
Cooperative development of logical modelling standards

and tools with CoLoMoTo
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ABSTRACT

The identification of large regulatory and signalling networks

involved in the control of crucial cellular processes calls for proper

modelling approaches. Indeed, models can help elucidate properties

of these networks, understand their behaviour, and provide (testable)

predictions by performing in silico experiments. In this context,

qualitative, logical frameworks have emerged as relevant approaches,

as demonstrated by a growing number of published models, along

with new methodologies and software tools. This productive activity

now requires a concerted effort to ensure model reusability and

interoperability between tools.

Following an outline of the logical modelling framework, we present

the most important achievements of the Consortium for Logical

Modelling and Tools, along with future objectives. Our aim is to

advertise this open community, which welcomes contributions from all

researchers interested in logical modelling or in related mathematical

and computational developments.

Contact: contact@colomoto.org

1 MOTIVATION

The rapid development of novel biomolecular technologies has

fostered the study of complex regulatory systems during the last

decade. Mathematical models have become invaluable tools for

∗to whom correspondence should be addressed

†The complete list of members of the Consortium for Logical Models and

Tools is provided in the Acknowledgement section.

understanding the dynamical behaviour of such systems. There

are various types of formalisms, which differ in the level of

detail and model complexity (de Jong, 2002; Karlebach and

Shamir, 2008). Logical (or logic), discrete models comprise the

most abstract dynamic models and constitute nowadays a popular

modelling framework (for reviews see Bornholdt, 2005; Saadatpour

and Albert, 2013; Samaga and Klamt, 2013). In logical models,

components are represented by discrete variables with a small

range of possible values, with the most extreme case being

Boolean models, where each component can be either active or

inactive (Kauffman, 1969; Thomas, 1973). Regulatory effects are

defined by logical rules or lookup tables. The relative simplicity

of these models provides several advantages over more complex

modelling formalisms, such as systems of differential equations.

In particular, logical models do not require precise knowledge of

kinetic parameters, which makes them suitable for large models

comprising up to several hundreds of components. Due to their

qualitative nature, it is possible to incorporate various kinds of

information in logical models. For example, natural-language

statements from publications or expert knowledge on regulatory

interactions can easily be transformed into logical rules (Helikar

et al., 2012).

Although logical models provide a rough approximation of

concentration levels, they can reproduce the behaviour of

many biological systems as illustrated in examples of case

studies below . The discrete step functions resulting from

simulations of logical models constitute a plausible simplification

of typical sigmoidal response curves (Thomas and d’Ari, 1990;

de Jong, 2002). Biomolecular measurements can be analysed
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in the discrete framework by applying specialised discretisation

procedures (Shmulevich and Zhang, 2002; Hopfensitz et al., 2012).

Logical models have been successfully applied to a wide range

of regulatory and signalling systems, in a variety of organisms.

Examples include: yeast cell cycle (Li et al., 2004; Orlando et al.,

2008; Davidich and Bornholdt, 2008; Fauré and Thieffry, 2009;

Todd and Helikar, 2012), pathogen-host interactions (Madrahimov

et al., 2012; Franke et al., 2008; Thakar et al., 2007), development

of the sea urchin embryo (Peter et al., 2012), development

of Drosophila melanogaster (Sánchez and Thieffry, 2001, 2003;

Albert and Othmer, 2003; Sánchez et al., 2008), mammalian cell

cycle (Fauré et al., 2006), murine cardiac development (Herrmann

et al., 2012), determination of cell fates in human (Calzone and

Lothers, 2010; Grieco et al., 2013), multiscale signal transduction in

human epithelial cells (Helikar et al., 2013), human T-cell receptor

signaling (Saez-Rodriguez et al., 2007; Zhang et al., 2008) and

T-cell differentiation (Naldi et al., 2010).

The Consortium for Logical Models and Tools (CoLoMoTo,

http://colomoto.org) was informally launched during a meeting

at Instituto Gulbenkian de Ciência (Portugal) in November

2010 to gather interested scientists and promote the cooperative

development of shared standards and tools. This meeting was

followed by a second one at the European Bioinformatics Institute

(United Kingdom) in March 2012, which focused more specifically

on a common standard for the exchange of logical model (the SBML

Level 3 Qualitative Models or “qual” package, see below). The

third meeting was held at the University of Lausanne (Switzerland)

in April 2014, bringing together 22 participants from 14 different

institutions. It included sessions devoted to scientific presentations

covering methodological and computational developments, as well

as models for real case applications. In addition, the participants

discussed several topics requiring community consensus, including

the development of standards, collaborative tools, and model

repositories.

CoLoMoTo is an international open community that brings

together modellers, curators, and developers of methods and tools.

It aims at the definition of standards for model representation and

interchange, and the establishment of criteria for the comparison of

methods, models and tools. Finally, CoLoMoTo seeks to promote

these methods, tools and models.

