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    Chapter 15   

 Mathematical Models of Pluripotent Stem Cells: 
At the Dawn of Predictive Regenerative Medicine       

     Pınar     Pir        and      Nicolas     Le Novère        

  Abstract 

   Regenerative medicine, ranging from stem cell therapy to organ regeneration, is promising to revolution-
ize treatments of diseases and aging. These approaches require a perfect understanding of cell reprogram-
ming and differentiation. Predictive modeling of cellular systems has the potential to provide insights 
about the dynamics of cellular processes, and guide their control. Moreover in many cases, it provides 
alternative to experimental tests, diffi cult to perform for practical or ethical reasons. The variety and accu-
racy of biological processes represented in mathematical models grew in-line with the discovery of underly-
ing molecular mechanisms. High-throughput data generation led to the development of models based on 
data analysis, as an alternative to more established modeling based on prior mechanistic knowledge. In this 
chapter, we give an overview of existing mathematical models of pluripotency and cell fate, to illustrate the 
variety of methods and questions. We conclude that current approaches are yet to overcome a number of 
limitations: Most of the computational models have so far focused solely on understanding the regulation 
of pluripotency, and the differentiation of selected cell lineages. In addition, models generally interrogate 
only a few biological processes. However, a better understanding of the reprogramming process leading to 
ESCs and iPSCs is required to improve stem-cell therapies. One also needs to understand the links between 
signaling, metabolism, regulation of gene expression, and the epigenetics machinery.  

  Key words     Regenerative medicine  ,   Systems biology  ,   Mathematical modeling  ,   Predictive models  , 
  Stem cells  ,   Pluripotency  

1      Introduction 

 Regenerative medicine aims to repair or regenerate tissues or 
organs with impaired functions, as an alternative to organ trans-
plantation from donors. Approaches based on the use of the 
patient’s own cells have the potential to overcome obstacles such as 
ethical concerns, limited donor availability, or transplant rejection. 
Such approaches often require derivation, generation, or manipu-
lation of stem cells. Establishment of techniques for generation of 
stem cells to be used in regenerative medicine is a very active fi eld 
of research [ 1 ]. 
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 Stem cells have the potential to differentiate into more specialized 
cells in the   multi-cellular organisms   (Fig.  1 ). They also have the 
ability of self-renewal or proliferation, i.e., to generate cells identi-
cal to themselves via mitosis. The differentiation of stem cells is a 
progressive process, specialization increasing at each step. The 
zygote and the daughter cells generated via the fi rst couple of cell 
divisions which can give rise to all cell types in the embryo and the 
placenta are called    totipotent   . More specialized embryonic stem 
cells which can give rise to all cell types in the embryo, but cannot 
contribute to the placenta are called    pluripotent    [ 2 ]. The pluripo-
tent cells in pre-implantation embryo and post-implantation have 
distinct gene expression profi les, developmental and functional 
characteristics, and are called    naive  and  primed   , respectively [ 3 ]. As 
development of the embryo progresses, more specialized cells are 
generated, such as    multipotent    stem cells that can give rise to sev-
eral tissues,  oligopotent  (or  progenitor ) cells that can only generate 
a set of closely related tissues, and terminally differentiated somatic 
cells. With the exception of the germinal lineage, mammals are 
mostly constituted of somatic cells. However, a limited number of 
adult stem cells keep regenerating tissues throughout the lifetime 

  Fig. 1    Differentiation and reprogramming of cells.     Embryonic stem cells can be derived from the inner cell 
mass (illustrated as  blue  cells) at the blastula stage of embryos, and can be differentiated into various cell 
types under laboratory conditions. Somatic cells can also be re-programmed into induced pluripotent stem 
cells, which can then be differentiated into desired cell types. See the main text for defi nition of potency of 
illustrated cell types       
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of the organism, such as hematopoietic stem cells giving rise to 
blood cells, muscle satellite cells, or neural stem cells [ 4 ].

