each reaction. In this case, the three parameters24

(“kon”, “koff”, “kcat”) all have unique identifiers and they could also have just as easily been declared25

global parameters in the model. Local parameters frequently become more useful in larger models, where it26

may become tedious to assign unique identifiers for all the different parameters.27

7.2 Example involving units28

The following model uses the units features of SBML Level 2. In this model, the default value of substance29

is changed to be mole units with a scale factor of −3, or millimoles. This sets the default substance units30

in the model. The size and time built-ins are left to their defaults, meaning size is in litres and time is in31

seconds. The result is that, in this model, kinetic law formulas define rates in millimoles per second and the32

species identifiers in them represent concentration values in millimoles per litres. All the species elements33

set the initial amount of every given species to 1 millimole. The parameters “vm” and “km” are defined to34

be in millimoles per litres per second, and milliMoles per litres, respectively.35

<?xml version="1.0" encoding="UTF-8"?>36

<sbml xmlns="http://www.sbml.org/sbml/level2/version2" level="2" version="2"37

xmlns:xhtml="http://www.w3.org/1999/xhtml">38

<model>39

<listOfUnitDefinitions>40

<unitDefinition id="substance">41

<listOfUnits>42

<unit kind="mole" scale="-3"/>43

</listOfUnits>44

</unitDefinition>45

<unitDefinition id="mmls">46

<listOfUnits>47

<unit kind="mole" scale="-3"/>48

<unit kind="litre" exponent="-1"/>49

<unit kind="second" exponent="-1"/>50

</listOfUnits>51

</unitDefinition>52

<unitDefinition id="mml">53

<listOfUnits>54

<unit kind="mole" scale="-3"/>55

<unit kind="litre" exponent="-1"/>56

</listOfUnits>57

</unitDefinition>58

</listOfUnitDefinitions>59

<listOfCompartments>60

93



<compartment id="cell" size="1"/>1

</listOfCompartments>2

<listOfSpecies>3

<species id="x0" compartment="cell" initialConcentration="1"/>4

<species id="x1" compartment="cell" initialConcentration="1"/>5

<species id="s1" compartment="cell" initialConcentration="1"/>6

<species id="s2" compartment="cell" initialConcentration="1"/>7

</listOfSpecies>8

<listOfParameters>9

<parameter id="vm" value="2" units="mmls"/>10

<parameter id="km" value="2" units="mml"/>11

</listOfParameters>12

<listOfReactions>13

<reaction id="v1">14

<listOfReactants>15

<speciesReference species="x0"/>16

</listOfReactants>17

<listOfProducts>18

<speciesReference species="s1"/>19

</listOfProducts>20

<kineticLaw>21

<notes>22

<xhtml:p>((vm * s1)/(km + s1))*cell</xhtml:p>23

</notes>24

<math xmlns="http://www.w3.org/1998/Math/MathML">25

<apply>26

<times/>27

<apply>28

<divide/>29

<apply>30

<times/>31

<ci> vm </ci>32

<ci> s1 </ci>33

</apply>34

<apply>35

<plus/>36

<ci> km </ci>37

<ci> s1 </ci>38

</apply>39

</apply>40

<ci> cell </ci>41

</apply>42

</math>43

</kineticLaw>44

</reaction>45

<reaction id="v2">46

<listOfReactants>47

<speciesReference species="s1"/>48

</listOfReactants>49

<listOfProducts>50

<speciesReference species="s2"/>51

</listOfProducts>52

<kineticLaw>53

<notes>54

<xhtml:p>((vm * s2)/(km + s2))*cell</xhtml:p>55

</notes>56

<math xmlns="http://www.w3.org/1998/Math/MathML">57

<apply>58

<times/>59

<apply>60

<divide/>61

<apply>62

<times/>63

<ci> vm </ci>64

<ci> s2 </ci>65

</apply>66

<apply>67

<plus/>68

<ci> km </ci>69
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<ci> s2 </ci>1

</apply>2

</apply>3

<ci> cell </ci>4

</apply>5

</math>6

</kineticLaw>7

</reaction>8

<reaction id="v3">9

<listOfReactants>10

<speciesReference species="s2"/>11

</listOfReactants>12

<listOfProducts>13

<speciesReference species="x1"/>14

</listOfProducts>15

<kineticLaw>16

<notes>17

<xhtml:p>((vm * x1)/(km + x1))*cell</xhtml:p>18

</notes>19

<math xmlns="http://www.w3.org/1998/Math/MathML">20

<apply>21

<times/>22

<apply>23

<divide/>24

<apply>25

<times/>26

<ci> vm </ci>27

<ci> x1 </ci>28

</apply>29

<apply>30

<plus/>31

<ci> km </ci>32

<ci> x1 </ci>33

</apply>34

</apply>35

<ci> cell </ci>36

</apply>37

</math>38

</kineticLaw>39

</reaction>40

</listOfReactions>41

</model>42

</sbml>43

7.3 Example of a discrete version of a simple dimerization reaction44

(Model contributed by Darren J. Wilkinson, Newcastle University, Newcastle upon Tyne, UK.)45

This example illustrates subtle differences between models formulated for use in a continuous simulation46

framework (e.g., using differential equations) and those intended for a discrete simulation framework. The47

model shown here is suitable for use with a discrete stochastic simulation algorithm of the sort developed by48

Gillespie (1977). In such an approach, species are described in terms of molecular counts and stimulation49

proceeds by computing the probability of the time and identity of the next reaction, then updating the50

species amounts appropriately.51

The model involves a simple dimerization reaction for a protein named “P”:52

2P ↔ P253

The SBML representation is shown below. There are several important points to note. First, the species “P”54

and “P2” declare they are always in discrete amounts by using the flag hasOnlySubstanceUnits=“true”.55

This indicates that when the species identifiers appear in mathematical formulas, the units are substance, not56

the default of substance/size. A second point is that, as a result, the corresponding “kinetic law” formulas57

do not need volume corrections. In Gillespie’s approach, the constants in the rate expressions (here, “c1”58

and “c2”) contain a contribution from the kinetic constants of the reaction and the size of the compartment59
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in which the reactions take place. Finally, it is worth noting the rate expression for the forward reaction is a1

second-order mass-action reaction, but it is the discrete formulation of such a reaction rate (Gillespie, 1977).2

<?xml version="1.0" encoding="UTF-8"?>3

<sbml xmlns="http://www.sbml.org/sbml/level2/version2" level="2" version="2">4

<model id="dimerization">5

<listOfUnitDefinitions>6

<unitDefinition id="substance">7

<listOfUnits>8

<unit kind="item" multiplier="1" />9

</listOfUnits>10

</unitDefinition>11

</listOfUnitDefinitions>12

<listOfCompartments>13

<compartment id="Cell" size="1e-15" />14

</listOfCompartments>15

<listOfSpecies>16

<species id="P" compartment="Cell" initialAmount="301" hasOnlySubstanceUnits="true" />17

<species id="P2" compartment="Cell" initialAmount="0" hasOnlySubstanceUnits="true" />18

</listOfSpecies>19

<listOfReactions>20

<reaction id="Dimerization" reversible="false">21

<listOfReactants>22

<speciesReference species="P" stoichiometry="2" />23

</listOfReactants>24

<listOfProducts>25

<speciesReference species="P2" />26

</listOfProducts>27

<kineticLaw>28

<math xmlns="http://www.w3.org/1998/Math/MathML">29

<apply>30

<divide/>31

<apply>32

<times/>33

<ci> c1 </ci>34

<ci> P </ci>35

<apply>36

<minus/>37

<ci> P </ci>38

<cn type="integer"> 1 </cn>39

</apply>40

</apply>41

<cn type="integer"> 2 </cn>42

</apply>43

</math>44

<listOfParameters>45

<parameter id="c1" value="0.00166" />46

</listOfParameters>47

</kineticLaw>48

</reaction>49

<reaction id="Dissociation" reversible="false">50

<listOfReactants>51

<speciesReference species="P2" />52

</listOfReactants>53

<listOfProducts>54

<speciesReference species="P" stoichiometry="2" />55

</listOfProducts>56

<kineticLaw>57

<math xmlns="http://www.w3.org/1998/Math/MathML">58

<apply>59

<times/>60

<ci> c2 </ci>61

<ci> P </ci>62

</apply>63

</math>64

<listOfParameters>65

<parameter id="c2" value="0.2" />66

</listOfParameters>67

</kineticLaw>68
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</reaction>1

</listOfReactions>2

</model>3

</sbml>4

This example also illustrates the need to provide additional information in a model so that software tools5

using different mathematical frameworks can properly interpret it. In this case, a simulation tool designed6

for continuous ODE-based simulation would likely misinterpret the model (in particular the reaction rate7

formulas), unless it deduced that a discrete stochastic simulation was intended. One of the purposes of SBO8

annotations (Section 5) is to enable such interpretation without the need for deduction.9

7.4 Example involving assignment rules10

This section contains a model that simulates a system containing a fast reaction. This model uses rules to11

express the mathematics of the fast reaction explicitly rather than using the fast field on a reaction element.12

The system modeled is13

X0
k1X0−−−→ S1

S1
kf S1−krS2
−−−−−−−−→ S2

S2
k2S2−−−→ X1

14

15

k1 = 0.1, k2 = 0.15, kf = Keq10000, kr = 10000, Keq = 2.5.16

where X0, S1, and S2 are species in concentration units, and k1, k2, kf , kr, and Keq are parameters. This17

system of reactions can be approximated with the following new system:18

X0
k1X0−−−→ T

T
k2S2−−−→ X1

19

20

S1 =
T

1 + Keq

S2 = KeqS1

21

where T is a new species. The following example SBML model encodes the second system.22

<?xml version="1.0" encoding="UTF-8"?>23

<sbml xmlns="http://www.sbml.org/sbml/level2/version2" level="2" version="2"24

xmlns:math="http://www.w3.org/1998/Math/MathML">25

<model>26

<listOfCompartments>27

<compartment id="cell" size="1"/>28

</listOfCompartments>29

<listOfSpecies>30

<species id="X0" compartment="cell" initialConcentration="1"/>31

<species id="X1" compartment="cell" initialConcentration="0"/>32

<species id="T" compartment="cell" initialConcentration="0"/>33

<species id="S1" compartment="cell" initialConcentration="0"/>34

<species id="S2" compartment="cell" initialConcentration="0"/>35

</listOfSpecies>36

<listOfParameters>37

<parameter id="Keq" value="2.5"/>38

</listOfParameters>39

<listOfRules>40

<assignmentRule variable="S1">41

<math xmlns="http://www.w3.org/1998/Math/MathML">42

<apply>43

<divide/>44

<ci> T </ci>45
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<apply>1

<plus/>2

<cn> 1 </cn>3

<ci> Keq </ci>4

</apply>5

</apply>6

</math>7

</assignmentRule>8

<assignmentRule variable="S2">9

<math xmlns="http://www.w3.org/1998/Math/MathML">10

<apply>11

<times/>12

<ci> Keq </ci>13

<ci> S1 </ci>14

</apply>15

</math>16

</assignmentRule>17

</listOfRules>18

<listOfReactions>19

<reaction id="in">20

<listOfReactants>21

<speciesReference species="X0"/>22

</listOfReactants>23

<listOfProducts>24

<speciesReference species="T"/>25

</listOfProducts>26

<kineticLaw>27

<math xmlns="http://www.w3.org/1998/Math/MathML">28

<apply>29

<times/>30

<ci> k1 </ci>31

<ci> X0 </ci>32

<ci> cell </ci>33

</apply>34

</math>35

<listOfParameters>36

<parameter id="k1" value="0.1"/>37

</listOfParameters>38

</kineticLaw>39

</reaction>40

<reaction id="out">41

<listOfReactants>42

<speciesReference species="T"/>43

</listOfReactants>44

<listOfProducts>45

<speciesReference species="X1"/>46

</listOfProducts>47

<listOfModifiers>48

<modifierSpeciesReference species="S2"/>49

</listOfModifiers>50

<kineticLaw>51

<math xmlns="http://www.w3.org/1998/Math/MathML">52

<apply>53

<times/>54

<ci> k2 </ci>55

<ci> S2 </ci>56

<ci> cell </ci>57

</apply>58

</math>59

<listOfParameters>60

<parameter id="k2" value="0.15"/>61

</listOfParameters>62

</kineticLaw>63

</reaction>64

</listOfReactions>65

</model>66

</sbml>67
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7.5 Example involving algebraic rules1

This section contains an example model that contains an AlgebraicRule structure. The model contains a2

different formulation of the fast reaction described in Section 7.4. The system described in Section 7.4 can3

be approximated with the following system:4

X0
k1X0−−−→ T

T
k2S1−−−→ X1

5

6

S2 = KeqS17

with the constraint:8

S1 + S2 − T = 09

The following example SBML model encodes this approximate form.10

<?xml version="1.0" encoding="UTF-8"?>11

<sbml xmlns="http://www.sbml.org/sbml/level2/version2" level="2" version="2">12

<model>13

<listOfCompartments>14

<compartment id="cell" size="1"/>15

</listOfCompartments>16

<listOfSpecies>17

<species id="X0" compartment="cell" initialConcentration="1"/>18

<species id="X1" compartment="cell" initialConcentration="0"/>19

<species id="T" compartment="cell" initialConcentration="0"/>20

<species id="S1" compartment="cell" initialConcentration="0"/>21

<species id="S2" compartment="cell" initialConcentration="0"/>22

</listOfSpecies>23

<listOfParameters>24

<parameter id="Keq" value="2.5"/>25

</listOfParameters>26

<listOfRules>27

<assignmentRule variable="S2">28

<math xmlns="http://www.w3.org/1998/Math/MathML">29

<apply>30

<times/>31

<ci> Keq </ci>32

<ci> S1 </ci>33

</apply>34

</math>35

</assignmentRule>36

<algebraicRule>37

<math xmlns="http://www.w3.org/1998/Math/MathML">38

<apply>39

<minus/>40

<apply>41

<plus/>42

<ci> S2 </ci>43

<ci> S1 </ci>44

</apply>45

<ci> T </ci>46

</apply>47

</math>48

</algebraicRule>49

</listOfRules>50

<listOfReactions>51

<reaction id="in">52

<listOfReactants>53

<speciesReference species="X0"/>54

</listOfReactants>55

<listOfProducts>56

<speciesReference species="T"/>57

</listOfProducts>58

<kineticLaw>59

<math xmlns="http://www.w3.org/1998/Math/MathML">60

<apply>61
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<times/>1

<ci> k1 </ci>2

<ci> X0 </ci>3

<ci> cell </ci>4

</apply>5

</math>6

<listOfParameters>7

<parameter id="k1" value="0.1"/>8

</listOfParameters>9

</kineticLaw>10

</reaction>11

<reaction id="out">12

<listOfReactants>13

<speciesReference species="T"/>14

</listOfReactants>15

<listOfProducts>16

<speciesReference species="X1"/>17

</listOfProducts>18

<kineticLaw>19

<math xmlns="http://www.w3.org/1998/Math/MathML">20

<apply>21

<times/>22

<ci> k2 </ci>23

<ci> S2 </ci>24

<ci> cell </ci>25

</apply>26

</math>27

<listOfParameters>28

<parameter id="k2" value="0.15"/>29

</listOfParameters>30

</kineticLaw>31

</reaction>32

</listOfReactions>33

</model>34

</sbml>35

7.6 Example with combinations of boundaryCondition and constant values on Species with36

RateRule structures37

In this section, we discuss a model that includes four species, each with a different combination of values for38

their boundaryCondition and constant fields. The model represents a hypothetical system containing one39

reaction,40

S1 + S2
k1S1S2S3−−−−−−−→ S441

where S3 is a species that catalyzes the conversion of species S1 and S2 into S4. S1 and S2 are on the42

boundary of the system (i.e., S1 and S2 are reactants but their values are not determined by a kinetic law).43