We first outline the logical modelling approach to then present the

recent achievements of the consortium, as well as the outcomes of

the last meeting regarding future directions.

2 LOGICAL MODELLING

The definition of qualitative models mainly relies on the network

architectures and does not require precise knowledge about the

biological mechanisms at stake (Samaga and Klamt, 2013). This

makes the logical framework attractive for studying large interaction

networks.

Simulations and analyses of logical models can highlight the

key characteristics of the behaviour of such large systems, but

they cannot make detailed predictions on concentration levels. For

such purposes, more complex models, such as biochemical models,

may be more appropriate. These detailed models, in turn, are

usually limited to much smaller networks and require a high amount

of information and measurements. Hence, the purpose of logical

modelling is often to give an overview of a regulatory system

and to summarize the current state of research. They may be

complemented by refined submodels that study parts of the network

in detail.

In what follows, we discuss the main distinct flavours of the

logical framework, in what concerns the specification of models and

their dynamics. Properties of interest and current methods for their

analysis are then briefly reviewed.

2.1 Logical models

The development of a logical model for a regulatory and/or

signalling network usually starts with the definition of a graph

encompassing relevant regulatory components (nodes or vertices)

and their interactions (edges or arcs). A variable is associated with

each component to denote its concentration or activity level. A

logical function (or logical rule) defines the evolution (target value

of the corresponding variable) of each component, depending on the

levels of its regulators.

In Boolean models, all variables are binary (0 or 1), (Kauffman,

1969; Thomas, 1973; Bornholdt, 2005), whereas in multivalued

models, variables can take additional (discrete) values (Thomas,

1991). This extension is useful to account for distinct functional

levels of a regulator when, for instance, it targets different

components.

The definition of the logical rules may be difficult as combined

effects of interactions targeting the network components are often

hard to obtain. Some models are thus limited to specific classes

of functions that derive from the network architecture. This is

the case of threshold functions successfully applied to cell cycle

modelling (Li et al., 2004; Bornholdt, 2008) or canalysing functions

as discussed in (Kauffman et al., 2003). To handle uncertainty,

Shmulevich et al. (2002) proposed to randomly select the logical

functions, according to predefined specifications. Finally, Random

Boolean Networks, where both interactions and logical functions

are randomly assigned, are employed to study global properties of

certain classes of networks (Kauffman, 1993).

2.2 Logical states and dynamics

The current state of a logical model is encoded in a vector giving the

levels of all components. As the number of integer values allowed

for each variable is finite (and usually small), the state space is

also finite. The evolution of each component at a given state is

determined by its logical function but may also depend on the

updating policy.

In the synchronous policy, all components are updated

simultaneously, leading to a deterministic behaviour, where each

state has at most one successor. With the asynchronous policy,

only one component is updated at a given time i.e., a state

has as many successors as the number of components called to

update. More sophisticated policies have been proposed, which

can be deterministic (e.g., synchronous block-sequential as in

Robert, 1986; Aracena et al., 2013), yield multiple successors (e.g.,

asynchronous priority classes, Fauré et al., 2006), or introduce

stochastic choices (e.g., randomly selecting a successor from those

enabled by the asynchronous policy, Harvey and Bossomaier, 1997).

An exhaustive list of these policies is beyond the scope of this letter,

but it is important to realise that model behaviour may substantially

change with the choice of updating.
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Logical framework extensions: Briefly described below are a few of

the extensions that have been proposed to extend the scope of the

formalism.

Time delays were an early concern of R. Thomas (see Thomas

and d’Ari (1990) and Thomas (2013) for a recent discussion). As a

matter of fact, several extensions of the logical framework intend to

integrate kinetic information. For example, Siebert and Bockmayr

(2006) considered constraints on delays associated with variables

updates. Boolean models can also be extended by associating

discrete time delays with the inputs of the transition functions, hence

incorporating asynchronism in a synchronous updating policy

(Helikar and Rogers, 2009; Müssel et al., 2014). In Peter et al.

(2012), temporal as well as spatial constraints are simply expressed

in the form of additional logical rules.

In classical Boolean networks , external components (input nodes

with no regulator) are fixed at 0 or 1 for the duration of the

simulation. Alternatively, the values of these external components

can be set according to a probabilistic distribution over time to cope

with variable environmental conditions. Furthermore, the activity

levels of individual model components can be defined as the ratio

of 0’s and 1’s over a number of time steps and thereby enable

analyses mimicking experimental dose-response curves (Helikar

et al., 2012).

Finally, logical models can be refined and translated into

continuous models with similar dynamical properties by generating

standardised Ordinary Differential Equations (ODEs) based on

the logical rules (Di Cara et al., 2007; Wittmann et al., 2009;

Ouattara and Aothers, 2010). Such continuous models introduce

numerous parameters, which then need to be defined or estimated.