   Stem cells can be derived from a developing   embryo   or an 
adult, and the derived cell lines can be kept proliferating indefi -
nitely or be differentiated into somatic cells in controlled niches. It 
is also possible to reprogram differentiated somatic cells into plu-
ripotent cells via forced expression of proteins or continued expo-
sure to external cues. Such reprogrammed cells are called  induced 
pluripotent stem cells  (  iPSC  )         and can subsequently be re- 
differentiated into tissues [ 5 ]. Therefore, stem cells have the poten-
tial to be an infi nite source of “spare-parts” for regenerative 
medicine as well as providing a model for drug and disease pathway 
discovery [ 1 ,  6 ,  7 ]. Stem cell science recently achieved two mile-
stones, both of which came as a result of decade-long efforts: (1) 
The generation of human naive iPS cells from somatic cells [ 8 ,  9 ] 
and (2) the fi rst clinical trial of a stem cell therapy via directed dif-
ferentiation of   human iPS cells   into retinal pigment epithelium 
cells [ 10 ]. These milestones increased the confi dence in stem cell 
science and raised the expectations from regenerative medicine. 

   Computational biology   is central to large-scale studies on stem 
cells, aiding extraction of meaningful information from large data 
sets, abstraction of biological systems for systematic analysis of 
their properties and ultimately predicting previously unknown 
relationships to guide future studies.   Mathematical models and 
simulations   have been used for a long time to understand the regu-
lation of stem    cell      pluripotency and their differentiation and recent 
developments saw the rise of complex experimentally based models 
[ 11 ,  12 ]. It is likely that as for any other areas of bioengineering, 
models will provide major contributions to regenerative medicine 
research in the near future. 

   Reprogramming and differentiation   of stem cells are regulated 
by the activity of gene regulatory networks controlled by several 
signaling pathways and the epigenetics machinery. Signaling path-
ways are triggered by the signaling molecules that bind their 
ligands on the cell surface or by the physical forces experienced by 
the cells; leading to a cascade of intracellular protein–protein inter-
actions which in turn modulate the activity of the transcription 
factors in the downstream gene regulatory networks. Resulting 
gene expression profi les establish the composition of the cellular 
protein pool and ultimately, the phenotype. 

 The   signaling pathways and gene regulatory networks   that are 
actively modulated in pluripotent cell lines and   pre-implantation 
embryos   are shown in Fig.  2a . In addition, epigenetic factors may 
have a role in regulating the gene expression. Factors such as RNA 
interference, DNA methylation, nucleosome occupancy, and mod-
ifi cations on histone tails correlate with gene expression levels; 
these epigenetic factors are widely accepted as the barrier between 
transformation of cells into other cell types [ 13 ].
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  Fig. 2    Pluripotency gene regulatory networks: activity   fl ow   map of the pathways regulating pluripotency (using 
the SBGN Activity Flow notation [ 110 ]). The nodes represent activities (of proteins or small chemicals) whereas 
the edges represent the effect of activities on each other. Proteins typically expressed in embryonic stem cells 
are shown in  turquoise , proteins typically expressed in trophoblast stem cells are shown in  violet , proteins typi-
cally expressed in primitive endoderm are shown in  orange  in all three panels. ( a ) Signaling networks and GRN 
in mouse pluripotent stem cells (modifi ed from [ 90 ])  Yellow boxes  indicate growth factors (or cytokines), 
whereas  light green boxes  indicate components of signaling pathways downstream to growth factors leading 
to up- or downregulation of transcription factors. Inhibitors are shown in  fuschia . ( b ) Core pluripotency network 
in pre- implantation mouse embryo (modifi ed from [ 44 ]) OCT4 forms protein complexes either with CDX2 or 
SOX2. OCT4–SOX2 protein complex upregulates NANOG expression, whereas CDX2–OCT4 complex leads to 
reduction of CDX2 and OCT4 pools. CDX2 and GATA6 upregulate the nuclear receptor GCNF, which downregu-
lates OCT4 expression. ( c )   Stem cell box GRN   (modifi ed from [ 46 ]) OCT4 and SOX2 expression can be regu-
lated by NANOG and external signals such as growth factors. OCT4–SOX2 protein complex takes part in 
autoregulation of its components and also regulation of NANOG. NANOG also regulates its own expression. The 
three proteins activate expression of stem cell-related proteins, whereas their absence leads to expression of 
differentiation- related proteins       

 

Pınar Pir and Nicolas Le Novère

pnarpir@gmail.com



335

   Models of stem cells have been developed for a long time, 
mostly based on prior knowledge on the signaling pathways, gene 
regulatory networks, and epigenetic factors (Fig.  3 ). Recent 
improvements in omics data, in particular at a single cell level, cou-
pled to ever more accurate computational inference methods, now 
permit to build and parameterize models directly from experimen-
tal results. In this chapter, we provide a critical overview of two 
general types of mathematical models, namely   knowledge-based 
and data-based models  . We focused on models describing the cel-
lular mechanisms that maintain stem cell pluripotency in mammals 
and the priority was given to models describing well documented 
in   vivo and in vitro systems  . Theoretical analysis of cell fate (see for 
example [ 14 ]) can provide interesting insights in system behavior, 
however models of hypothetical systems were excluded in this 
chapter due to space limitations. The sections are organized to fol-
low a coarse chronological order, in accordance with the experi-
mental discoveries in the fi eld.  