The value of S1 in the system is determined over time by the rate rule:44

dS1

dt
= k245

The values of constant parameters in the system are:46

S2 = 1, S3 = 2, k1 = 0.5, k2 = 0.147

and the initial values of species are:48

S1 = 0, S4 = 049

The value of S1 varies over time so in SBML S1 has a constant field with a default value of “false”. The50

values of S2 and S3 are fixed so in SBML they have a constant field values of “true”. S3 only occurs as a51

modifier so the value of its boundaryCondition field can default to “false”. S4 is a product whose value is52

determined by a kinetic law and therefore in the SBML representation has “false” (the default) for both53

its boundaryCondition and constant fields.54
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The following is the SBML rendition of the model shown above:1

<?xml version="1.0" encoding="UTF-8"?>2

<sbml xmlns="http://www.sbml.org/sbml/level2/version2" level="2" version="2">3

<model id="BoundaryCondExampleModel">4

<listOfCompartments>5

<compartment id="compartmentOne" size="1"/>6

</listOfCompartments>7

<listOfSpecies>8

<species id="S1" initialConcentration="0" compartment="compartmentOne"9

boundaryCondition="true" />10

<species id="S2" initialConcentration="1" compartment="compartmentOne"11

boundaryCondition="true" constant="true" />12

<species id="S3" initialConcentration="3" compartment="compartmentOne"13

constant="true"/>14

<species id="S4" initialConcentration="0" compartment="compartmentOne"/>15

</listOfSpecies>16

<listOfParameters>17

<parameter id="k1" value="0.5"/>18

<parameter id="k2" value="0.1"/>19

</listOfParameters>20

<listOfRules>21

<rateRule variable="S1">22

<math xmlns="http://www.w3.org/1998/Math/MathML">23

<ci> k2 </ci>24

</math>25

</rateRule>26

</listOfRules>27

<listOfReactions>28

<reaction id="reaction_1" reversible="false">29

<listOfReactants>30

<speciesReference species="S1"/>31

<speciesReference species="S2"/>32

</listOfReactants>33

<listOfProducts>34

<speciesReference species="S4"/>35

</listOfProducts>36

<listOfModifiers>37

<modifierSpeciesReference species="S3"/>38

</listOfModifiers>39

<kineticLaw>40

<math xmlns="http://www.w3.org/1998/Math/MathML">41

<apply>42

<times/>43

<ci> k1 </ci>44

<ci> S1 </ci>45

<ci> S2 </ci>46

<ci> S3 </ci>47

<ci> compartmentOne </ci>48

</apply>49

</math>50

</kineticLaw>51

</reaction>52

</listOfReactions>53

</model>54

</sbml>55

7.7 Example of translation from a multi-compartmental model to ODEs56

This section contains a model with 2 compartments and 4 reactions. The model is derived from Lotka-57

Volterra, with the addition of a reversible transport step. When observed in a time-course simulation, three58

of this model’s species display damped oscillations.59

Figure 25 illustrates the arrangement of compartments and reactions in the model LotkaVolterra tranport.60

The text of the SBML representation of the model is shown below, and it is followed by its complete61

translation into ordinary differential equations. In this SBML model, the reaction equations are in substance62

per time units. The reactions have also been simplified to reduce common stoichiometric factors. The species63
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cytosol
nucleus

X + Y1n
k1−→ 2 Y1n

KT−⇀↽− 2 Y1c + 2 Y2
k2−→ 4 Y2

k3−→ ∅

Figure 25: A example multi-compartmental model.

variables are in concentration units; their initial quantities are declared using the attribute initialAmount on1

the species definitions, but since the attribute hasOnlySubstanceUnits is not set to true, the identifiers of2

the species represent their concentrations when those identifiers appear in mathematical expressions elsewhere3

in the model. Note that the species whose identifier is “X” is a boundary condition, as indicated by the4

attribute boundaryCondition=“true” in its definition. The attribute speciesType=“Y” in the definitions5

of “Y1n” and “Y1c” indicates that these species are pools of the same participant, but located in different6

compartments.7

<?xml version="1.0" encoding="UTF-8"?>8

<sbml xmlns="http://www.sbml.org/sbml/level2/version2" level="2" version="2">9

<model name="LotkaVolterra_tranport">10

<listOfSpeciesTypes>11

<speciesType id="Y1" />12

</listOfSpeciesTypes>13

<listOfCompartments>14

<compartment id="cytoplasm" size="5"/>15

<compartment id="nucleus" outside="cytoplasm" size="1" />16

</listOfCompartments>17

<listOfSpecies>18

<species id="X" compartment="nucleus" initialAmount="1"19

constant="true" boundaryCondition="true" />20

<species id="Y1n" compartment="nucleus" speciesType="Y1" initialAmount="1" />21

<species id="Y1c" compartment="nucleus" speciesType="Y1" initialAmount="0" />22

<species id="Y2" compartment="cytoplasm" initialAmount="1" />23

</listOfSpecies>24

<listOfParameters>25

<parameter id="k1" value="2500" />26

<parameter id="k2" value="2500" />27

<parameter id="kT" value="25000" />28

<parameter id="k3" value="2500" />29

</listOfParameters>30

<listOfReactions>31

<reaction id="production" reversible="false">32

<listOfReactants>33

<speciesReference species="X"/>34

<speciesReference species="Y1n"/>35

</listOfReactants>36

<listOfProducts>37

<speciesReference species="Y1n"/>38

<speciesReference species="Y1n"/>39

</listOfProducts>40

<kineticLaw>41

<math xmlns="http://www.w3.org/1998/Math/MathML">42

<apply>43

<times/>44

<ci>nucleus</ci>45

<ci>k1</ci>46

<ci>X</ci>47

<ci>Y1n</ci>48

</apply>49

</math>50

</kineticLaw>51

</reaction>52

<reaction id="transport" reversible="true">53

<listOfReactants>54

<speciesReference species="Y1n"/>55

</listOfReactants>56
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<listOfProducts>1

<speciesReference species="Y1c"/>2

</listOfProducts>3

<kineticLaw>4

<math xmlns="http://www.w3.org/1998/Math/MathML">5

<apply>6

<times/>7

<ci>cytoplasm</ci>8

<ci>kT</ci>9

<apply>10

<minus/>11

<ci>Y1n</ci>12

<ci>Y1c</ci>13

</apply>14

</apply>15

</math>16

</kineticLaw>17

</reaction>18

<reaction id="transformation" reversible="false">19

<listOfReactants>20

<speciesReference species="Y1c"/>21

<speciesReference species="Y2"/>22

</listOfReactants>23

<listOfProducts>24

<speciesReference species="Y2"/>25

<speciesReference species="Y2"/>26

</listOfProducts>27

<kineticLaw>28

<math xmlns="http://www.w3.org/1998/Math/MathML">29

<apply>30

<times/>31

<ci>cytoplasm</ci>32

<ci>k2</ci>33

<ci>Y1c</ci>34

<ci>Y2</ci>35

</apply>36

</math>37

</kineticLaw>38

</reaction>39

<reaction id="degradation" reversible="false">40

<listOfReactants>41

<speciesReference species="Y2"/>42

</listOfReactants>43

<kineticLaw>44

<math xmlns="http://www.w3.org/1998/Math/MathML">45

<apply>46

<times/>47

<ci>cytoplasm</ci>48

<ci>k3</ci>49

<ci>Y2</ci>50

</apply>51

</math>52

</kineticLaw>53

</reaction>54

</listOfReactions>55

</model>56

</sbml>57

The ODE translation of this model is as follows. First, we give the values of the constant parameters:58

k1 = 2500, k2 = 2500, K3 = 25000, KT = 250059

Next, here are the initial conditions of the variables. The species variables X, Y1n, Y1c, and Y2 in the following60

equations are all in terms of concentrations, and we use Vn to represent for the size of compartment “nucleus”61

and Vc to represent for the size of compartment “cytoplasm”:62

Vn = 1, Vc = 5, X = 1, Y1n = 1, Y1c = 0, Y2 = 163
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And finally, here are the differential equations:1

dX

dt
= 02

Vn
dY1n

dt
= k1 ·X · Y1n · Vn −KT · (Y1n − Y1c) · Vc reactions production and transport3

Vc
dY1c

dt
= KT · (Y1n − Y1c) · Vc − k2 · Y1c · Y2 · Vc reactions transport and transformation4

Vc
dY2

dt
= k2 · Y1c · Y2 · Vc − k3 · Y2 · Vc reactions transformation and degradation5

6

As formulated here, this example assumes constant volumes. If the sizes of the compartments “cytoplasm”7

or “nucleus” could change during simulation, then it would be preferable to use a different approach to8

constructing the differential equations. In this alternative approach, the ODEs would compute substance9

change rather than concentration change, and the concentration values would be computed using separate10

equations. This approach is used in Section 4.13.6.11

7.8 Example involving function definitions12

This section contains a model that uses the function definition feature of SBML. Consider the following13

hypothetical system:14

S1
f(S1)−−−→ S215

where16

f(x) = 2× x17

The following is the XML document that encodes the model shown above:18

<?xml version="1.0" encoding="UTF-8"?>19

<sbml xmlns="http://www.sbml.org/sbml/level2/version2" level="2" version="2">20

<model id="Example">21

<listOfFunctionDefinitions>22

<functionDefinition id="f">23

<math xmlns="http://www.w3.org/1998/Math/MathML">24

<lambda>25

<bvar><ci> x </ci></bvar>26

<apply>27

<times/>28

<ci> x </ci>29

<cn> 2 </cn>30

</apply>31

</lambda>32

</math>33

</functionDefinition>34

</listOfFunctionDefinitions>35

<listOfCompartments>36

<compartment id="compartmentOne" size="1"/>37

</listOfCompartments>38

<listOfSpecies>39

<species id="S1" initialConcentration="1" compartment="compartmentOne"/>40

<species id="S2" initialConcentration="0" compartment="compartmentOne"/>41

</listOfSpecies>42

<listOfReactions>43

<reaction id="reaction_1" reversible="false">44

<listOfReactants>45

<speciesReference species="S1"/>46

</listOfReactants>47

<listOfProducts>48

<speciesReference species="S2"/>49

</listOfProducts>50
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<kineticLaw>1

<math xmlns="http://www.w3.org/1998/Math/MathML">2

<apply>3

<times/>4

<apply>5

<ci> f </ci>6

<ci> S1 </ci>7

</apply>8

<ci> compartmentOne </ci>9

</apply>10

</math>11

</kineticLaw>12

</reaction>13

</listOfReactions>14

</model>15

</sbml>16

7.9 Example involving delay functions17

The following is a simple model illustrating the use of delay to represent a gene that suppresses its own18

expression. The model can be expressed in a single rule:19

dP

dt
=

1
1 + m(Pdelayed)q

− P

τ
20

where21

Pdelayed is delay(P,∆t) or P at t−∆t

P is protein concentration
τ is the response time
m is a multiplier or equilibrium constant
q is the Hill coefficient

22

and the species quantities are in concentration units. The text of an SBML encoding of this model is given23

below:24

<?xml version="1.0" encoding="UTF-8"?>25

<sbml xmlns="http://www.sbml.org/sbml/level2/version2" level="2" version="2">26

<model>27

<listOfCompartments>28

<compartment id="cell" size="1"/>29

</listOfCompartments>30

<listOfSpecies>31

<species id="P" compartment="cell" initialConcentration="0"/>32

</listOfSpecies>33

<listOfParameters>34

<parameter id="tau" value="1"/>35

<parameter id="m" value="0.5"/>36

<parameter id="q" value="1"/>37

<parameter id="delta_t" value="1"/>38

</listOfParameters>39

<listOfRules>40

<rateRule variable="P">41

<math xmlns="http://www.w3.org/1998/Math/MathML">42

<apply>43

<divide/>44

<apply>45

<minus/>46

<apply>47

<divide/>48

<cn> 1 </cn>49

<apply>50

<plus/>51

<cn> 1 </cn>52

<apply>53

<times/>54
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<ci> m </ci>1

<apply>2

<power/>3

<apply>4

<csymbol encoding="text"5

definitionURL="http://www.sbml.org/sbml/symbols/delay">6

delay7

</csymbol>8

<ci> P </ci>9

<ci> delta_t </ci>10

</apply>11

<ci> q </ci>12

</apply>13

</apply>14

</apply>15

</apply>16

<ci> P </ci>17

</apply>18

<ci> tau </ci>19

</apply>20

</math>21

</rateRule>22

</listOfRules>23

</model>24

</sbml>25

7.10 Example involving events26

This section presents a simple model system that demonstrates the use of events in SBML. Consider a system27

with two genes, k1 and k2. k1 is initially on and k2 is initially off. When turned on, the two genes lead to the28

production of two products, P1 and P2, respectively, at a fixed rate. When P1 reaches a given concentration,29

k2 switches off. This system can be represented mathematically as follows:30

dP1

dt
= k1 − P131

dP2

dt
= k2 − P232

k2 =

{
0 when P1 ≤ τ ,

1 when P1 > τ.
33

The initial values are:34

k1 = 1, k2 = 0, τ = 0.25, P1 = 0, P2 = 035

The SBML Level 2 representation of this as follows:36

<?xml version="1.0" encoding="UTF-8"?>37

<sbml xmlns="http://www.sbml.org/sbml/level2/version2" level="2" version="2"38

xmlns:math="http://www.w3.org/1998/Math/MathML">39

<model>40

<listOfCompartments>41

<compartment id="cell" size="1"/>42

</listOfCompartments>43

<listOfSpecies>44

<species id="P1" compartment="cell" initialConcentration="0"/>45

<species id="P2" compartment="cell" initialConcentration="0"/>46

</listOfSpecies>47

<listOfParameters>48

<parameter id="k1" value="1" constant="false"/>49

<parameter id="k2" value="0" constant="false"/>50

<parameter id="tau" value="0.25"/>51

</listOfParameters>52

<listOfRules>53

<rateRule variable="P1">54
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<math:math>1

<math:apply>2

<math:minus/>3

<math:ci> k1 </math:ci>4

<math:ci> P1 </math:ci>5

</math:apply>6

</math:math>7

</rateRule>8

<rateRule variable="P2">9

<math:math>10

<math:apply>11

<math:minus/>12

<math:ci> k2 </math:ci>13

<math:ci> P2 </math:ci>14

</math:apply>15

</math:math>16

</rateRule>17

</listOfRules>18

<listOfEvents>19

<event>20

<trigger>21

<math:math>22

<math:apply>23

<math:gt/>24

<math:ci> P1 </math:ci>25

<math:ci> tau </math:ci>26

</math:apply>27

</math:math>28

</trigger>29

<listOfEventAssignments>30

<eventAssignment variable="k2">31

<math:math>32

<math:cn> 1 </math:cn>33

</math:math>34

</eventAssignment>35

</listOfEventAssignments>36

</event>37

<event>38

<trigger>39

<math:math>40

<math:apply>41

<math:leq/>42

<math:ci> P1 </math:ci>43

<math:ci> tau </math:ci>44

</math:apply>45

</math:math>46

</trigger>47

<listOfEventAssignments>48

<eventAssignment variable="k2">49

<math:math>50

<math:cn> 0 </math:cn>51

</math:math>52

</eventAssignment>53

</listOfEventAssignments>54

</event>55

</listOfEvents>56

</model>57

</sbml>58

7.11 Example involving two-dimensional compartments59

The following example is a model that uses a two-dimensional compartment. It is a fragment of a larger model60

of calcium regulation across the plasma membrane of a cell. The model includes a calcium influx channel,61