Alternatively, Piecewise-Linear Differential Equations (PLDEs)

(Glass and Kauffman, 1973) approximate the switch-like properties

of regulatory interactions. PLDE can be simulated using the Genetic

Network Analyzer (de Jong et al., 2003), provided that qualitative

relationships between parameters are defined.

2.3 Analysis of logical models

A first important property of a logical model is the repertoire of

its asymptotic behaviours, namely its attractors. Attractors are

sets of states from which the system cannot escape. They are often

assumed to denote biologically relevant behaviours e.g.,, Hopfensitz

et al. (2013). For example, stable states may describe cell fates

such as differentiation or apoptosis, whereas complex attractors may

represent oscillatory properties e.g.,, cell division cycle or circadian

rhythms (Huang, 1999). Alternative stable states have been

associated with multiple differentiated T-helper subtypes (Naldi

et al., 2010), with specific expression patterns associated with the

different segments of fruit fly embryo (Albert and Othmer, 2003),

with different cardiac progenitor cells (Herrmann et al., 2012), and

with cell fates in response to death receptor engagement (Calzone

and Lothers, 2010). In contrast, Fauré et al. (2006) associated

a complex cyclic attractor with the oscillatory behaviour of the

mammalian cell cycle.

Reachability properties are also of high interest. They represent

the capability of the model to generate particular trajectories. For

example, one can analyze the model to identify a trajectory from an

initial condition toward a specific attractor. Hereafter, we present

some approaches to assess the dynamical properties of logical

models..

Dynamical analysis: : The dynamics of a logical model can be

conveniently represented by a State Transition Graph (STG), where

nodes denote states, whereas edges denote enabled state transitions.

Each transition may involve the update of one or more components,

as determined by the logical regulatory functions and the updating

policy.

Dynamical properties can be obtained through the analysis of the

STG reachable from a set of initial states (or all possible states

for the complete STG). In this STG, an attractor corresponds to

a terminal Strongly Connected Component (SCC), defined as a

maximal set of states such that each state can be reached from all

other states and with no transition leaving this set of states.

Whenever a terminal SCC encompasses a unique state, the

attractor is a stable state, whereas an SCC containing at least

two states denotes a cyclic attractor. To ease the identification

of attractors and the analysis of STG structures, compact

representations can be generated, including SCC graphs, or more

compressed hierarchical transition graphs (Bérenguier et al., 2013).

Moreoever, efficient data structures greatly facilitate the

identification of the attractors in Boolean models (Garg et al., 2008).

To mitigate the combinatorial explosion of the state space, Stoll

et al. (2012) proposed a Boolean Kinetic Monte-Carlo algorithm,

which applies a continuous time Markov process to a Boolean

state space. By assigning a transition rate to each component and

considering time as a real number, it uses Monte-Carlo simulations

to compute the temporal evolution of probability distributions and

to estimate stationary distribution of logical states.

The verification of reachability properties quickly becomes time

consuming even for small models, calling for semi-automated

methods. One popular approach is model checking (Clarke et al.,

2000), which has been widely used for the verification of software

and hardware systems during the last 30 years. More recently, model

checking has been successfully applied to logical models (Bernot

et al., 2004; Monteiro and Chaouiya, 2012), as well to piecewise-

linear differential models (Batt et al., 2005), Petri nets (Gilbert et al.,

2007), among others.

Static analysis: Methods were proposed to deduce dynamical

information from the model itself, rather than computing explicit

state transitions. In this context, the first question of interest is the

identification of attractors, which is currently the subject of intense

research.

Stable states are independent of the updating policy, have a

simple formal definition and can be efficiently computed using

constraint-solving methods (Devloo et al., 2003; Naldi et al., 2007)

or polynomial algebra (Veliz-Cuba et al., 2010). In contrast,

complex attractors depend on the updating policy and are more

tricky to compute, in particular in the asynchronous case. A number

of methods have been proposed recently for their identification,

including an efficient SAT-based algorithm for the synchronous case

(Dubrova and Teslenko, 2011). The notion of stability has been

generalised from single states to sub-spaces of states (Siebert, 2011)

with applications in model reduction and attractor detection. Like

stable states, stable sub-spaces are independent of the updating

policy and can be computed by constraint-solving methods (Zañudo

and Albert, 2013; Klarner et al., 2014).

Multistability (existence of multiple attractors) or sustained

oscillations (or homeostasis) require the presence of positive or

negative regulatory circuits in the corresponding network (Thomas,
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1981; Thieffry, 2007; Remy et al., 2008). The connection between

network topology and dynamics is currently studied by several

groups. It can be used to deduce dynamical properties, at least in

some specific cases (Comet et al., 2013).