2    Knowledge-Based Models 

 Most of   the   mechanistic models of stem cells are built following a 
bottom-up or knowledge-based approach. Information on the 
components to include and their relationships is obtained from 

  Fig. 3    Classifi cation of the knowledge-based mathematical models of pluripotency. The classifi cation is based 
on the relevant biological processes represented by transparent  boxes  with different background colors. The 
models are labeled with the fi rst author’s surname and the year of the publication. Models located on overlap-
ping regions represent multiple cellular processes. The  arrows  show models derived from each other       
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scientifi c literature or public databases, that contain previously 
generated models or information to incorporate in building blocks. 
For a general presentation of methods to build models of genes 
and molecular networks, see Le Novère [ 15 ]. 

  
 The bone marrow contains   hematopoietic stem cells (HSC)   which 
are multipotent cells and has self-renewal ability as well as differen-
tiating into blood cells [ 16 – 18 ]. Transplantation of bone marrow 
has been in clinical use since 1950s as the fi rst successfully estab-
lished stem cell therapy [ 19 ]. In line with clinical applications, early 
mathematical models of stem cell proliferation and differentiation 
focused on HSC. These models investigated the   cell population 
dynamics   in response to external stimuli such as stress [ 20 ] and 
hypoxia [ 21 ]. They aimed at relating the stimuli to the propaga-
tion of HSC, and to improve effi ciency of the clinical applications 
via optimization of the parameters. An overview of early predictive 
mathematical models of hematopoietic cell populations can be 
found in [ 22 – 24 ]. 

 More recently, population behavior has often been simulated 
in combination with detailed models of molecular interactions in 
the stem cells (see sections below); however, minimal models of 
embryonic stem cell populations omitting the underlying molecu-
lar mechanisms were also shown to reproduce the population 
  dynamics   [ 25 – 28 ].  

  
   Pluripotency   is defi ned as the ability of the cells to generate all cell 
types in an embryo via multiple differentiation steps. Following the 
derivation of pluripotent stem cells from mouse embryos in 1981 
[ 29 ], embryonic cells culture has been a fundamental tool in stem 
cell research and more largely in molecular biology. However, 
maintenance of the   pluripotency   in defi ned growth media has been 
a challenge until the design of the LIF + 2i medium [ 30 ]. This 
medium contains the cytokine   leukemia inhibitory factor (LIF)       
and inhibitors of ERK and GSK3 pathways (Fig.  2a ), underlining 
how important is the prediction of niche-dependent factors’ effect 
on self-renewal of stem cells, a major aim of modeling efforts since. 

 The fi rst mathematical model describing the   embryonic stem 
cell   renewal as a function of   cytokine concentration   appeared in the 
literature in 2002 [ 31 ], soon after the discovery of the role of the 
  LIF/JAK/STAT3 pathway   in the maintenance of pluripotency 
[ 32 ]. A deterministic model describing the ligand–receptor   dynam-
ics   on the cell surface was used to determine the cytokine thresh-
olds in cell fate decisions. The simulation results demonstrated that 
LIF has stronger infl uence on the maintenance of pluripotency in 
comparison to a fusion protein derivative of IL-6 (HIL-6) and the 
differences between the potency of the two cytokines could be 
explained by receptor binding properties and the stoichiometry of 
binding. 

2.1  Predicting 
the Behavior of Stem 
Cell Populations

2.2  Predicting Cell 
Fate Control 
by Signaling Pathways
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 A growth-rate-based deterministic model of differentiating 
and self-renewing stem cell populations was developed to predict 
the response to the   cytokines LIF and FGF4   in addition to the 
extracellular matrix components laminin and fi bronectin [ 33 ]. 
Each factor was hypothesized to have a dose effect on cell growth 
rate and kinetic parameters were estimated based on measured 
growth-rates. The model was validated by comparing the simula-
tion results to the fraction of cells expressing high levels of 
OCT4 in a 4-factor culture. Its applicability to predicting the 
kinase activity level of the JAK/STAT3 pathway was demonstrated 
[ 34 ]. The experimental data on the kinase activity and the 4-factor 
growth experiment of   embryonic stem cells (ESCs)   were further 
used to construct a Bayesian network model of the same system 
[ 35 ] and the network was used to identify causal interactions 
between the components of the JAK/STAT3, AKT, and MAPK 
signaling pathways. This study is unique among the ES pluripo-
tency   network inference models   in the sense that components of 
the signaling pathways have been predicted rather than gene regu-
latory network (GRN, see sections below). Predictions of the 
model were in accordance with known interactions, however the 
data collected at steady-state conditions were limiting the models’ 
potential to represent timescales of the responses. For instance, 
phosphorylation of Stat3 is expected to be much faster than cell 
fate determination. 