“Ca channel”, and a calcium-extruding PMCA pump, “Ca Pump”. It also includes two cytosolic proteins62

that buffer calcium via the “CalciumCalbindin gt BoundCytosol” and “CalciumBuffer gt BoundCytosol”63

reactions. Finally, the rate expressions in this model do not include explicit factors of the compartment64
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volumes; instead, the various rate constants are assume to include any necessary corrections for volume.1

<?xml version="1.0" encoding="UTF-8"?>2

<sbml xmlns="http://www.sbml.org/sbml/level2/version2" level="2" version="2">3

<model id="facilitated_ca_diffusion">4

<listOfUnitDefinitions>5

<unitDefinition id="substance">6

<listOfUnits>7

<unit kind="mole" scale="-6"/>8

</listOfUnits>9

</unitDefinition>10

<unitDefinition id="area">11

<listOfUnits>12

<unit kind="metre" scale="-6" exponent="2" />13

</listOfUnits>14

</unitDefinition>15

</listOfUnitDefinitions>16

<listOfCompartments>17

<compartment id="Extracellular" spatialDimensions="3" size="1"/>18

<compartment id="PlasmaMembrane" outside="Extracellular"19

spatialDimensions="2" size="1"/>20

<compartment id="Cytosol" outside="PlasmaMembrane"21

spatialDimensions="3" size="1"/>22

</listOfCompartments>23

<listOfSpecies>24

<species25

id="CaBPB_C"26

compartment="Cytosol"27

initialConcentration="47.17"/>28

<species29

id="B_C"30

compartment="Cytosol"31

initialConcentration="396.04"/>32

<species33

id="CaB_C"34

compartment="Cytosol"35

initialConcentration="3.96"/>36

<species37

id="Ca_EC"38

compartment="Extracellular"39

initialConcentration="1000"/>40

<species41

id="Ca_C"42

compartment="Cytosol"43

initialConcentration="0.1"/>44

<species45

id="CaCh_PM"46

compartment="PlasmaMembrane"47

initialConcentration="1"/>48

<species49

id="CaPump_PM"50

compartment="PlasmaMembrane"51

initialConcentration="1"/>52

<species53

id="CaBP_C"54

compartment="Cytosol"55

initialConcentration="202.83"/>56

</listOfSpecies>57

<listOfReactions>58

<reaction id="CalciumCalbindin_gt_BoundCytosol" fast="true">59

<listOfReactants>60

<speciesReference species="CaBP_C"/>61

<speciesReference species="Ca_C"/>62

</listOfReactants>63

<listOfProducts>64

<speciesReference species="CaBPB_C"/>65

</listOfProducts>66

<kineticLaw>67

<notes>68

<p xmlns="http://www.w3.org/1999/xhtml">69
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(((Kf_CalciumCalbindin_BoundCytosol * CaBP_C) * Ca_C) -1

(Kr_CalciumCalbindin_BoundCytosol * CaBPB_C))2

</p>3

</notes>4

<math xmlns="http://www.w3.org/1998/Math/MathML">5

<apply>6

<minus/>7

<apply>8

<times/>9

<ci> Kf_CalciumCalbindin_BoundCytosol </ci>10

<ci> CaBP_C </ci>11

<ci> Ca_C </ci>12

</apply>13

<apply>14

<times/>15

<ci> Kr_CalciumCalbindin_BoundCytosol </ci>16

<ci> CaBPB_C </ci>17

</apply>18

</apply>19

</math>20

<listOfParameters>21

<parameter id="Kf_CalciumCalbindin_BoundCytosol" value="20.0"/>22

<parameter id="Kr_CalciumCalbindin_BoundCytosol" value="8.6"/>23

</listOfParameters>24

</kineticLaw>25

</reaction>26

<reaction id="CalciumBuffer_gt_BoundCytosol" fast="true">27

<listOfReactants>28

<speciesReference species="Ca_C"/>29

<speciesReference species="B_C"/>30

</listOfReactants>31

<listOfProducts>32

<speciesReference species="CaB_C"/>33

</listOfProducts>34

<kineticLaw>35

<notes>36

<p xmlns="http://www.w3.org/1999/xhtml">37

(((Kf_CalciumBuffer_BoundCytosol * Ca_C) * B_C) -38

(Kr_CalciumBuffer_BoundCytosol * CaB_C))39

</p>40

</notes>41

<math xmlns="http://www.w3.org/1998/Math/MathML">42

<apply>43

<minus/>44

<apply>45

<times/>46

<ci> Kf_CalciumBuffer_BoundCytosol </ci>47

<ci> Ca_C </ci>48

<ci> B_C </ci>49

</apply>50

<apply>51

<times/>52

<ci> Kr_CalciumBuffer_BoundCytosol </ci>53

<ci> CaB_C </ci>54

</apply>55

</apply>56

</math>57

<listOfParameters>58

<parameter id="Kf_CalciumBuffer_BoundCytosol" value="0.1"/>59

<parameter id="Kr_CalciumBuffer_BoundCytosol" value="1.0"/>60

</listOfParameters>61

</kineticLaw>62

</reaction>63

<reaction id="Ca_Pump">64

<listOfReactants>65

<speciesReference species="Ca_C"/>66

</listOfReactants>67

<listOfProducts>68

<speciesReference species="Ca_EC"/>69

109



</listOfProducts>1

<listOfModifiers>2

<modifierSpeciesReference species="CaPump_PM"/>3

</listOfModifiers>4

<kineticLaw>5

<notes>6

<p xmlns="http://www.w3.org/1999/xhtml">7

((Vmax * kP * ((Ca_C - Ca_Rest) / (Ca_C + kP)) / (Ca_Rest + kP)) *8

CaPump_PM)9

</p>10

</notes>11

<math xmlns="http://www.w3.org/1998/Math/MathML">12

<apply>13

<divide/>14

<apply>15

<times/>16

<ci> Vmax </ci>17

<ci> kP </ci>18

<ci> CaPump_PM </ci>19

<apply>20

<minus/>21

<ci> Ca_C </ci>22

<ci> Ca_Rest </ci>23

</apply>24

</apply>25

<apply>26

<times/>27

<apply>28

<plus/>29

<ci> Ca_C </ci>30

<ci> kP </ci>31

</apply>32

<apply>33

<plus/>34

<ci> Ca_Rest </ci>35

<ci> kP </ci>36

</apply>37

</apply>38

</apply>39

</math>40

<listOfParameters>41

<parameter id="Vmax" value="-4000"/>42

<parameter id="kP" value="0.25"/>43

<parameter id="Ca_Rest" value="0.1"/>44

</listOfParameters>45

</kineticLaw>46

</reaction>47

<reaction id="Ca_channel">48

<listOfReactants>49

<speciesReference species="Ca_EC"/>50

</listOfReactants>51

<listOfProducts>52

<speciesReference species="Ca_C"/>53

</listOfProducts>54

<listOfModifiers>55

<modifierSpeciesReference species="CaCh_PM"/>56

</listOfModifiers>57

<kineticLaw>58

<notes>59

<p xmlns="http://www.w3.org/1999/xhtml">60

(J0 * Kc * (Ca_EC - Ca_C) / (Kc + Ca_C) * CaCh_PM)61

</p>62

</notes>63

<math xmlns="http://www.w3.org/1998/Math/MathML">64

<apply>65

<divide/>66

<apply>67

<times/>68

<ci> CaCh_PM </ci>69
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<ci> J0 </ci>1

<ci> Kc </ci>2

<apply>3

<minus/>4

<ci> Ca_EC </ci>5

<ci> Ca_C </ci>6

</apply>7

</apply>8

<apply>9

<plus/>10

<ci> Kc </ci>11

<ci> Ca_C </ci>12

</apply>13

</apply>14

</math>15

<listOfParameters>16

<parameter id="J0" value="0.014"/>17

<parameter id="Kc" value="0.5"/>18

</listOfParameters>19

</kineticLaw>20

</reaction>21

</listOfReactions>22

</model>23

</sbml>24
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8 Discussion1

The volume of data now emerging from molecular biotechnology leave little doubt that extensive computer-2

based modeling, simulation and analysis will be critical to understanding and interpreting the data (Abbott,3

1999; Gilman, 2000; Popel and Winslow, 1998; Smaglik, 2000). This has lead to an explosion in the develop-4

ment of computer tools by many research groups across the world. The explosive rate of progress is exciting,5

but the rapid growth of the field is accompanied by problems and pressing needs.6

One problem is that simulation models and results often cannot be directly compared, shared or re-used,7

because the tools developed by different groups often are not compatible with each other. As the field8

of systems biology matures, researchers increasingly need to communicate their results as computational9

models rather than box-and-arrow diagrams. They also need to reuse published and curated models as10

library components in order to succeed with large-scale efforts (e.g., the Alliance for Cellular Signaling;11

Gilman, 2000; Smaglik, 2000). These needs require that models implemented in one software package be12

portable to other software packages, to maximize public understanding and to allow building up libraries of13

curated computational models.14

We offer SBML to the systems biology community as a suggested format for exchanging models between15

simulation/analysis tools. SBML is an open model representation language oriented specifically towards16

representing systems of biochemical reactions.17

Our vision for SBML is to create an open standard that will enable different software tools to exchange18

computational models. SBML is not static; we continue to develop and experiment with it, and we interact19

with other groups who seek to develop similar markup languages. We plan on continuing to evolve SBML20

with the help of the systems biology community to make SBML increasingly more powerful, flexible and21

useful.22

8.1 Future enhancements: SBML Level 3 and beyond23

Many people have expressed a desire to see additional capabilities added to SBML. The following summarizes24

additional features that are under consideration to be included in SBML Level 3:25

• Arrays. This will enable the creation of arrays of components (species, reactions, compartments and26

submodels).27

• Connections. This will be a mechanism for describing the connections between items in an array.28

• Geometry. This will enable the encoding of the spatial characteristics of models including the ge-29

ometry of compartments, the diffusion properties of species and the specification of different species30

concentrations across different regions of a cell.31

• Model Composition. This will enable a large model to be built up out of instances of other models. It32

will also allow the reuse of model components and the creation of several instances of the same model.33

• Multi-state and Complex Species. This will allow the straight-forward construction of models involving34

species with a large number of states or species composed of subcomponents. The representation35

scheme would be designed to contain the combinatorial explosion of objects that often results from36

these types of models.37

• Diagrams. This feature will allow components to be annotated with data to enable the display of the38

model in a diagram.39

• Dynamic Structure. This will enable model structure to vary during simulation. One aspect of this40

allowing rules and reactions to have their effect conditional on the state of the model system. For41

example in SBML Level 2 it is possible to create a rule with the effect:42

ds

dt
=

{
0 if s > 0
y otherwise43
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Dynamic restructuring would enable the expression of the following example:1

if s > 0
ds

dt
= y2

where s is not determined by the rule when s ≤ 0.3

• Tie-breaking algorithm. This will include a controlled vocabulary and associated fields on models to4

indicate the simultaneous event tie-breaking algorithm required to correctly simulate the model.5

• Distributions. This will provide a means of specifying random variables and statistical distribution of6

values.7
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A XML Schema for SBML1

The following is an XML Schema definition for SBML Level 2 Version 2, using the W3C Recommendation2

for XML Schema version 1.0 of 2 May 2001 (Biron and Malhotra, 2000; Fallside, 2000; Thompson et al.,3

2000). This Schema does not define all aspects of SBML Level 2: an SBML document validated by this4

schema is not necessarily a valid SBML Level 2 document. Appendix B contains a a schema for the SBML5

MathML subset. Appendix C contains a list of the remaining checks required to validate a model that is6

already consistent with these two schemas.7

The following schema is self-contained and makes reference to the official XML Schema for MathML hosted8

at the W3. However, for use in software systems, it is more efficient to store the MathML subset Schema of9

Appendix B in a file on a user’s local disk, and change the schemaLocation value on line 27 below to refer10

to this local copy of the MathML subset Schema. Doing so will avoid requiring a network access every time11

this SBML Schema is used.12

13

<?xml version="1.0" encoding="UTF-8"?>14

<xsd:schema15

targetNamespace="http://www.sbml.org/sbml/level2/version2"16

xmlns="http://www.sbml.org/sbml/level2/version2"17

xmlns:mml="http://www.w3.org/1998/Math/MathML"18

xmlns:xlink="http://www.w3.org/1999/xlink"19

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"20

xmlns:xsd="http://www.w3.org/2001/XMLSchema"21

elementFormDefault="qualified"22

attributeFormDefault="unqualified"23

version="SBML L2 V2">24

<xsd:import25

namespace="http://www.w3.org/1998/Math/MathML"26

schemaLocation="http://www.w3.org/Math/XMLSchema/mathml2/mathml2.xsd"/>27

<xsd:annotation>28

<xsd:documentation>29

* Filename : sbml.xsd30

* Description: XML Schema for SBML Level 2 Version 2.31

* Author(s) : Michael Hucka, Andrew Finney, Daniel Lucio32

* Revision : $ Id: sbml.xsd,v 1.17 2006/09/23 02:03:39 mhucka Exp $33

* $ Source: /cvsroot/sbml/specifications/sbml-level-2/version-2/schema/sbml.xsd,v $34

*35

* Copyright 2003-2006 California Institute of Technology, the Japan Science36

* and Technology Corporation, and the University of Hertfordshire.37

*38

* This software is licensed according to the terms described in the file39

* named "LICENSE.txt" included with this distribution and available40

* online at http://sbml.org/xml-schemas/LICENSE.txt41

</xsd:documentation>42

</xsd:annotation>43

<!--The definition of SId follows.-->44

<xsd:simpleType name="SId">45

<xsd:annotation>46

<xsd:documentation>The type SId is used throughout47

SBML as the type of the ’id’ attributes on model elements.</xsd:documentation>48

</xsd:annotation>49

<xsd:restriction base="xsd:string">50

<xsd:pattern value="(_|[a-z]|[A-Z])(_|[a-z]|[A-Z]|[0-9])*"/>51

</xsd:restriction>52

</xsd:simpleType>53

<xsd:simpleType name="UnitSId">54

<xsd:annotation>55

<xsd:documentation>The type UnitSId is used to refer to units.</xsd:documentation>56

</xsd:annotation>57

<xsd:restriction base="SId" />58

</xsd:simpleType>59

<xsd:simpleType name="SBOTerm">60

<xsd:annotation>61

<xsd:documentation>The data type for sboTerm attribute values.</xsd:documentation>62

</xsd:annotation>63

<xsd:restriction base="xsd:string">64

<xsd:pattern value="(SBO:)([0-9]{7})"/>65

</xsd:restriction>66

</xsd:simpleType>67

<!--The definition of SBase follows.-->68

<xsd:complexType name="SBase" abstract="true">69

<xsd:annotation>70

<xsd:documentation>The SBase type is the base type of all main components in SBML.71

It supports attaching metadata, notes and annotations to components.</xsd:documentation>72
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</xsd:annotation>1