 The timescale of the   responses   was addressed by parameteriz-
ing a compartmental model of JAK/STAT3 signaling pathway 
[ 36 ] using time course data of protein phosphorylation and gene 
expression [ 37 ]. The model was shown to reproduce the response 
of the pathway to its inhibitors and to predict the stem cell fate 
decisions. The sensitivity analysis indicated that ESC self-renewal 
was controlled by the frequency of the LIF stimulation. Further, 
this model was merged with a stochastic spatial model [ 38 ] to 
describe the colonial behavior in response to autocrine and para-
crine signals, which is LIF in this particular case. An optimal colony 
size was suggested based on the simulations to maintain ES cells in 
niche [ 39 ]. 

 Reproducible, robust, and effi cient expansion of stem cells in 
well-controlled growth niches is one of the essential stages in stem 
cell research.   Coarse-grained models   relating the external cues 
directly to the cellular phenotype found applicability in the design 
of such bioprocesses. The variability of the micro-environment in a 
microfl uidics system was modeled dynamically to predict the 
expansion of ES cells in response to signals [ 28 ,  40 ,  41 ]. A growth 
rate   kinetics-based model   to predict the response of ES cells to 
toxic material accumulation was shown to represent the population 
dynamics in batch and continuous ES cultures [ 42 ]. The spatial 
JAK/STAT3 model mentioned above [ 39 ] was extended further 
to analyze cell growth in a microfl uidics system, and impact of the 
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system parameters like fl ow rate, position in the fl ow fi eld, and 
local cell organization was demonstrated [ 43 ]. 

 Activation of signaling pathways by external cues is a major 
determinant of cell fate. However, gene transcription is the 
stage where fate decision is “executed,” by providing the cells 
with the specifi c set of proteins required to generate the cellular 
  phenotype  .  

  
 Transcription factors (  TFs)           are the major actors in gene expression 
regulation. TFs often bind to each others’ promoters, therefore 
construct a regulatory network with feedback loops. Genes tar-
geted by   gene regulatory networks (GRN)       can be inferred from 
differential mRNA expression levels, as well as the detection of 
DNA–TF complexes. The differentiation of morula cells into 
trophectoderm (TS), inner cell mass (ICM) and further differen-
tiation of ICM into primitive endoderm (PE) and epiblast (EPI) 
was used as an experimental model in the discovery of key pluripo-
tency TFs. The identifi cation of   GRNs   that regulate pluripotency 
and cell differentiation allowed to represent a new level of com-
plexity in mathematical models of stem cells. The excellent review 
by Niwa ([ 44 ] and the references therein) gives an overview of the 
early discoveries in pluripotency GRN in the pre-implantation 
mouse embryo. The core GRN described by Niwa, including 
NANOG, OCT4, SOX2, CDX2, GATA6 and GCNF, has been the 
basis of most models since (Fig.  2b ). 

 The fi rst model of the core GRN in embryonic stem cells [ 45 ] 
focused on the “  stem cell box  ” (Fig.  2c ), the tight regulation loop 
between NANOG, OCT4, and SOX2 which maintains the pluri-
potency. The model was used to analyze the response of the net-
work to external signals as a function of model parameters such as 
strength of the feedback loops. The model was extended [ 46 ] to 
represent a larger network including the TFs CDX2, GATA6, and 
GCNF (Fig.  2b ), which regulates the differentiation of stem cells 
into trophectoderm or endoderm in the mouse embryo. The net-
work was analyzed to identify the factors that mediate the repro-
gramming and concluded that NANOG overexpression is a more 
robust way of reprogramming as opposed to suppression of its 
repressor GATA6. This model was further extended [ 47 ] to take 
into account the cell–cell interactions and asymmetric cell division 
that play important roles in regulating the GRN in the develop-
ment of mouse embryos [ 48 ]. The model was able to reproduce 
the early development of the embryo in 3D and capture the experi-
mentally observed patterns in cell fate decisions together with the 
heterogeneity in the embryo as a function of spatial mechanical 
forces, signaling pathways, and GRN. The effect of the FGF4 sig-
nal, via the MAPK pathway, was investigated with a 2D 25-cell 
model [ 49 ] where cells can receive FGF4 from neighboring cells. 
The simulations indicated the existence of a tri-stable network in 

2.3  Predicting Cell 
Fate Control by Gene 
Regulatory Networks
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pre-  implantation   mouse embryos, which corresponds to ICM, 
EPI, and PE cells. 

 Heterogeneity in   NANOG expression   has been shown to be a 
property of stem cell populations [ 50 ]. Understanding the origin 
of such heterogeneity is important since homogeneous cell popula-
tions are more desirable in cell therapies. LIF + 2i growth medium, 
designed for maintenance of stem cells in culture [ 30 ], activates 
NANOG expression via activation of the JAK/STAT3 pathway, 
inhibition of the MAPK pathway, and inhibition of the GSK3β 
phosphorylation. LIF + 2i was shown to reduce the heterogeneity 
in NANOG levels [ 51 ]. These experimental discoveries were com-
plemented by mathematical models investigating the origin and 
consequences of   NANOG heterogeneity   in stem cells [ 52 – 54 ]. 
Simulation of the “stem cell box” together with the autocrine sig-
naling of FGF4 demonstrated that the autocrine feedback loops 
are also a likely source of heterogeneity in NANOG levels [ 55 ].

   Serum has often been used as a growth media component 
together with LIF before LIF + 2i was designed. Comparison of 
the two media has been of interest as serum is known to have 
BMP4, which is a signal that regulates the   pluripotency   GRN via 
SMAD signaling pathways (Fig.  2a ). A model which represents the 
regulation of the stem cell box with all four external factors was 
used to analyze the three steady states of NANOG, effect of inhibi-
tors, and noise in the cells growing in media with combinations of 
the external factors [ 56 ]. In another study, relative levels of the 
protein complexes formed between the components of the pluri-
potency network have been shown to regulate the OCT4 levels in 
LIF + 2i and LIF + serum [ 57 ], at the ground state and exit from 
pluripotency. The minimal model, representing the dynamics of 
the GRN and post-transcriptional regulation mediated by the pro-
tein complexes, was able to recapitulate the effect of gene deletions 
in the GRN. A recent model [ 58 ] has combined the mathematical 
modeling of the “stem cell box” with experimental validation via a 
downstream reporter, REX1 in LIF + 2i. The mechanism of stem 
cell box regulation by beta-catenin in serum + LIF and 2i was 
shown to be signifi cant in differentiation compared to maintenance 
of pluripotency by modeling the Wnt/beta-catenin pathway 
together with the stem cell box [ 59 ]. The impact of beta-catenin 
on NANOG   during   reprogramming was also investigated [ 60 ].  

  
 Epigenetics has been long known to have an important role in the 
cell fate as conceptually described by Waddington [ 61 – 63 ], also 
see [ 64 ] for an excellent review of Waddington`s work in a philo-
sophical context of systems biology and mathematical modeling. 
Currently,     epigenetics is defi ned as relatively stable and potentially 
heritable changes in the transcriptional potential of the cells with-
out any changes in the DNA sequence. Epigenetic factors are being 
defi ned as small molecules such as methyl- groups deposited on 

2.4  Predicting Cell 
Reprogramming 
Trajectories Controlled 
by Epigenetics
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DNA, the 3-D chromatin structure dictated by a set of DNA- 
binding proteins such as histones, together with the small mole-
cules deposited on the DNA-binding proteins, and non-coding 
RNA with regulatory functions [ 65 ]. Identifi cation of molecular 
details of   epigenetic factors   in embryonic stem cells followed 
shortly after the identifi cation of the   core pluripotency GRN  . It 
has been shown that the enzymes and structural components of 
the epigenetic machinery work together with the signaling path-
ways and GRN on the gene regulation (see for example [ 66 ]), and 
further mediate transmitting the phenotype of the mother to its 
daughter cells via silencing the transcription of a set of genes. 