<xsd:sequence>2

<xsd:element name="notes" minOccurs="0">3

<xsd:complexType>4

<xsd:sequence>5

<xsd:any namespace="http://www.w3.org/1999/xhtml"6

minOccurs="0" maxOccurs="unbounded"7

processContents="skip"/>8

</xsd:sequence>9

</xsd:complexType>10

</xsd:element>11

<xsd:element name="annotation" minOccurs="0">12

<xsd:complexType>13

<xsd:sequence>14

<xsd:any processContents="skip" minOccurs="0" maxOccurs="unbounded"/>15

</xsd:sequence>16

</xsd:complexType>17

</xsd:element>18

</xsd:sequence>19

<xsd:attribute name="metaid" type="xsd:ID" use="optional"/>20

</xsd:complexType>21

<!--The definition of FunctionDefinition follows.-->22

<xsd:complexType name="FunctionDefinition">23

<xsd:complexContent>24

<xsd:extension base="SBase">25

<xsd:sequence>26

<xsd:element ref="mml:math"/>27

</xsd:sequence>28

<xsd:attribute name="id" type="SId" use="required"/>29

<xsd:attribute name="name" type="xsd:string" use="optional"/>30

<xsd:attribute name="sboTerm" type="SBOTerm" use="optional"/>31

</xsd:extension>32

</xsd:complexContent>33

</xsd:complexType>34

<!--The definition of UnitKind follows.-->35

<xsd:simpleType name="UnitKind">36

<xsd:restriction base="xsd:string">37

<xsd:enumeration value="ampere"/>38

<xsd:enumeration value="becquerel"/>39

<xsd:enumeration value="candela"/>40

<xsd:enumeration value="coulomb"/>41

<xsd:enumeration value="dimensionless"/>42

<xsd:enumeration value="farad"/>43

<xsd:enumeration value="gram"/>44

<xsd:enumeration value="gray"/>45

<xsd:enumeration value="henry"/>46

<xsd:enumeration value="hertz"/>47

<xsd:enumeration value="item"/>48

<xsd:enumeration value="joule"/>49

<xsd:enumeration value="katal"/>50

<xsd:enumeration value="kelvin"/>51

<xsd:enumeration value="kilogram"/>52

<xsd:enumeration value="litre"/>53

<xsd:enumeration value="lumen"/>54

<xsd:enumeration value="lux"/>55

<xsd:enumeration value="metre"/>56

<xsd:enumeration value="mole"/>57

<xsd:enumeration value="newton"/>58

<xsd:enumeration value="ohm"/>59

<xsd:enumeration value="pascal"/>60

<xsd:enumeration value="radian"/>61

<xsd:enumeration value="second"/>62

<xsd:enumeration value="siemens"/>63

<xsd:enumeration value="sievert"/>64

<xsd:enumeration value="steradian"/>65

<xsd:enumeration value="tesla"/>66

<xsd:enumeration value="volt"/>67

<xsd:enumeration value="watt"/>68

<xsd:enumeration value="weber"/>69

</xsd:restriction>70

</xsd:simpleType>71

<!--The definition of Unit follows.-->72

<xsd:complexType name="Unit">73

<xsd:complexContent>74

<xsd:extension base="SBase">75

<xsd:attribute name="kind" type="UnitKind" use="required"/>76

<xsd:attribute name="exponent" type="xsd:int" default="1"/>77

<xsd:attribute name="scale" type="xsd:int" default="0"/>78

<xsd:attribute name="multiplier" type="xsd:double" default="1"/>79

</xsd:extension>80
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</xsd:complexContent>1

</xsd:complexType>2

<!--The definition of UnitDefinition follows.-->3

<xsd:complexType name="ListOfUnits">4

<xsd:complexContent>5

<xsd:extension base="SBase">6

<xsd:sequence>7

<xsd:element name="unit" type="Unit" maxOccurs="unbounded"/>8

</xsd:sequence>9

</xsd:extension>10

</xsd:complexContent>11

</xsd:complexType>12

<xsd:complexType name="UnitDefinition">13

<xsd:complexContent>14

<xsd:extension base="SBase">15

<xsd:sequence>16

<xsd:element name="listOfUnits" type="ListOfUnits"/>17

</xsd:sequence>18

<xsd:attribute name="id" type="UnitSId" use="required"/>19

<xsd:attribute name="name" type="xsd:string" use="optional"/>20

</xsd:extension>21

</xsd:complexContent>22

</xsd:complexType>23

<!--The definition of CompartmentType follows.-->24

<xsd:complexType name="CompartmentType">25

<xsd:complexContent>26

<xsd:extension base="SBase">27

<xsd:attribute name="id" type="SId" use="required"/>28

<xsd:attribute name="name" type="xsd:string" use="optional"/>29

</xsd:extension>30

</xsd:complexContent>31

</xsd:complexType>32

<!--The definition of SpeciesType follows.-->33

<xsd:complexType name="SpeciesType">34

<xsd:complexContent>35

<xsd:extension base="SBase">36

<xsd:attribute name="id" type="SId" use="required"/>37

<xsd:attribute name="name" type="xsd:string" use="optional"/>38

</xsd:extension>39

</xsd:complexContent>40

</xsd:complexType>41

<!--The definition of Compartment follows.-->42

<xsd:complexType name="Compartment">43

<xsd:complexContent>44

<xsd:extension base="SBase">45

<xsd:attribute name="id" type="SId" use="required"/>46

<xsd:attribute name="name" type="xsd:string" use="optional"/>47

<xsd:attribute name="compartmentType" type="SId" use="optional"/>48

<xsd:attribute name="spatialDimensions" use="optional" default="3">49

<xsd:simpleType>50

<xsd:restriction base="xsd:int">51

<xsd:minInclusive value="0"/>52

<xsd:maxInclusive value="3"/>53

</xsd:restriction>54

</xsd:simpleType>55

</xsd:attribute>56

<xsd:attribute name="size" type="xsd:double" use="optional"/>57

<xsd:attribute name="units" type="UnitSId" use="optional"/>58

<xsd:attribute name="outside" type="SId" use="optional"/>59

<xsd:attribute name="constant" type="xsd:boolean" use="optional" default="true"/>60

</xsd:extension>61

</xsd:complexContent>62

</xsd:complexType>63

<!--The definition of Species follows.-->64

<xsd:complexType name="Species">65

<xsd:complexContent>66

<xsd:extension base="SBase">67

<xsd:attribute name="id" type="SId" use="required"/>68

<xsd:attribute name="name" type="xsd:string" use="optional"/>69

<xsd:attribute name="speciesType" type="SId" use="optional"/>70

<xsd:attribute name="compartment" type="SId" use="required"/>71

<xsd:attribute name="initialAmount" type="xsd:double" use="optional"/>72

<xsd:attribute name="initialConcentration" type="xsd:double" use="optional"/>73

<xsd:attribute name="substanceUnits" type="UnitSId" use="optional"/>74

<xsd:attribute name="spatialSizeUnits" type="UnitSId" use="optional"/>75

<xsd:attribute name="hasOnlySubstanceUnits" type="xsd:boolean" use="optional" default="false"/>76

<xsd:attribute name="boundaryCondition" type="xsd:boolean" use="optional" default="false"/>77

<xsd:attribute name="charge" type="xsd:int" use="optional"/>78

<xsd:attribute name="constant" type="xsd:boolean" use="optional" default="false"/>79

</xsd:extension>80
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</xsd:complexContent>1

</xsd:complexType>2

<!--The definition of Parameter follows.-->3

<xsd:complexType name="Parameter">4

<xsd:complexContent>5

<xsd:extension base="SBase">6

<xsd:attribute name="id" type="SId" use="required"/>7

<xsd:attribute name="name" type="xsd:string" use="optional"/>8

<xsd:attribute name="value" type="xsd:double" use="optional"/>9

<xsd:attribute name="units" type="UnitSId" use="optional"/>10

<xsd:attribute name="constant" type="xsd:boolean" use="optional" default="true"/>11

<xsd:attribute name="sboTerm" type="SBOTerm" use="optional"/>12

</xsd:extension>13

</xsd:complexContent>14

</xsd:complexType>15

<xsd:complexType name="ListOfParameters">16

<xsd:complexContent>17

<xsd:extension base="SBase">18

<xsd:sequence>19

<xsd:element name="parameter" type="Parameter" maxOccurs="unbounded"/>20

</xsd:sequence>21

</xsd:extension>22

</xsd:complexContent>23

</xsd:complexType>24

<!--The definition of Initial Assignment follows.-->25

<xsd:complexType name="InitialAssignment">26

<xsd:complexContent>27

<xsd:extension base="SBase">28

<xsd:sequence>29

<xsd:element ref="mml:math"/>30

</xsd:sequence>31

<xsd:attribute name="symbol" type="SId" use="required"/>32

<xsd:attribute name="sboTerm" type="SBOTerm" use="optional"/>33

</xsd:extension>34

</xsd:complexContent>35

</xsd:complexType>36

<!--The definition of Rule follows. -->37

<xsd:complexType name="Rule" abstract="true">38

<xsd:complexContent>39

<xsd:extension base="SBase">40

<xsd:sequence>41

<xsd:element ref="mml:math"/>42

</xsd:sequence>43

<xsd:attribute name="sboTerm" type="SBOTerm" use="optional"/>44

</xsd:extension>45

</xsd:complexContent>46

</xsd:complexType>47

<xsd:complexType name="AlgebraicRule">48

<xsd:complexContent>49

<xsd:extension base="Rule"/>50

</xsd:complexContent>51

</xsd:complexType>52

<xsd:complexType name="AssignmentRule">53

<xsd:complexContent>54

<xsd:extension base="Rule">55

<xsd:attribute name="variable" type="SId" use="required"/>56

</xsd:extension>57

</xsd:complexContent>58

</xsd:complexType>59

<xsd:complexType name="RateRule">60

<xsd:complexContent>61

<xsd:extension base="Rule">62

<xsd:attribute name="variable" type="SId" use="required"/>63

</xsd:extension>64

</xsd:complexContent>65

</xsd:complexType>66

<!--The definition of Constraint follows.-->67

<xsd:complexType name="Constraint">68

<xsd:complexContent>69

<xsd:extension base="SBase">70

<xsd:sequence>71

<xsd:element ref="mml:math"/>72

<xsd:element name="message" minOccurs="0">73

<xsd:complexType>74

<xsd:sequence>75

<xsd:any namespace="http://www.w3.org/1999/xhtml"76

minOccurs="0" maxOccurs="unbounded"77

processContents="skip"/>78

</xsd:sequence>79

</xsd:complexType>80
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</xsd:element>1

</xsd:sequence>2

<xsd:attribute name="sboTerm" type="SBOTerm" use="optional"/>3

</xsd:extension>4

</xsd:complexContent>5

</xsd:complexType>6

<!--The definition of Reaction follows.-->7

<xsd:complexType name="KineticLaw">8

<xsd:complexContent>9

<xsd:extension base="SBase">10

<xsd:sequence>11

<xsd:element ref="mml:math"/>12

<xsd:element name="listOfParameters" type="ListOfParameters" minOccurs="0"/>13

</xsd:sequence>14

<xsd:attribute name="sboTerm" type="SBOTerm" use="optional"/>15

</xsd:extension>16

</xsd:complexContent>17

</xsd:complexType>18

<xsd:complexType name="SimpleSpeciesReference" abstract="true">19

<xsd:complexContent>20

<xsd:extension base="SBase">21

<xsd:attribute name="id" type="SId" use="optional"/>22

<xsd:attribute name="name" type="xsd:string" use="optional"/>23

<xsd:attribute name="species" type="SId" use="required"/>24

<xsd:attribute name="sboTerm" type="SBOTerm" use="optional"/>25

</xsd:extension>26

</xsd:complexContent>27

</xsd:complexType>28

<xsd:complexType name="ModifierSpeciesReference">29

<xsd:complexContent>30

<xsd:extension base="SimpleSpeciesReference"/>31

</xsd:complexContent>32

</xsd:complexType>33

<xsd:complexType name="ListOfModifierSpeciesReferences">34

<xsd:complexContent>35

<xsd:extension base="SBase">36

<xsd:sequence>37

<xsd:element name="modifierSpeciesReference"38

type="ModifierSpeciesReference" maxOccurs="unbounded"/>39

</xsd:sequence>40

</xsd:extension>41

</xsd:complexContent>42

</xsd:complexType>43

<xsd:complexType name="StoichiometryMath">44

<xsd:complexContent>45

<xsd:extension base="SBase">46

<xsd:sequence>47

<xsd:element ref="mml:math"/>48

</xsd:sequence>49

</xsd:extension>50

</xsd:complexContent>51

</xsd:complexType>52

<xsd:complexType name="SpeciesReference">53

<xsd:complexContent>54

<xsd:extension base="SimpleSpeciesReference">55

<xsd:sequence>56

<xsd:element name="stoichiometryMath" type="StoichiometryMath" minOccurs="0"/>57

</xsd:sequence>58

<xsd:attribute name="stoichiometry" type="xsd:double" use="optional" default="1"/>59

</xsd:extension>60

</xsd:complexContent>61

</xsd:complexType>62

<xsd:complexType name="ListOfSpeciesReferences">63

<xsd:complexContent>64

<xsd:extension base="SBase">65

<xsd:sequence>66

<xsd:element name="speciesReference" type="SpeciesReference" maxOccurs="unbounded"/>67

</xsd:sequence>68

</xsd:extension>69

</xsd:complexContent>70

</xsd:complexType>71

<xsd:complexType name="Reaction">72

<xsd:complexContent>73

<xsd:extension base="SBase">74

<xsd:sequence>75

<xsd:element name="listOfReactants" type="ListOfSpeciesReferences" minOccurs="0"/>76

<xsd:element name="listOfProducts" type="ListOfSpeciesReferences" minOccurs="0"/>77

<xsd:element name="listOfModifiers" type="ListOfModifierSpeciesReferences" minOccurs="0"/>78

<xsd:element name="kineticLaw" type="KineticLaw" minOccurs="0"/>79

</xsd:sequence>80
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<xsd:attribute name="id" type="SId" use="required"/>1

<xsd:attribute name="name" type="xsd:string" use="optional"/>2

<xsd:attribute name="reversible" type="xsd:boolean" use="optional" default="true"/>3

<xsd:attribute name="fast" type="xsd:boolean" use="optional" default="false"/>4

<xsd:attribute name="sboTerm" type="SBOTerm" use="optional"/>5

</xsd:extension>6

</xsd:complexContent>7

</xsd:complexType>8

<!--The definition of Event follows.-->9

<xsd:complexType name="EventAssignment">10

<xsd:complexContent>11

<xsd:extension base="SBase">12

<xsd:sequence>13

<xsd:element ref="mml:math"/>14

</xsd:sequence>15

<xsd:attribute name="variable" type="SId" use="required"/>16

<xsd:attribute name="sboTerm" type="SBOTerm" use="optional"/>17

</xsd:extension>18

</xsd:complexContent>19

</xsd:complexType>20

<xsd:complexType name="ListOfEventAssignments">21

<xsd:complexContent>22

<xsd:extension base="SBase">23

<xsd:sequence>24

<xsd:element name="eventAssignment" type="EventAssignment" maxOccurs="unbounded"/>25