 Following the Yamanaka’s and Gurdon’s discoveries on repro-
gramming of somatic cells into stem cells [ 67 ], identifi cation of the 
factors that increase the effi ciency of reprogramming has been a 
new avenue for mathematical modeling of   pluripotency  . 
Understanding the underlying epigenetic profi les in stem cells 
became even more crucial with the recognition that   epigenetic fac-
tors   are the barrier in the reprogramming of somatic cells into plu-
ripotent cells [ 13 ]. 

 A   GRN-based stochastic model   for reprogramming of differ-
entiated cells into pluripotent state was proposed [ 68 ]. The noise 
in gene expression levels was shown to be adequate for repro-
gramming if the level of the noise is large enough to overcome the 
silencing in stem cell box genes imposed by differentiation genes. 
The reprogramming effi ciency has been described by a mathemat-
ical model as a function of the cell doubling time [ 69 ]. The results 
have suggested that all cells in a given population can be repro-
grammed into induced pluripotent stem cells (  iPS cells  ), whereas 
the number of cell divisions required for reprogramming differs 
between the cells. These two models explained the reprogram-
ming trajectories without taking the epigenetic factors into 
account explicitly. 

 A fi rst model explicitly representing the activity in GRNs in 
interaction with epigenetic profi les in pluripotent stem cells was 
constructed as a cell-  cycle-based binary model   [ 70 ] by simplify-
ing the GRN and epigenetic networks into cell-type-specifi c 
modules. The simulations assumed that gene expression takes 
place only in the interphase of a two-  phase cell cycle  , whereas 
changes in epigenetic profi les take place only in the telophase. 
Active, silent, and poised states were represented in epigenetic 
modules where genes were represented either as being expressed 
or silenced. The model was able to reproduce the observed tra-
jectories of differentiation and reprogramming. This model was 
modifi ed as a Markov model with simplifi ed rules in comparison 
to the original model and was shown to reproduce reprogram-
ming and gene expression profi les [ 71 ]. 

 Another   Boolean model   representing both the pluripotency 
GRN and   epigenetics   in fi ner detail [ 72 ] was able to reproduce the 
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profi les observed in cell differentiation and reprogramming as 
response to external modifi cations such as   gene silencing   or inhibi-
tion of epigenetic regulation. Optimization of reprogramming 
speed and effi ciency was proposed as a function of dynamics of 
  DNA methylation and chromatin structure  . 

 An   ODE-based model   of the stem cell box with most studied 
epigenetic marks H3K4me3 and H3K27me3 (tri-methylation on 
Lysine4 and Lysine27 residues on Histone3 proteins) was con-
structed [ 73 ] and simulated stochastically. The model was used to 
analyze the observed bistability, inducibility, stochasticity, and 
reprogramming profi les of the cells as response to external stimuli. 

 Recently,    Nanog  expression   in pre-implantation mouse 
embryos and ES cells grown in LIF + 2i was shown to be under 
allelic regulation via differential epigenetic silencing between the 
alleles [ 74 ]. The allelic regulation of    Nanog    was investigated in a 
mathematical model based on the core GRN of   pre-implantation 
mouse embryos   extended with epigenetic regulation of gene 
expression [ 75 ]. The model did not take into account any external 
signals, however was able to demonstrate the bistable behavior of 
 Nanog  expression as a function of slow epigenetic dynamics that 
leads to differentiation or self-renewal of ES cells. Impact of slow 
epigenetic kinetics on stochastic cell fate decisions was shown with 
another   GRN   model, an extended pluripotency network with 
KLF4 and PBX1 [ 76 ]. 

 Reprogramming and directed differentiation of stem cells usu-
ally require   step-wise protocols  . Recently, few models were pro-
posed to represent the discrete changes taking place in signaling, 
GRN, and epigenetics profi les of the cells depending on the stage 
of the process [ 77 ,  78 ]. 

 Representation of epigenetic effects in the mathematical mod-
els of stem cells is still in it infancy, however it can be envisioned 
that the cell commitment and reprogramming models with epi-
genetics will be superior in terms of their accuracy in making pre-
dictions, given the fact that epigenetics is the   barrier   that has to be 
overcome by transforming cells.   

3    Data-Based Models 

 The models we have   mentioned   so far were built on a priori infor-
mation about the systems to be investigated, and aimed to predict 
the phenotype as a function of selected factors and parameters. 
Building knowledge-based models can be tedious as the relevant 
molecular interactions have to be curated from the literature. In an 
emerging fi eld like stem cell research, there is also the possibility 
that the list of interactions derived from the literature will be 
incomplete. Further, available measurements and biochemical 
information may not be adequate to parameterize the models. 
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 In the following section we will be giving examples of models 
built without a priori information, i.e., built using data-based 
methods to identify   network components   or network structures in 
the   pluripotent stem cells  . Data-based methods are becoming 
more and more attractive in mathematical model reconstruction as 
they do not require tedious literature surveys, but indeed rely on 
analysis of high-throughput data which is accumulating with a tre-
mendous speed in databases. 