</xsd:sequence>26

</xsd:extension>27

</xsd:complexContent>28

</xsd:complexType>29

<xsd:complexType name="MathField">30

<xsd:complexContent>31

<xsd:extension base="SBase">32

<xsd:sequence>33

<xsd:element ref="mml:math"/>34

</xsd:sequence>35

</xsd:extension>36

</xsd:complexContent>37

</xsd:complexType>38

<xsd:complexType name="Event">39

<xsd:complexContent>40

<xsd:extension base="SBase">41

<xsd:sequence>42

<xsd:element name="trigger" type="MathField"/>43

<xsd:element name="delay" type="MathField" minOccurs="0"/>44

<xsd:element name="listOfEventAssignments" type="ListOfEventAssignments"/>45

</xsd:sequence>46

<xsd:attribute name="id" type="SId" use="optional"/>47

<xsd:attribute name="name" type="xsd:string" use="optional"/>48

<xsd:attribute name="timeUnits" type="UnitSId" use="optional"/>49

<xsd:attribute name="sboTerm" type="SBOTerm" use="optional"/>50

</xsd:extension>51

</xsd:complexContent>52

</xsd:complexType>53

<!-- The definition of Model follows.-->54

<xsd:complexType name="Model">55

<xsd:complexContent>56

<xsd:extension base="SBase">57

<xsd:sequence>58

<xsd:element name="listOfFunctionDefinitions" minOccurs="0">59

<xsd:complexType>60

<xsd:complexContent>61

<xsd:extension base="SBase">62

<xsd:sequence>63

<xsd:element name="functionDefinition"64

type="FunctionDefinition" maxOccurs="unbounded"/>65

</xsd:sequence>66

</xsd:extension>67

</xsd:complexContent>68

</xsd:complexType>69

</xsd:element>70

<xsd:element name="listOfUnitDefinitions" minOccurs="0">71

<xsd:complexType>72

<xsd:complexContent>73

<xsd:extension base="SBase">74

<xsd:sequence>75

<xsd:element name="unitDefinition"76

type="UnitDefinition" maxOccurs="unbounded"/>77

</xsd:sequence>78

</xsd:extension>79

</xsd:complexContent>80
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</xsd:complexType>1

</xsd:element>2

<xsd:element name="listOfCompartmentTypes" minOccurs="0">3

<xsd:complexType>4

<xsd:complexContent>5

<xsd:extension base="SBase">6

<xsd:sequence>7

<xsd:element8

name="compartmentType"9

type="CompartmentType"10

maxOccurs="unbounded"/>11

</xsd:sequence>12

</xsd:extension>13

</xsd:complexContent>14

</xsd:complexType>15

</xsd:element>16

<xsd:element name="listOfSpeciesTypes" minOccurs="0">17

<xsd:complexType>18

<xsd:complexContent>19

<xsd:extension base="SBase">20

<xsd:sequence>21

<xsd:element name="speciesType" type="SpeciesType"22

maxOccurs="unbounded"/>23

</xsd:sequence>24

</xsd:extension>25

</xsd:complexContent>26

</xsd:complexType>27

</xsd:element>28

<xsd:element name="listOfCompartments" minOccurs="0">29

<xsd:complexType>30

<xsd:complexContent>31

<xsd:extension base="SBase">32

<xsd:sequence>33

<xsd:element name="compartment" type="Compartment"34

maxOccurs="unbounded"/>35

</xsd:sequence>36

</xsd:extension>37

</xsd:complexContent>38

</xsd:complexType>39

</xsd:element>40

<xsd:element name="listOfSpecies" minOccurs="0">41

<xsd:complexType>42

<xsd:complexContent>43

<xsd:extension base="SBase">44

<xsd:sequence>45

<xsd:element name="species" type="Species"46

maxOccurs="unbounded"/>47

</xsd:sequence>48

</xsd:extension>49

</xsd:complexContent>50

</xsd:complexType>51

</xsd:element>52

<xsd:element name="listOfParameters" type="ListOfParameters" minOccurs="0"/>53

<xsd:element name="listOfInitialAssignments" minOccurs="0">54

<xsd:complexType>55

<xsd:complexContent>56

<xsd:extension base="SBase">57

<xsd:sequence>58

<xsd:element name="initialAssignment"59

type="InitialAssignment" maxOccurs="unbounded"/>60

</xsd:sequence>61

</xsd:extension>62

</xsd:complexContent>63

</xsd:complexType>64

</xsd:element>65

<xsd:element name="listOfRules" minOccurs="0">66

<xsd:complexType>67

<xsd:complexContent>68

<xsd:extension base="SBase">69

<xsd:choice maxOccurs="unbounded">70

<xsd:element name="algebraicRule" type="AlgebraicRule"71

minOccurs="0"/>72

<xsd:element name="assignmentRule" type="AssignmentRule"73

minOccurs="0"/>74

<xsd:element name="rateRule" type="RateRule" minOccurs="0"/>75

</xsd:choice>76

</xsd:extension>77

</xsd:complexContent>78

</xsd:complexType>79

</xsd:element>80

121



<xsd:element name="listOfConstraints" minOccurs="0">1

<xsd:complexType>2

<xsd:complexContent>3

<xsd:extension base="SBase">4

<xsd:sequence>5

<xsd:element name="constraint" type="Constraint"6

maxOccurs="unbounded"/>7

</xsd:sequence>8

</xsd:extension>9

</xsd:complexContent>10

</xsd:complexType>11

</xsd:element>12

<xsd:element name="listOfReactions" minOccurs="0">13

<xsd:complexType>14

<xsd:complexContent>15

<xsd:extension base="SBase">16

<xsd:sequence>17

<xsd:element name="reaction" type="Reaction"18

maxOccurs="unbounded"/>19

</xsd:sequence>20

</xsd:extension>21

</xsd:complexContent>22

</xsd:complexType>23

</xsd:element>24

<xsd:element name="listOfEvents" minOccurs="0">25

<xsd:complexType>26

<xsd:complexContent>27

<xsd:extension base="SBase">28

<xsd:sequence>29

<xsd:element name="event" type="Event"30

maxOccurs="unbounded"/>31

</xsd:sequence>32

</xsd:extension>33

</xsd:complexContent>34

</xsd:complexType>35

</xsd:element>36

</xsd:sequence>37

<xsd:attribute name="id" type="SId" use="optional"/>38

<xsd:attribute name="name" type="xsd:string" use="optional"/>39

<xsd:attribute name="sboTerm" type="SBOTerm" use="optional"/>40

</xsd:extension>41

</xsd:complexContent>42

</xsd:complexType>43

<!-- The following is the type definition for the top-level element in an SBML document.-->44

<xsd:complexType name="Sbml">45

<xsd:complexContent>46

<xsd:extension base="SBase">47

<xsd:sequence>48

<xsd:element name="model" type="Model"/>49

</xsd:sequence>50

<xsd:attribute name="level" type="xsd:positiveInteger" use="required" fixed="2"/>51

<xsd:attribute name="version" type="xsd:positiveInteger" use="required" fixed="2"/>52

</xsd:extension>53

</xsd:complexContent>54

</xsd:complexType>55

<!--The following is the (only) top-level element allowed in an SBML document.-->56

<xsd:element name="sbml" type="Sbml"/>57

<!--The end.-->58

</xsd:schema>59
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B XML Schema for MathML subset1

The following XML schema defines the syntax of the MathML syntax that is used in SBML Level 2 version2

1 and 2.3

4

<?xml version="1.0" encoding="UTF-8"?>5

<!--6

* Filename : sbml-mathml.xsd7

* Description : Schema for the MathML subset used by SBML L2.8

* Author(s) : Andrew Finney, Michael Hucka9

* Organization: SBML Team <sbml-team@caltech.edu>10

* Revision : $ Id: sbml-mathml.xsd,v 1.3 2006/07/20 23:46:31 mhucka Exp $11

* Source : $ Source: /cvsroot/sbml/specifications/sbml-mathml/sbml-mathml.xsd,v $12

*13

* Copyright 2003-2006 California Institute of Technology, the Japan Science14

* and Technology Corporation, and the University of Hertfordshire.15

*16

* This software is licensed according to the terms described in the file17

* named "LICENSE.txt" included with this distribution and available18

* online at http://sbml.org/xml-schemas/LICENSE.txt19

*20

* Summary:21

*22

* This is a reduced version of the XML Schema for MathML 2.0. It23

* corresponds to the subset of MathML 2.0 used in SBML Level 2, and24

* should be used by validating XML parsers instead of the actual25

* MathML XML Schema when validating SBML files. To accomplish that,26

* changed the value of the attribute ’schemaLocation’ in the SBML27

* XML Schema file (sbml.xsd) to refer to a copy of this Schema file28

* on your computer’s local hard disk.29

-->30

<xs:schema xmlns="http://www.w3.org/1998/Math/MathML"31

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"32

xmlns:xs="http://www.w3.org/2001/XMLSchema"33

targetNamespace="http://www.w3.org/1998/Math/MathML"34

elementFormDefault="qualified"35

attributeFormDefault="unqualified">36

<xs:attributeGroup name="MathAttributes">37

<xs:attribute name="class" type="xs:NMTOKENS" use="optional"/>38

<xs:attribute name="style" type="xs:string" use="optional"/>39

<xs:attribute name="id" type="xs:ID" use="optional"/>40

</xs:attributeGroup>41

<xs:complexType name="MathBase">42

<xs:attributeGroup ref="MathAttributes"/>43

</xs:complexType>44

<xs:attributeGroup name="CnAttributes">45

<xs:attribute name="type">46

<xs:simpleType>47

<xs:restriction base="xs:NMTOKEN">48

<xs:enumeration value="e-notation"/>49

<xs:enumeration value="integer"/>50

<xs:enumeration value="rational"/>51

<xs:enumeration value="real"/>52

</xs:restriction>53

</xs:simpleType>54

</xs:attribute>55

<xs:attributeGroup ref="MathAttributes"/>56

</xs:attributeGroup>57

<xs:complexType name="SepType"/>58

<xs:complexType name="Cn" mixed="true">59

<xs:choice minOccurs="0">60

<xs:element name="sep" type="SepType"/>61

</xs:choice>62

<xs:attributeGroup ref="CnAttributes"/>63

</xs:complexType>64

<xs:complexType name="Ci">65

<xs:simpleContent>66

<xs:extension base="xs:string">67

<xs:attributeGroup ref="MathAttributes"/>68

</xs:extension>69

</xs:simpleContent>70

</xs:complexType>71

<xs:simpleType name="CsymbolURI">72

<xs:restriction base="xs:string">73

<xs:enumeration value="http://www.sbml.org/sbml/symbols/time"/>74

<xs:enumeration value="http://www.sbml.org/sbml/symbols/delay"/>75

</xs:restriction>76

</xs:simpleType>77

123



<xs:complexType name="Csymbol">1

<xs:simpleContent>2

<xs:extension base="xs:string">3

<xs:attribute name="encoding" use="required" fixed="text"/>4

<xs:attribute name="definitionURL" type="CsymbolURI" use="required"/>5

<xs:attributeGroup ref="MathAttributes"/>6

</xs:extension>7

</xs:simpleContent>8

</xs:complexType>9

<xs:complexType name="NodeContainer">10

<xs:complexContent>11

<xs:extension base="MathBase">12

<xs:group ref="Node"/>13

</xs:extension>14

</xs:complexContent>15

</xs:complexType>16

<xs:complexType name="Apply">17

<xs:complexContent>18

<xs:extension base="MathBase">19

<xs:sequence>20

<xs:choice>21

<xs:element name="ci" type="Ci"/>22

<xs:element name="csymbol" type="Csymbol"/>23

<xs:element name="eq" type="MathBase"/>24

<xs:element name="neq" type="MathBase"/>25

<xs:element name="gt" type="MathBase"/>26

<xs:element name="lt" type="MathBase"/>27

<xs:element name="geq" type="MathBase"/>28

<xs:element name="leq" type="MathBase"/>29

<xs:element name="plus" type="MathBase"/>30

<xs:element name="minus" type="MathBase"/>31

<xs:element name="times" type="MathBase"/>32

<xs:element name="divide" type="MathBase"/>33

<xs:element name="power" type="MathBase"/>34

<xs:sequence>35

<xs:element name="root" type="MathBase"/>36

<xs:element name="degree" type="NodeContainer" minOccurs="0"/>37

</xs:sequence>38

<xs:element name="abs" type="MathBase"/>39

<xs:element name="exp" type="MathBase"/>40

<xs:element name="ln" type="MathBase"/>41

<xs:sequence>42

<xs:element name="log" type="MathBase"/>43

<xs:element name="logbase" type="NodeContainer" minOccurs="0"/>44

</xs:sequence>45

<xs:element name="floor" type="MathBase"/>46

<xs:element name="ceiling" type="MathBase"/>47

<xs:element name="factorial" type="MathBase"/>48

<xs:element name="and" type="MathBase"/>49

<xs:element name="or" type="MathBase"/>50

<xs:element name="xor" type="MathBase"/>51

<xs:element name="not" type="MathBase"/>52

<xs:element name="sin" type="MathBase"/>53

<xs:element name="cos" type="MathBase"/>54

<xs:element name="tan" type="MathBase"/>55

<xs:element name="sec" type="MathBase"/>56

<xs:element name="csc" type="MathBase"/>57

<xs:element name="cot" type="MathBase"/>58

<xs:element name="sinh" type="MathBase"/>59

<xs:element name="cosh" type="MathBase"/>60

<xs:element name="tanh" type="MathBase"/>61

<xs:element name="sech" type="MathBase"/>62

<xs:element name="csch" type="MathBase"/>63

<xs:element name="coth" type="MathBase"/>64

<xs:element name="arcsin" type="MathBase"/>65

<xs:element name="arccos" type="MathBase"/>66

<xs:element name="arctan" type="MathBase"/>67

<xs:element name="arcsec" type="MathBase"/>68

<xs:element name="arccsc" type="MathBase"/>69

<xs:element name="arccot" type="MathBase"/>70

<xs:element name="arcsinh" type="MathBase"/>71

<xs:element name="arccosh" type="MathBase"/>72

<xs:element name="arctanh" type="MathBase"/>73

<xs:element name="arcsech" type="MathBase"/>74

<xs:element name="arccsch" type="MathBase"/>75

<xs:element name="arccoth" type="MathBase"/>76

</xs:choice>77

<xs:group ref="Node" maxOccurs="unbounded"/>78

</xs:sequence>79

</xs:extension>80
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</xs:complexContent>1

</xs:complexType>2

<xs:complexType name="Piece">3

<xs:complexContent>4

<xs:extension base="MathBase">5

<xs:group ref="Node" minOccurs="2" maxOccurs="2"/>6

</xs:extension>7

</xs:complexContent>8

</xs:complexType>9

<xs:complexType name="Otherwise">10

<xs:complexContent>11

<xs:extension base="MathBase">12

<xs:group ref="Node"/>13

</xs:extension>14

</xs:complexContent>15

</xs:complexType>16

<xs:complexType name="Piecewise">17

<xs:complexContent>18

<xs:extension base="MathBase">19

<xs:sequence>20

<xs:element name="piece" type="Piece" minOccurs="0" maxOccurs="unbounded"/>21

<xs:element name="otherwise" type="Otherwise" minOccurs="0" maxOccurs="1"/>22

</xs:sequence>23

</xs:extension>24

</xs:complexContent>25

</xs:complexType>26

<xs:attributeGroup name="AnnotationAttributes">27

<xs:attributeGroup ref="MathAttributes"/>28

<xs:attribute name="encoding" type="xs:string" use="required"/>29

</xs:attributeGroup>30

<xs:complexType name="Annotation">31

<xs:simpleContent>32

<xs:extension base="xs:string">33

<xs:attributeGroup ref="AnnotationAttributes"/>34

</xs:extension>35

</xs:simpleContent>36

</xs:complexType>37

<xs:complexType name="Annotation-xml">38

<xs:sequence maxOccurs="unbounded">39

<xs:any processContents="skip"/>40

</xs:sequence>41

<xs:attributeGroup ref="AnnotationAttributes"/>42

</xs:complexType>43

<xs:complexType name="Semantics">44

<xs:complexContent>45

<xs:extension base="MathBase">46

<xs:sequence>47

<xs:group ref="Node"/>48

<xs:sequence maxOccurs="unbounded">49

<xs:choice>50

<xs:element name="annotation" type="Annotation"/>51

<xs:element name="annotation-xml" type="Annotation-xml"/>52

</xs:choice>53

</xs:sequence>54

</xs:sequence>55

</xs:extension>56

</xs:complexContent>57

</xs:complexType>58

<xs:group name="Node">59

<xs:choice>60

<xs:element name="apply" type="Apply"/>61

<xs:element name="cn" type="Cn"/>62

<xs:element name="ci" type="Ci"/>63

<xs:element name="csymbol" type="Csymbol"/>64

<xs:element name="true" type="MathBase"/>65

<xs:element name="false" type="MathBase"/>66

<xs:element name="notanumber" type="MathBase"/>67

<xs:element name="pi" type="MathBase"/>68

<xs:element name="infinity" type="MathBase"/>69

<xs:element name="exponentiale" type="MathBase"/>70

<xs:element name="semantics" type="Semantics"/>71

<xs:element name="piecewise" type="Piecewise"/>72

</xs:choice>73

</xs:group>74

<xs:complexType name="Bvar">75

<xs:complexContent>76

<xs:extension base="MathBase">77

<xs:sequence>78

<xs:element name="ci" type="Ci"/>79

</xs:sequence>80
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</xs:extension>1

</xs:complexContent>2

</xs:complexType>3

<xs:complexType name="Lambda">4

<xs:complexContent>5

<xs:extension base="MathBase">6

<xs:sequence>7

<xs:element name="bvar" type="Bvar" minOccurs="0" maxOccurs="unbounded"/>8

<xs:group ref="Node"/>9

</xs:sequence>10

</xs:extension>11

</xs:complexContent>12

</xs:complexType>13

<xs:complexType name="Math">14

<xs:complexContent>15

<xs:extension base="MathBase">16

<xs:choice>17

<xs:group ref="Node"/>18

<xs:element name="lambda" type="Lambda"/>19

</xs:choice>20

</xs:extension>21

</xs:complexContent>22

</xs:complexType>23

<xs:element name="math" type="Math">24

<!--This is the top-level element for a ’math’ container in SBML.-->25

</xs:element>26

</xs:schema>27
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C Validation rules for SBML1

This section contains a summary of all the conditions that should be true of a model, in addition to consis-2

tency with the XML Schemas given in Appendixes A and B, for that model to considered valid SBML.3

General XML validation4

10101. An SBML XML file must use UTF-8 as the character encoding. More precisely, the encoding5

attribute of the XML declaration at the beginning of the XML data stream cannot have a value6

other than “UTF-8”. An example valid declaration is <?xml version="1.0" encoding="UTF-8"?>.7

(References: L2V2 Section 4.1.)8

10102. An SBML XML document must not contain undefined elements or attributes in the SBML names-9

pace. Documents containing unknown elements or attributes placed in the SBML namespace do not10

conform to the SBML Level 2 specification. (References: L2V2 Section 4.1.)11

General MathML validation12

10201. All MathML content in SBML must appear within a math element, and the math element must13

be either explicitly or implicitly in the XML namespace “http://www.w3.org/1998/Math/MathML”.14

(References: L2V2 Section 3.5.)15

10202. The only permitted MathML 2.0 elements in SBML Level 2 are the following: cn, ci, csymbol, sep,16

apply, piecewise, piece, otherwise, eq, neq, gt, lt, geq, leq, plus, minus, times, divide, power,17

root, abs, exp, ln, log, floor, ceiling, factorial, and, or, xor, not, degree, bvar, logbase,18

sin, cos, tan, sec, csc, cot, sinh, cosh, tanh, sech, csch, coth, arcsin, arccos, arctan, arcsec,19

arccsc, arccot, arcsinh, arccosh, arctanh, arcsech, arccsch, arccoth, true, false, notanumber,20

pi, infinity, exponentiale, semantics, annotation, and annotation-xml. (References: L2V221

Section 3.5.1.)22

10203. In the SBML subset of MathML 2.0, the MathML attribute encoding is only permitted on csymbol.23

No other MathML elements may have the encoding attribute. (References: L2V2 Section 3.5.1.)24

10204. In the SBML subset of MathML 2.0, the MathML attribute definitionURL is only permitted on25

csymbol. No other MathML elements may have a definitionURL attribute. (References: L2V226

Section 3.5.1.)27

10205. In SBML Level 2, the only values permitted for the definitionURL attribute on a csymbol element are28

“http://www.sbml.org/sbml/symbols/time” and “http://www.sbml.org/sbml/symbols/delay”.29

(References: L2V2 Section 3.5.5.)30

10206. In the SBML subset of MathML 2.0, the MathML attribute type is only permitted on the cn31

construct. No other MathML elements may have a type attribute. (References: L2V2 Section 3.5.1.)32

10207. The only permitted values for the type attribute on MathML cn elements are “e-notation”, “real”,33

“integer”, and “rational”. (References: L2V2 Section 3.5.2.)34

10208. MathML lambda elements are only permitted as the first element inside the math element of a Func-35

tionDefinition; they may not be used elsewhere in an SBML model. (References: L2V2 Section 4.3.2.)36

10209. The arguments of the MathML logical operators and, or, xor, and not must have boolean values.37

(References: L2V2 Section 3.5.8.)38

10210. The arguments to the following MathML constructs must have a numeric type: plus, minus, times,39

divide, power, root, abs, exp, ln, log, floor, ceiling, factorial, sin, cos, tan, sec, csc, cot,40

sinh, cosh, tanh, sech, csch, coth, arcsin, arccos, arctan, arcsec, arccsc, arccot, arcsinh,41

arccosh, arctanh, arcsech, arccsch, arccoth. (References: L2V2 Section 3.5.8.)42
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10211. The values of all arguments to eq and neq operators should have the same type (either all boolean1

or all numeric). (References: L2V2 Section 3.5.8.)2

10212. The types of values within piecewise operators should all be consistent: the set of expressions that3

make up the first arguments of the piece and otherwise operators within the same piecewise4

operator should all return values of the same type. (References: L2V2 Section 3.5.8.)5

10213. The second argument of a MathML piece operator must have a boolean value. (References: L2V26

Section 3.5.8.)7

10214. Outside of a FunctionDefinition, if a ci element is the first element within a MathML apply, then the8

ci’s value can only be chosen from the set of identifiers of FunctionDefinitions defined in the SBML9

model. (References: L2V2 Section 4.3.2.)10

10215. Outside of a FunctionDefinition, if a ci element is not the first element within a MathML apply, then11

the ci’s value can only be chosen from the set of identifiers of Species, Compartment, Parameter or12

Reaction objects defined in the SBML model. (References: L2V2 Section 3.5.3.)13

10216. The id value of a Parameter defined within a KineticLaw can only be used in ci elements within the14

MathML content of that same KineticLaw; the identifier is not visible to other parts of the model.15

(References: L2V2 Section 3.5.3.)16

10217. The MathML formulas in the following elements must yield numeric expressions: math in KineticLaw,17

stoichiometryMath in SpeciesReference, math in InitialAssignment, math in AssignmentRule, math in18

RateRule, math in AlgebraicRule, and delay in Event, and math in EventAssignment.19

General identifier validation20

10301. The value of the id field on every instance of the following type of object in a model must be unique:21

Model, FunctionDefinition, CompartmentType, Compartment, SpeciesType, Species, Reaction, SpeciesRefer-22

ence, ModifierSpeciesReference, Event, and model-wide Parameters. Note that UnitDefinition and pa-23

rameters defined inside a reaction are treated separately. (References: L2V1 Section 3.5; L2V224

Section 3.4)25

10302. The value of the id field of every UnitDefinition must be unique across the set of all UnitDefinitions in26

the entire model. (References: L2V2 Section 4.4; L2V1 Section 3.4.1 and 4.4.1.)27

10303. The value of the id field of each parameter defined locally within a KineticLaw must be unique across28

the set of all such parameter definitions in that KineticLaw. (References: L2V2 Sections 3.4.1 and29

4.13.9; L2V1 Sections 3.4.1 and 4.13.5.)30

10304. The value of the variable field in all AssignmentRule and RateRule definitions must be unique across31

the set of all such rule definitions in a model. (References: L2V1 Section 4.8.4; L2V2 Section 4.11.3.)32

10305. In each Event, the value of the variable field within every EventAssignment definition must be unique33

across the set of all EventAssignments within that Event. (References: L2V1 erratum 17; L2V2 Sec-34

tion 4.14.)35

10306. An identifier used as the value of variable in an EventAssignment cannot also appear as the value of36

variable in an AssignmentRule. (References: L2V1 Section 4.10.5; L2V2 Section 4.14.)37

10307. Every metaid field value must be unique across the set of all metaid values in a model. (References:38

L2V2 Sections 3.3.1 and 3.1.6.)39

10308. The value of a sboTerm attribute must have the data type SBOTerm, which is a string consisting of40

the characters ‘S’, ‘B’, ‘O’, ’:’, followed by exactly seven digits. (References: L2V2 Section 3.1.9.)41

10309. The syntax of metaid field values must conform to the syntax of the XML type ID. (References:42

L2V2 Sections 3.3.1 and 3.1.6.)43
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10310. The syntax of id field values must conform to the syntax of the SBML type SId. (References: L2V21

Sections 3.1.7.)2

General Annotation validation3

10401. Every top-level element within an annotation element must have a namespace declared. (References:4

L2V2 Section 3.3.3.)5

10402. There cannot be more than one top-level element using a given namespace inside a given annotation6

element. (References: L2V2 Section 3.3.3.)7

10403. Top-level elements within an annotation element cannot use any SBML namespace, whether ex-8

plicitly (by declaring the namespace to be one of the URIs “http://www.sbml.org/sbml/level1”,9

“http://www.sbml.org/sbml/level2”, or “http://www.sbml.org/sbml/level2/version2”), or im-10

plicitly (by failing to declare any namespace). (References: L2V2 Section 3.3.3.)11

General Unit validation12

10501. The units of the expressions used as arguments to a function call must match the units expected for13

the arguments of that function. (References: L2V2 Section 3.5.)14

10511. When the variable in an AssignmentRule refers to a Compartment, the units of the rule’s right-hand15

side must be consistent with the units of that compartment’s size. (References: L2V2 Section 4.11.3.)16

10512. When the variable in an AssignmentRule refers to a Species, the units of the rule’s right-hand side17

must be consistent with the units of the species’ quantity. (References: L2V2 Section 4.11.3.)18

10513. When the variable in an AssignmentRule refers to a Parameter, the units of the rule’s right-hand side19

must be consistent with the units declared for that parameter. (References: L2V2 Section 4.11.3.)20

10521. When the variable in an InitialAssignment refers to a Compartment, the units of the InitialAssignment’s21

math expression must be consistent with the units of that compartment’s size. (References: L2V222

Section 4.10.)23

10522. When the variable in an InitialAssignment refers to a Species, the units of the InitialAssignment’s24

math expression must be consistent with the units of that species’ quantity. (References: L2V225

Section 4.11.3.)26

10523. When the variable in an InitialAssignment refers to a Parameter, the units of the InitialAssignment’s27

math expression must be consistent with the units declared for that parameter. (References: L2V228

Section 4.11.3.)29

10531. When the variable in a RateRule definition refers to a Compartment, the units of the rule’s right-hand30

side must be of the form x per time, where x is either the units in that Compartment definition,31

or (in the absence of explicit units declared for the compartment size) the default units for that32

compartment, and time refers to the units of time for the model. (References: L2V2 Section 4.11.4.)33

10532. When the variable in a RateRule definition refers to a Species, the units of the rule’s right-hand side34

must be of the form x per time, where x is the units of that species’ quantity, and time refers to the35

units of time for the model. (References: L2V2 Section 4.11.4.)36

10533. When the variable in a RateRule definition refers to a Parameter, the units of the rule’s right-hand37

side must be of the form x per time, where x is the units in that Parameter definition, and time refers38

to the units of time for the model. (References: L2V2 Section 4.11.4.)39

10541. The units of the math formula in a KineticLaw definition must be the equivalent of substance per time.40

(References: L2V2 Section 4.13.5.)41

10551. When a value for delay is given in a Event definition, the units of the delay formula must correspond42

to either the value of timeUnits in the Event or (if no timeUnits are given), the model’s default43

units of time. (References: L2V2 Section 4.14.)44
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General Model validation1

10601. The system of equations created from an SBML model must not be overdetermined. (References:2

L2V2 Section 4.11.5.)3

SBML container validation4

20101. The sbml container element must declare the XML Namespace for SBML, and this declaration must5

be consistent with the values of the level and version attributes on the sbml element. (References:6

L2V2 Section 4.1.)7

20102. The sbml container element must declare the SBML Level using the attribute level, and this dec-8

laration must be consistent with the XML Namespace declared for the sbml element. (References:9

L2V2 Section 4.1.)10

20103. The sbml container element must declare the SBML Version using the attribute version, and this11

declaration must be consistent with the XML Namespace declared for the sbml element. (References:12

L2V2 Section 4.1.)13

Model validation14

20201. An SBML document must contain a Model definition. (References: L2V1 and L2V2 Section 4.1).15

20202. The order of subelements within a Model object instance must be the following (where any one may16

be optional): listOfFunctionDefinitions, listOfUnitDefinitions, listOfCompartmentTypes,17

listOfSpeciesTypes, listOfCompartments, listOfSpecies, listOfParameters,18

listOfInitialAssignments, listOfRules, listOfConstraints, listOfReactions, listOfEvents.19

(References: L2V2 Section 4.2.)20

20203. The listOf containers in a Model are optional, but if present, the lists cannot be empty. Specifically,21

if any of the following are present in a Model, they must not be empty: listOfFunctionDefinitions,22

listOfUnitDefinitions, listOfCompartmentTypes, listOfSpeciesTypes, listOfCompartments,23

listOfSpecies, listOfParameters, listOfInitialAssignments, listOfRules, listOfConstraints,24

listOfReactions and listOfEvents. (References: This is a requirement stemming from the XML25

Schema used for SBML.)26

20204. If a model defines any Species, then the model must also define at least one Compartment. This is27

an implication of the fact that the compartment field on Species is not optional. (References: L2V128

Section 4.5; Section 4.8.3.)29

FunctionDefinition validation30

20301. The top-level element within math in a FunctionDefinition must be lambda. (References: L2V1 Sec-31

tion 4.3.2; L2V2 Section 4.3.2.)32

20302. Inside the lambda of a FunctionDefinition, if a ci element is the first element within a MathML apply,33

then the ci’s value can only be chosen from the set of identifiers of other SBML FunctionDefinitions34

defined prior to that point in the SBML model. In other words, forward references to user-functions35

are not permitted. (References: L2V2 Section 4.3.2.)36

20303. Inside the lambda of a FunctionDefinition, the identifier of that FunctionDefinition cannot appear as the37

value of a ci element. SBML functions are not permitted to be recursive. (References: L2V238

Section 4.3.2.)39

20304. Inside the lambda of a FunctionDefinition, if a ci element is not the first element within a MathML40

apply, then the ci’s value can only be the value of a bvar element declared in that lambda. In other41

words, all model entities referenced inside a function definition must be passed arguments to that42

function. (References: L2V2 Section 4.3.2.)43
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20305. The value type returned by a FunctionDefinition’s lambda must be either boolean or numeric. (Refer-1

ences: L2V2 Section 3.5.8.)2

Unit and UnitDefinition validation3

20401. The value of the id field in a UnitDefinition must not be identical to any unit predefined in SBML. That4

is, the identifier must not be the same as a value from the UnitKind enumeration (i.e., “ampere”5