 A   partial least squares   regression model (PLS, a singular value 
decomposition-based linear regression method) [ 79 ] relates the 
external factors to signaling pathways and the cellular responses 
(i.e.,   growth rate kinetics   determined in [ 33 ]). The predicted effect 
of the tested factors on the   phospho-proteome and growth pat-
terns   agreed well with the literature, demonstrating that data- 
driven unsupervised models can be used to build plausible models. 
While this model is a reconstruction of signaling pathways based 
on phospho-protein measurements,   GRNs   can be reconstructed 
based on gene expression data. The reconstructed GRN models 
are built using the predictive power of gene expression levels on 
other relevant readouts [ 80 – 83 ].   Gene expression   levels can be 
further combined with data providing evidence on gene regula-
tion, such as DNA–protein binding data [ 84 ] or miRNA [ 85 ] for 
reconstruction of GRNs. On the other hand, gene expression lev-
els can be used to validate models built using other types of high- 
throughput data such as histone modifi cations [ 86 ] or chromatin 
structure [ 87 ]. 

 Data-based models can also improve our understanding of the 
barriers hindering the reprogramming effi ciency, for example, gene 
expression-based GRNs supplemented by known interactions were 
analyzed to identify the response pathways that may hinder repro-
gramming effi ciency [ 88 ,  89 ]. Differences between   human and 
mouse ESC   have been a matter of debate [ 90 ], the active signaling 
pathways in mouse and human ESC were compared using gene 
expression-based GRNs [ 84 ,  91 ] to answer the open questions in 
the fi eld. 

   Hybrid models   of   pluripotency   were proposed as an alternative 
to purely qualitative or quantitative models. For example, a meta- 
model derived from an ODE-based model of the human   PI3K/
AKT pathway   was used for effi cient parameter sensitivity analysis of 
the steady state of the pathway in hESC [ 92 ], whereas comple-
menting   a   gene expression-based unsupervised GRN with 
literature- curated regulatory interactions was shown to lead to 
more accurate predictions on the active GRN of mESCs differenti-
ating into the three germ lines, in parallel with the gastrulation 
process in the   embryo   [ 93 ]. 

 The high-throughput data-driven nature of unsupervised 
methods has the advantage that their predictions are genome-wide 
and open to context-dependent interpretation. Further, the 
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algorithms underlying the models can be readily implemented to 
new systems or datasets. Therefore, taking the extra mile to pro-
vide a web application or software package facilitates the re-use of 
the models and their predictions by the stem cell community. Few 
such applications were specifi cally validated for pluripotent stem 
cells:   CellNet   is a collection of tools for construction and analysis 
of gene expression-based GRNs in stem cells [ 94 ]. RE:IN [ 11 ] is 
another web-based application for gene expression-based GRN 
reconstruction. RE:IN was used to propose a minimal  pluripotency 
network in mES which was shown to correctly predict the pheno-
type of double knock-out mutants. ExprEssence [ 95 ] has been 
developed as a Cytoscape [ 96 ] plugin to build networks of gene 
expression data; the tool was verifi ed with pluripotency GRN. 

 The recent developments in the technology allow generation 
of   high-throughput data   on a variety of cellular features relevant to 
maintenance of pluripotency, such as profi les of epigenetic marks 
and 3-D   chromosome structure   [ 97 ], in addition to proving more 
effi cient and more accurate techniques over the established tech-
niques of collecting transcriptome, proteome, metabolome, pro-
tein–protein, and DNA–protein interaction data. The potential of 
such features in unsupervised modeling of pluripotency has not 
been fully utilized yet, although few recent applications initiated 
such efforts: StemSight [ 98 ] integrates gene expression and DNA–
  protein   binding data to provide a verifi ed network of mouse plu-
ripotent stem cells.   StemSight   has been further extended to include 
the human pluripotency network [ 99 ]. The   ESCAPE database   
(former iScMiD, [ 100 ]) stores data from sources such as phospho-
proteins, miRNA interactions, histone modifi cations, and gene 
expression. ESCAPE also provides a collection of data analysis and 
network construction tools for mouse and human pluripotent stem 
cells, verifi ed for pluripotency network in mESCs [ 12 ]. Repositories 
such as multi-organism STRING [ 101 ] and mouse-specifi c 
  MouseNET   [ 102 ] integrate data from diverse sources including 
gene expression levels, protein–protein interaction, text mining, 
and functional relatedness to build interaction maps of known and 
predicted interactions between the genes.  