“gram” “katal” “metre” “second” “watt” “becquerel” “gray” “kelvin” “mole” “siemens” “weber”6

“candela” “henry” “kilogram” “newton” “sievert” “coulomb” “hertz” “litre” “ohm” “steradian”7

“dimensionless” “item” “lumen” “pascal” “tesla” “farad” “joule” “lux” “radian” “volt”.)8

(References: L2V1 erratum 14; L2V2 Section 4.4.2.)9

20402. Redefinitions of the built-in unit substancemust be based on the units mole, item, gram, kilogram, or10

dimensionless. More formally, a UnitDefinition for substancemust simplify to a single Unit whose kind11

field has a value of “mole”, “item”, “gram”, “kilogram”, or dimensionless, and whose exponent12

field has a value of “1”. (References: L2V1 Section 4.4.3; L2V2 Section 4.4.3.)13

20403. Redefinitions of the built-in unit length must be based on the unit metre or dimensionless. More14

formally, a UnitDefinition for length must simplify to a single Unit in which either (a) the kind field15

has a value of “metre” and the exponent field has a value of “1”, or (b) the kind field has a value of16

“dimensionless” with any exponent value. (References: L2V1 Section 4.4.3; L2V2 Section 4.4.3.)17

20404. Redefinitions of the built-in unit area must be based on squared metres or dimensionless. More18

formally, a UnitDefinition for area must simplify to a single Unit in which either (a) the kind field has19

a value of “metre” and the exponent field has a value of “2”, or (b) the kind field has a value of20

“dimensionless” with any exponent value. (References: L2V1 Section 4.4.3; L2V2 Section 4.4.3.)21

20405. Redefinitions of the built-in unit time must be based on second. More formally, a UnitDefinition for22

time must simplify to a single Unit in which either (a) the kind field has a value of “second” and23

the exponent field has a value of “1”, or (b) the kind field has a value of “dimensionless” with any24

exponent value. (References: L2V1 Section 4.4.3; L2V2 Section 4.4.3.)25

20406. Redefinitions of the built-in unit volume must be based on litre, metre or dimensionless. More26

formally, a UnitDefinition for volume must simplify to a single Unit in which the kind field value is27

either “litre”, “metre”, or “dimensionless”. Additional constraints apply if the kind is “litre”28

or “metre”. (References: L2V1 Section 4.4.3; L2V2 Section 4.4.3.)29

20407. If a UnitDefinition for volume simplifies to a Unit in which the kind field value is “litre”, then its30

exponent field value must be “1”. (References: L2V1 Section 4.4.3; L2V2 Section 4.4.3.)31

20408. If a UnitDefinition for volume simplifies to a Unit in which the kind field value is “metre”, then its32

exponent field value must be “3”. (References: L2V1 Section 4.4.3; L2V2 Section 4.4.3.)33

20409. The listOfUnits container in a UnitDefinition cannot be empty. (References: L2V2 Section 4.4.)34

20410. The value of the kind field of a Unit can only be one of the predefined units enumerated by UnitKind;35

that is, the SBML unit system is not hierarchical and user-defined units cannot be defined using36

other user-defined units. (References: L2V2 Section 4.4.2.)37

20411. The offset field on Unit previously available in SBML Level 2 Version 1, has been removed as of38

SBML Level 2 Version 2. (References: L2V2 Section 4.4.)39

20412. The predefined unit “Celsius”, previously available in SBML Level 1 and Level 2 Version 1, has40

been removed as of SBML Level 2 Version 2. (References: L2V2 Section 4.4.)41
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Compartment validation1

20501. The size of a Compartment must not be set if the compartment’s spatialDimensions field has value2

0. (References: L2V1 Section 4.5.3; L2V2 Section 4.7.5.)3

20502. If a Compartment definition has a spatialDimensions value of “0”, then its units field must not be4

set. If the compartment has no dimensions, then no units can be associated with a non-existent size.5

(References: L2V1 Section 4.5.4; Section 4.7.5.)6

20503. If a Compartment definition has a spatialDimensions value of “0”, then its constant field value must7

either default to or be set to “true”. If the compartment has no dimensions, then its size can never8

change. (References: L2V1 Section 4.5.5; L2V2 Section 4.7.6.)9

20504. The outside field value of a Compartment must be the identifier of another Compartment defined in10

the model. (References: L2V1 Section 4.5.6; Section 4.7.7.)11

20505. A Compartment may not enclose itself through a chain of references involving the outside field.12

This means that a compartment cannot have its own identifier as the value of outside, nor can it13

point to another compartment whose outside field points directly or indirectly to the compartment.14

(References: L2V1 erratum 11; L2V2 Section 4.7.7.)15

20506. The outside field value of a Compartment cannot be a compartment whose spatialDimensions value16

is “0”, unless both compartments have spatialDimensions=“0”. Simply put, a zero-dimensional17

compartment cannot enclose compartments that have anything other than zero dimensions them-18

selves. (References: L2V2 Section 4.7.7.)19

20507. The value of the units field on a Compartment having spatialDimensions of “1” must be either20

“length”, “metre”, “dimensionless”, or the identifier of a UnitDefinition based on either metre (with21

exponent equal to “1”) or dimensionless. (References: L2V1 Section 4.5.4; L2V2 Section 4.7.5.)22

20508. The value of the units field on a Compartment having spatialDimensions of “2” must be either23

“area”, “dimensionless”, or the identifier of a UnitDefinition based on either metre (with exponent24

equal to “2”) or dimensionless. (References: L2V1 Section 4.5.4; L2V2 Section 4.7.5.)25

20509. The value of the units field on a Compartment having spatialDimensions of “3” must be either26

“volume”, “litre”, or the identifier of a UnitDefinition based on either litre, metre (with exponent27

equal to “3”), or dimensionless. (References: L2V1 Section 4.5.4; L2V2 Section 4.7.5.)28

20510. If the compartmentType field is given a value in a Compartment definition, it must contain the identifier29

of an existing CompartmentType. (References: L2V2 Section 4.7.2.)30

Species validation31

20601. The value of compartment in a Species definition must be the identifier of an existing Compartment32

defined in the model. (References: L2V1 Section 4.6.2; Section 4.8.3.)33

20602. If a Species definition sets hasOnlySubstanceUnits to “true”, then it must not have a value for34

spatialSizeUnits. (References: L2V1 Section 4.6.4; L2V2 Section 4.8.5.)35

20603. A Species definition must not set spatialSizeUnits if the Compartment in which it is located has a36

spatialDimensions value of “0”. (References: L2V1 Section 4.6.4; L2V2 Section 4.8.5.)37

20604. If a Species located in a Compartment whose spatialDimensions is set to “0”, then that Species38

definition cannot set initialConcentration. (References: L2V1 Section 4.6.3; L2V2 Section 4.8.4.)39

20605. If a Species is located in a Compartment whose spatialDimensions has value “1”, then that Species40

definition can only set spatialSizeUnits to a value of “length”, “metre”, “dimensionless”, or the41

identifier of a UnitDefinition derived from metre (with an exponent value of “1”) or “dimensionless”.42

(References: L2V1 Section 4.6.4; L2V2 Section 4.8.5.)43
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20606. If a Species is located in a Compartment whose spatialDimensions has value “2”, then that Species1

definition can only set spatialSizeUnits to a value of “area”, “dimensionless”, or the identifier2

of a UnitDefinition derived from either metre (with an exponent value of “2”) or “dimensionless”.3

(References: L2V1 Section 4.6.4; L2V2 Section 4.8.5.)4

20607. If a Species is located in a Compartment whose spatialDimensions has value “3”, then that Species5

definition can only set spatialSizeUnits to a value of “volume”, “litre”, “dimensionless”, or6

the identifier of a UnitDefinition derived from either litre, metre (with an exponent value of “3”) or7

dimensionless. (References: L2V1 Section 4.6.4; L2V2 Section 4.8.5.)8

20608. The value of a Species’s substanceUnits field can only be one of the following: “substance”, “mole”,9

“item”, “gram”, “kilogram”, “dimensionless”, or the identifier of a UnitDefinition derived from “mole”10

(with an exponent of “1”), “item” (with an exponent of “1”), “gram” (with an exponent of “1”),11

“kilogram” (with an exponent of “1”), or “dimensionless”. (References: L2V1 Section 4.6.4; L2V212

Section 4.8.5.)13

20609. A Species cannot set values for both initialConcentration and initialAmount because they are14

mutually exclusive. (References: L2V1 Section 4.6.3; L2V2 Section 4.8.4.)15

20610. A Species’ quantity cannot be determined simultaneously by both reactions and rules. More formally,16

if the identifier of a Species definition having boundaryCondition=“false” and constant=“false”17

is referenced by a SpeciesReference anywhere in a model, then this identifier cannot also appear as18

the value of a variable in an AssignmentRule or a RateRule. (References: L2V1 Section 4.6.5; L2V219

Section 4.8.6.)20

20611. A Species having boundaryCondition=“false” cannot appear as a reactant or product in any reac-21

tion if that Species also has constant=“true”. (References: L2V1 Section 4.6.5; L2V2 Section 4.8.6.)22

20612. The value of speciesType in a Species definition must be the identifier of an existing SpeciesType.23

(References: L2V2 Section 4.8.2.)24

20613. There cannot be more than one species of a given SpeciesType in the same compartment of a model.25

More formally, for any given compartment, there cannot be more than one Species definition in26

which both of the following hold simultaneously: (i) the Species’ compartment value is set to that27

compartment’s identifier and (ii) the Species’ speciesType is set the same value as the speciesType28

of another Species that also sets its compartment to that compartment identifier. (References: L2V229

Section 4.8.2.)30

Parameter validation31

20701. The units in a Parameter definition must be a value chosen from among the following: a value from32

the UnitKind enumeration (e.g., “litre”, “mole”, “metre”, etc.), a built-in unit (e.g., “substance”,33

“time”, etc.), or the identifier of a UnitDefinition in the model. (References: L2V1 Section 4.7.3; L2V234

Section 4.9.3.)35

InitialAssignment validation36

20801. The value of symbol in an InitialAssignment definition must be the identifier of an existing Compartment,37

Species, or Parameter defined in the model. (References: L2V2 Section 4.10.)38

20802. A given identifier cannot appear as the value of more than one symbol field across the set of InitialAs-39

signments in a model. (References: L2V2 Section 4.10.)40

20803. The value of a symbol field in any InitialAssignment definition cannot also appear as the value of a41

variable field in an AssignmentRule. (References: L2V2 Section 4.10.)42
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AssignmentRule and RateRule validation1

20901. The value of an AssignmentRule’s variable must be the identifier of an existing Compartment, Species,2

or globally-defined Parameter. (References: L2V1 Section 4.8.2; L2V2 Section 4.11.3.)3

20902. The value of a RateRule’s variable must be the identifier of an existing Compartment, Species, or4

globally-defined Parameter. (References: L2V1 Section 4.8.3; L2V2 Section 4.11.4.)5

20903. Any Compartment, Species or Parameter whose identifier is the value of a variable field in an As-6

signmentRule, must have a value of “false” for constant. (References: L2V1 Section 4.8.4; L2V27

Section 4.11.3.)8

20904. Any Compartment, Species or Parameter whose identifier is the value of a variable field in an RateRule,9

must have a value of “false” for constant. (References: L2V1 Section 4.8.4; L2V2 Section 4.11.4.)10

20905. A given identifier cannot appear as the value of more than one variable field across the combined11

set of AssignmentRules and RateRules in a model. (References: L2V2 Section 4.11.5.)12

20906. There must not be circular dependencies in the combined set of InitialAssignment, AssignmentRule and13

KineticLaw definitions in a model. Each of these constructs has the effect of assigning a value to an14

identifier (i.e., the identifier given in the field symbol in InitialAssignment, the field variable in Assign-15

mentRule, and the field id on the KineticLaw’s enclosing Reaction). Each of these constructs computes16

the value using a mathematical formula. The formula for a given identifier cannot make reference17

to a second identifier whose own definition depends directly or indirectly on the first identifier.18

(References: L2V2 Section 4.11.5.)19

Constraint validation20

21001. A Constraint math expression must evaluate to a value of type boolean. (References: L2V2 Sec-21

tion 4.12.)22

21002. The order of subelements within Constraint must be the following: math, message. The message23

element is optional, but if present, must follow the math element. (References: L2V2 Section 4.12.)24

Reaction validation25

21101. A Reaction definition must contain at least one SpeciesReference, either in its listOfReactants or its26

listOfProducts. A reaction without any reactant or product species is not permitted, regardless of27

whether the reaction has any modifier species. (References: L2V2 Section 4.13.3.)28

21102. The order of subelements within Reaction must be the following (where every one is optional):29

listOfReactants, listOfProducts, listOfModifiers, kineticLaw. (References: L2V2 Section 4.13.)30

21103. The following containers are all optional in a Reaction, but if any present is, it must not be empty:31

listOfReactants, listOfProducts, listOfModifiers, kineticLaw. (References: L2V2 Section 4.13.)32

21104. The list of reactants (listOfReactants) and list of products (listOfProducts) in a Reaction can only33

contain speciesReference elements. (References: L2V1 Section 4.9; L2V2 Section 4.13.)34

21105. The list of modifiers (listOfModifiers) in a Reaction can only contain modifierSpeciesReference35

elements. (References: L2V1 Section 4.9; L2V2 Section 4.13.)36

SpeciesReference and ModifierSpeciesReference validation37

21111. The value of a SpeciesReference species field must be the identifier of an existing Species in the38

model. (References: L2V1 Section 4.9.5; L2V2 Section 4.13.3.)39
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21112. The value of a SpeciesReference’s species field must not be the identifier of a Species having both a1

constant field value of “true” and a boundaryCondition field value of “false”. (References: L2V12

Section 4.6.5; L2V2 Section 4.8.6.)3

21113. A SpeciesReference must not have a value for both stoichiometry and stoichiometryMath; they are4

mutually exclusive. (References: L2V1 Section 4.9.5; L2V2 Section 4.13.3.)5

KineticLaw validation6

21121. All species referenced in the KineticLaw formula of a given reaction must first be declared using Species-7

Reference or ModifierSpeciesReference. More formally, if a Species identifier appears in a ci element of8

a Reaction’s KineticLaw formula, that same identifier must also appear in at least one SpeciesReference9

or ModifierSpeciesReference in the Reaction definition. (References: L2V2 Section 4.13.5.)10

21122. The order of subelements within KineticLaw must be the following: math, listOfParameters. The11

listOfParameters is optional, but if present, must follow math. (References: L2V2 Section 4.13.5.)12

21123. If present, the listOfParameters in a KineticLaw must not be an empty list. (References: L2V213

Section 4.13.)14

21124. The constant field on a Parameter local to a KineticLaw cannot have a value other than “true”. The15

values of parameters local to KineticLaw definitions cannot be changed, and therefore they are always16

constant. (References: L2V2 Section 4.13.5.)17

21125. The substanceUnits field on KineticLaw, previously available in SBML Level 1 and Level 2 Version 1,18

has been removed as of SBML Level 2 Version 2. In SBML Level 2 Version 2, the substance units19

of a reaction rate expression are those of the global “substance” units of the model. (References:20