4    Perspectives on Predictive Models in Regenerative Medicine 

 In this chapter, we tried to give an overview of computational 
modeling of   pluripotent stem cells   in line with the experimental 
discoveries in the fi eld. The pioneering modeling efforts have 
started from minimal probabilistic population dynamics models, 
and progressed to represent most levels of regulation in cell fate 
decisions. The approach and granularity of the models have also 
progressed, a range of approaches from deterministic ODE-based 
models to unsupervised logical models were adopted, whereas 
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building models in fi ner granularity became feasible with increas-
ing availability of quantitative data, evidence on molecular interac-
tions, and more powerful computational resources. 

  
 It is becoming clear that the pluripotency is regulated at many lev-
els of   cellular activities  , i.e., signaling, gene regulatory networks, 
epigenetics, and metabolism [ 103 ]. The existing computational 
models of pluripotency often focus on only one or two of these 
levels. For instance, metabolism has not yet been taken into con-
sideration in modeling the pluripotency although metabolism 
dependency of embryos and induced pluripotent stem cells has 
been reported [ 104 – 106 ]. Dependency of the cell cycle on GRNs, 
post-transcriptional regulation by non-coding RNAs, and post- 
translational regulation of protein activities are other phenomena 
that have been overlooked by the current models. The success of 
next-generation predictive models of pluripotency will rely   on   the 
representation of cell fate regulation at  all  levels.  

  
 The choice of the modeling approach depends on the nature of the 
cellular activities to be modeled. For example, gene expression is a 
noisy process; the molecular crowd in the nucleus and low copy 
number of the regulatory proteins introduce an intrinsic stochas-
ticity that leads to stochastic cell fate decisions and heterogeneous 
cell populations. Cell division and unequal partition of low copy 
number species between the daughter cells is another source of 
heterogeneity in cell populations. However, metabolism and sig-
naling are faster processes and take place in a relatively homoge-
neous environment, where assumption of continuity and steady 
state may hold in most cases. Therefore, a complete model repre-
senting all levels of cellular activities may require the use of differ-
ent approaches for each level.  

  
 Re-usability of the models needs to be taken into consideration 
by the computational biologists. Distribution of the models in 
standard formats with adequate documentation is crucial for effi -
cient use of resources. Only three of the models we have men-
tioned in this chapter are available at the BioModels database 
[ 107 ], and none could be found in the CellML [ 108 ] or JWS 
[ 109 ] model repositories, which demonstrates that re-use of the 
pluripotency models is currently not straightforward and poten-
tially a   time- consuming task  . 

 The computational cost of parameterizing and simulating 
models increases with increasing granularity. Therefore, the molec-
ular interactions represented in the model have to be chosen with 
care to provide enough details to answer the biological question 
being asked while omitting the details which are not relevant for 
the current question or observable with the current experimental 
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tools. Re-use of existing models to build larger and modular 
models can keep the computational cost at feasible levels. 

 Software tools and databases (particularly specialized on stem 
cells) are invaluable resources for computational biologists. 
However, often very useful tools and databases are not maintained 
or updated, therefore become obsolete quickly. Continued mainte-
nance by dedicated teams could prevent the waste of resources and 
provide the   community   with reliable and up-to-date tools and 
databases.  

  
 Mathematical models aim to explain the biological phenomena 
observed and predict the outcome under the conditions not yet 
experimentally tested. Validation of models can rely on use of exist-
ing experimental observations, however accuracy of the predic-
tions often are not tested. Lack of follow-up experiments often 
hinders the usefulness of the models. An iterative systems biology 
approach is needed to utilize the potential of predictive models, 
where model construction, prediction, and validation have to be 
designed a priory for the biological question being asked. Such 
iterative approaches require close collaboration between experi-
mental and computational biologists. 

 We would like to conclude with the observation that predictive 
modeling in regenerative medicine is at its dawn. Availability of 
detailed knowledge and genome-wide data on cellular and organ-
ismal level will promote the construction of larger and modular 
models with higher predictive power. The predictions from the 
models will lead to targeted   clinical   applications with higher rates 
of success in regenerative medicine.      
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