L2V2 Section 4.13.5.)21

21126. The timeUnits field on KineticLaw, previously available in SBML Level 1 and Level 2 Version 1, has22

been removed as of SBML Level 2 Version 2. In SBML Level 2 Version 2, the time units of a reaction23

rate expression are those of the global “time” units of the model. (References: L2V2 Section 4.13.5.)24

StoichiometryMath validation25

21131. All species referenced in the StoichiometryMath formula of a given reaction must first be declared26

using SpeciesReference or ModifierSpeciesReference. More formally, if a Species identifier appears in27

a ci element of a Reaction’s StoichiometryMath formula, that same identifier must also appear in at28

least one SpeciesReference or ModifierSpeciesReference in the Reaction definition. (References: L2V229

Section 4.13.5.)30

Event validation31

21201. An Event object must have a trigger. (References: L2V1 Section 4.10.2; L2V2 Section 4.14.)32

21202. An Event trigger expression must evaluate to a value of type boolean. (References: L2V1 Section33

4.10.2; L2V2 Section 4.14.)34

21203. An Event object must have at least one EventAssignment object in its listOfEventAssignments. (Ref-35

erences: L2V1 Section 4.10.5; L2V2 Section 4.14.)36

21204. The value of an Event’s timeUnits must be “time”, “second”, “dimensionless”, or the identifier37

of a UnitDefinition derived from either second (with an exponent value of “1”) or “dimensionless”.38

(References: L2V1 Section 4.10.4; L2V2 Section 4.14.)39

21205. The order of subelements within an Event object instance must be the following: trigger, delay,40

listOfEventAssignments. The delay element is optional, but if present, must follow trigger.41

(References: L2V2 Section 4.14.)42
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EventAssignment validation1

21211. The value of variable in an EventAssignment can only be the identifier of a Compartment, Species, or2

model-wide Parameter definition. (References: L2V1 Section 4.10.5; L2V2 Section 4.14.)3

21212. Any Compartment, Species or Parameter definition whose identifier is used as the value of variable in4

an EventAssignment must have a value of “false” for its constant field. (References: L2V1 Section5

4.10.5; L2V2 Section 4.14.)6
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D A method for assessing whether an SBML model is overdetermined1

(Example contributed by Sarah M. Keating, University of Hertfordshire STRI, Hatfield, UK.)2

As explained in Section 4.11.5, an SBML model must not be overdetermined. It is possible to use purely3

static analysis to assess this for the system of equations implied by a model, by constructing a bipartite4

graph of the model’s variables and equations and then searching for a maximal matching (Chartrand, 1977).5

A efficient algorithm for finding a maximal matching is described by Hopcroft and Karp (1973). In this6

appendix, we provide a concrete application to SBML of the general approach described in Section 4.11.5.7

The approach is defined in terms of the ordinary differential equations (ODEs) implied by an SBML model;8

it should be understood that this use of ODEs has no implication about the framework actually used to9

simulate the model.10

Definition of the method11

First, we treat both assignment rules and formulas in KineticLaw objects as SBML-style algebraic equations.12

(Both are essentially assignment statements, and assignment statements can be trivially converted to al-13

gebraic equations with zero on the left-hand side.) We also assume that an ODE is constructed for each14

species determined by one or more Reaction’s KineticLaw math expressions. Finally, we assume that the model15

has already been determined to be valid in all other respects (e.g., there are no undefined variables in the16

equations), and what remains is to evaluate whether it is overdetermined.17

We construct the bipartite graph for a given SBML model as follows:18

1. For each of the following in the model, create one vertex representing an equation:19

(a) Every Species object having boundaryCondition=“false”, constant=“false”, and which is ref-20

erenced as a reactant or product in one or more Reaction objects containing KineticLaw objects21

(b) Every AssignmentRule object22

(c) Every RateRule object23

(d) Every AlgebraicRule object24

(e) Every KineticLaw object25

2. For each of the following in the model, create one vertex representing a variable:26

(a) Every Species object having constant=“false”27

(b) Every Compartment object having constant=“false”28

(c) Every global Parameter having constant=“false”29

(d) Every Reaction object30

3. For each of the following, create one edge:31

(a) Every vertex created in step 2(a) to that species’ equation vertex created in step 1(a)32

(b) Every vertex created in step 1(b) to the particular vertex created in steps 2(a)–2(d) that represents33

the variable referenced by the variable field of the rule34

(c) Every vertex created in step 1(c) to the particular vertex created in steps 2(a)–2(d) that represents35

the variable referenced by the variable field of the rule36

(d) Every vertex created in step 1(e) to the particular vertex created in step 2(d) that is the Reaction37

object containing that particular KineticLaw object38

(e) Every vertex created in steps 2(a)–2(d) representing an identifier appearing as the content of a39

MathML ci element within an expression of an AssignmentRule, to the vertex for that particular40

AssignmentRule created in step 1(b)41

(f) Every vertex created in steps 2(a)–2(d) representing an identifier appearing as the content of a42

MathML ci element within an expression of an AlgebraicRule, to the vertex for that particular43

AlgebraicRule created in step 1(d)44
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(g) Every vertex created in steps 2(a)–2(c) representing an identifier appearing as the content of1

a MathML ci element within an expression of a KineticLaw, to the vertex for that particular2

KineticLaw created in step 1(e)3

Example application of the method4

What follows is an example of applying the method above to the SBML model shown below:5

<?xml version="1.0" encoding="UTF-8"?>6

<sbml xmlns="http://www.sbml.org/sbml/level2" level="2" version="2">7

<model id="example">8

<listOfCompartments>9

<compartment id="C" size="1"/>10

</listOfCompartments>11

<listOfSpecies>12

<species id="S1" compartment="C" initialConcentration="1"/>13

<species id="S2" compartment="C" initialConcentration="0"/>14

</listOfSpecies>15

<listOfRules>16

<algebraicRule>17

<math xmlns="http://www.w3.org/1998/Math/MathML">18

<apply>19

<plus/> <ci> S1 </ci> <ci> S2 </ci>20

</apply>21

</math>22

</algebraicRule>23

</listOfRules>24

<listOfReactions>25

<reaction id="R">26

<listOfReactants>27

<speciesReference species="S1"/>28

</listOfReactants>29

<listOfProducts>30

<speciesReference species="S2"/>31

</listOfProducts>32

<kineticLaw>33

<math xmlns="http://www.w3.org/1998/Math/MathML">34

<apply>35

<times/> <ci> k1 </ci> <ci> S1 </ci>36

</apply>37

</math>38

<listOfParameters>39

<parameter id="k1" value="0.1"/>40

</listOfParameters>41

</kineticLaw>42

</reaction>43

</listOfReactions>44

</model>45

</sbml>46

For the model above, we create equation vertices as follows:47

1. [Corresponding to step 1(a) in Section D.] Every Species object having boundaryCondition=“ false”,48

constant=“ false”, and which is referenced as a reactant or product in one or more Reaction objects49

containing KineticLaw objects. This generates two vertices, for “S1” and “S2”.50

2. [Corresponding to step 1(b) in Section D.] Every AlgebraicRule object. This generates one vertex, for51

the model’s lone algebraic rule (call it “rule”).52

3. [Corresponding to step 1(e) in Section D.] Every KineticLaw object. This generates one vertex, for the53

lone kinetic law in the model (call it “law”).54

We create variable vertices for the following:55

1. [Corresponding to step 2(a) in Section D.] Every Species object having constant=“ false”. This56

generates two vertices, for “S1” and “S2”.57
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2. [Corresponding to step 2(b) in Section D.] Every Compartment object having constant=“ false”. This1

generates one vertex, for “C”.2

3. [Corresponding to step 2(d) in Section D.] Every Reaction object. This generates one vertex, for “R”.3

Note that it is not necessary to include parameters declared within KineticLaw objects because they are local4

to a particular reaction and cannot be affected by rules. With the steps above, we have the following set of5

graph nodes:6

Vertices for equations

S1 S2 rule law

S1 S2 C R

Vertices for variables7

Next, we create edges following the procedure described above. Doing so results in the following graph:8

Vertices for equations

S1 S2 rule law

S1

lllllllllllllllll

ggggggggggggggggggggggggggg
S2

xxxxxxxx
C R

Vertices for variables9

The algorithm of Hopcroft and Karp (1973) can now be applied to search for a maximal matching of the10

bipartite graph. A maximal matching is a graph in which each vertex is connected to at most one other11

vertex and the maximum possible number of connections have been made. Doing so here results in the12

following:13

Vertices for equations

S1 S2 rule law

S1 S2 C R

Vertices for variables14

If the maximal matching of the bipartite graph leaves any equation vertex unconnected, then the model is15

considered overdetermined. That is the case for the example shown here, because the equation vertex for16

“rule” is unconnected in the maximal matching.17

139



E Mathematical consequences of the fast attribute on Reaction1

(Appendix contributed by James C. Schaff, University of Connecticut Health Center, Connecticut, U.S.A.)2

Section 4.13.1 described the fast flag available on Reaction. In this appendix, we discuss the principles3

involved in interpreting this attribute in the context of a simple biochemical reaction model. The derivation4

presented here is not fully rigorous and this section is not considered normative; achieving a higher level of5

rigor would require considerably more background exposition and a much longer appendix. Nevertheless, we6

hope this section is sufficient to answer unambiguously the question “How should a system of reactions be7

treated if some of the reactions have fast=true?”8

Identification of “fast” reactions9

First, it is worth noting that the identification of so-called fast reactions is actually a modeling issue, not an10

SBML representation issue. The notion of fast reactions is the following. A system may be decomposable11

into two sets of reactions, where one set may have characteristic times that are much faster than the other12

time scales in the system. An approximation that is sometimes useful is to assume that the fast reactions13

have kinetics that settle infinitely fast compared to the other reactions in the system. In other words, the14

fast reactions are assumed to be always in equilibrium. This is called a pseudo-steady state approximation15

(PSSA), and is also known as a quasi-steady state approximation (QSSA). Given a case where the time-scale16

separation between fast and other reactions in the system is large, an accurate and efficient approach for17

computing the time-course of the system behavior is to treat the fast reactions as being always in equilibrium.18

The key to successful application of a PSSA is that there should be a significant separation of time scales19

between these fast reactions and other reactions in the system. The determination of which reactions qualify20

as fast is up to the creator of the model, because there is currently no known general algorithm for doing so.21

Simple one-compartment biochemical system model22

To explain how to solve a system containing fast reactions, we use a simple model of a biochemical reaction23

network located in a single compartment. Let x∗ represent a vector of all the species in the system, v∗ a24

vector of the reaction rates, and A∗ the stoichiometry matrix, with the vector dimension being n∗. Then25

the system can be described using the following matrix equation:26

dx∗

dt
= A∗v∗(x∗)27

This system can be optionally reduced by noting that mass conservation usually implies there are linear28

combinations of species quantities in the system and the value of these combinations do not change over time.29

Identifying these combinations is the topic of structural analysis and is described in the literature (Reder,30

1988; Sauro and Ingalls, 2003). Briefly, let N be defined as the left null space of A∗:31

NA∗ = 032

Now, premultiply the previous equation by N to get33

N
dx∗

dt
= NA∗v∗(x∗) = 034

Thus, N captures the space of solutions to the equation35

mT

(
dx∗

dt

)
= 036

where m is a vector representing the coefficients in a mass conservation relationship, that is, combinations37

of species that are time-invariant. Now, let38

r = rank(A∗)39

n = dim(x∗)40
41
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Then the system has n− r mass conservation relationships, each of which is a linear equation. We can use1

these n − r linear equations to solve for n − r dependent variables in terms of r independent variables and2

the initial masses of all species. Doing that allows us to decompose x∗ into n − r dependent variables xd3

and r independent variables xi where L is an (n − r) × r matrix that is derived from N and represents xd4

in terms of xi, I is the r × r identity matrix, and T is an n× r matrix:5

x∗ ≡
[
xi

xd

]
=

[
I
L

]
xi = Txi6

Using this equation, we can define a new vector of reaction velocities v in terms of xi only:7

v(xi) ≡ v∗(Txi)8

With this v, we can now write a reduced system by substituting terms. First we define A as the r independent9

rows of A∗corresponding to xi. Then:10

dxi

dt
= Av(xi)11

This is a set of r independent differential equations in r unknowns (i.e., an r-dimensional system). To12

simplify the notation slightly, let13

x ≡ xi14

and, thus,15

dx
dt

= Av(x)16

Application of a PSSA to biochemical systems17

Assume that we have eliminated redundant variables and equations using the mass conservation analysis18

above. Further assume that we have some external means of classifying some reactions in a given system19

as being fast as discussed earlier. We now need to apply this to the system under study. We begin by20

decomposing the vector of reaction velocities v according to fast and slow reactions:21

dx
dt

= A1vf (x) + A2vs(x)22

We find the left null space of A1 (i.e., the space of solutions to mT [dx/dt] = 0 on a fast time scale), and call23

this matrix B:24

BA1 = 025

The matrix B represents the linear combination of species that do not change on a fast time scale, i.e., the26

slow species in the system. Now, we premultiply the equation for dx/dt by B:27

B
dx
dt

= BA1vf (x) + BA2vs(x)28

= BA2vs(x)29
30

where the second line follows from the fact that BA1 = 0. The above is an ordinary differential equation in31

terms of only the slow dynamics. The remaining fast dynamics are handled by applying the pseudo-steady32

state approximation, with fast transients assumed to have settled with respect to the slow time scale. This33

produces a system of nonlinear algebraic equations:34

A1vf = 035

The last two equations form the system of equations resulting from the application of the PSSA. If r1 =36

rank(A1) and r = rank(A), then there will be r1 degrees of freedom that will be determined by solving an37

algebraic system (the equation A1vf = 0 above), and there will be r − r1 degrees of freedom that will be38

determined by ordinary differential equations (the equation for B dx/dt).39

141



F Processing and validating notes content1

In Section 3.3.2, we discussed the notes field defined on Sbase and how it can contain a number of possible2

XHTML elements. In this appendix, we describe a general procedure for how application software can3

process such content. We concentrate on the common case of an SBML-reading application that needs to4

take the contents and pass it to an XHTML display and/or editing function obtained from a third-party5

API library. The content of the notes may not be a complete XHTML document, so the application will6

have to perform some processing before handing it to the XHTML editor or validator. How should this be7

done?8

Based on the three forms of notes content described in Section 3.3.2, there are only three cases possible.9

Here we give an example approach for handling them, although the actual implementation details will differ10

depending on various factors such as the requirements of the software libraries being used. This example11

approach would be performed for each notes to be viewed or edited:12

Step 1. If the XHTML viewing/editing function requires a fully compliant XML document, the SBML13

application could create a temporary data object containing an appropriate XML declaration and a14

DOCTYPE declaration; otherwise, the XML data object can be initially blank.15

Step 2. The application should look at the first element inside the notes (or rather, the first element that16

is not an XML comment), and take action based on the following three possibilities:17

• If the first element inside notes begins with <html xhtml="http://www.w3.org/1999/xhtml">,18

the application could assume that the content is a complete XHTML document and insert this19

into the temporary data object.20

• Else, if the first element is <body>, the application should insert the following into the temporary21

data object,22

<html xhtml="http://www.w3.org/1999/xhtml">23

<head><title></title></head>24

then insert the content of the notes, and finally insert a closing </html>.25

• Else, if the notes content begins with neither of the above elements, the application should insert26

the following into the temporary data object,27

<html xhtml="http://www.w3.org/1999/xhtml">28

<head><title></title></head>29

<body>30

then insert the content of the notes, and finally insert </body></html> to close the XHTML31

document.32

The result of the above would be a temporary XML data object that the application could then pass to the33

XHTML viewing/editing API function.34
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