Finally, model reduction techniques aim at deriving simpler

models preserving most dynamical properties. In this respect,

automated reduction methods facilitate this process by properly

rewriting logical rules (Naldi et al., 2011).

3 STANDARD AND TOOLS

While numerous independent software packages supporting logical

models have been proposed over the years, no standard existed for

exchanging models between them. The CoLoMoTo consortium was

created to foster the design of such standards. Collaborative efforts

within CoLoMoTo already led to a novel model exchange format,

SBML qual, along with a standard JavaTM LogicalModel library to

handle logical models.

SBML qual (Qualitative Models package for SBML) is an extension

of the Systems Biology Markup Language (SBML) Level 3 standard

(Hucka et al., 2003). It is designed for the representation of

multivalued qualitative models of biological networks (Chaouiya

et al., 2013a,b). After various meetings and refinements by logical

modelling software developers, this new package was accepted

by the SBML community in 2011 and finally approved by the

SBML Editors in the spring of 2013. SBML qual is supported

in libSBML (Bornstein, 2008) and JSBML (Dräger et al., 2011).

Models encoded in SBML qual can be submitted to the BioModels

database, which also includes a branch dedicated to non-metabolic

models automatically generated from pathway resources (Chelliah

et al., 2013; Büchel et al., 2013).

The SBML qual format supports the definition of the model itself

as a list of components (or SBML species), each with a maximum

value and an optional initial value. Interactions between these

components and logical rules complete the model definition. This

first version thus accounts for generic multivalued logical models.

The extensions briefly described in Section 2 and simulation settings

(e.g., updating mode, perturbations, etc.) are not yet supported. It

is the goal of the consortium to tackle these issues.

The LogicalModel library provides a reference implementation

of logical models as supported by SBML qual, relying on

logical functions and decision diagrams. While SBML qual is

the main supported format, the API enables the definition of

additional import and export formats. The LogicalModel library

can thus act as a format conversion module for tools that

do not support SBML qual directly. It is freely available at

https://github.com/colomoto/logicalmodel. As shown in Table 1,

several tools can now exchange logical models thanks to the new

SBML qual format and this conversion tool.

4 CONCLUSIONS AND PROSPECTS

Logical modelling of biological regulatory networks constitutes

a very active field involving scientists with diverse interests,

ranging from methodological developments and computational

implementations to biological applications. With the aim to

foster synergies between these multiples developments, the

Consortium for the development of Logical Models and Tools

(CoLoMoTo) was launched four years ago and already delivered

the following results: (1) the definition of the SBML Level 3

Qualitative Modelling (SBML qual) package for the representation

of multivalued qualitative models of biological networks; and (2) the

implementation of the standard LogicalModel library, which can be

used by various modelling and simulation tools.

During the last meeting in April 2014, it was decided to organise

CoLoMoTo activities along four main axes.

The first axis aims at standardisation. The reproducibility of

results is enforced by defining and extending standards for the

representation and interchange of models and their simulation

parameters. Useful enhancements of SBML qual have already been

discussed by the community. Improvements considered include

the definition of models where rules are not (all) instantiated,

models for which timing constraints (or rates) are specified, etc.

In addition, further integration with core SBML Level 3 concepts

will be needed. In particular, such integration would facilitate

support of hybrid models, which combine features of both discrete

and continuous formalisms. This activity is developed in close

connection with the COMBINE (COmputational Modeling in

BIology NEtwork) community, which drives the development of

standards for model interchange. One future direction addresses the

issue of exchanging simulation settings for logical models, using the

Simulation Experiment Description Markup Language (SED-ML)

(Waltemath et al., 2011). Moreover, the adoption of the Kinetic

Simulation Algorithm Ontology (KiSAO) will permit a better

description of the algorithms, their parameters and relationships

(Courtot et al., 2011). Finally, CoLoMoTo is currently working on

the definition of a controlled vocabulary (ontology) covering the

essential terms related to logical modelling, with textual definitions

and corresponding references.

The second axis aims at defining an umbrella model repository

with links to existing model repositories. Authors of manuscripts

describing new logical models will be encouraged to publish their

models in one of these repositories.

The third axis consists in defining benchmarks for the

comparison of models and tools. Furthermore, successful modelling

collaborations between experimentalists and modellers will be

documented, in order to guide novel projects.

The fourth axis is the creation of a repository of methods and tools

that are made available by the different research groups working

on logical modelling. This repository should not only list the

different features and functionalities provided by each of the tools

and methods, but also provide guidelines for the selection of tools

and methods suitable for typical use-cases.

A recently launched portal (http://colomoto.org) provides access

to the reports of the CoLoMoTo meetings, a list of all involved

research groups, as well as methods and tools available for the

logical formalism. An important current aim consists in reaching

more scientists and making them aware of existing models, methods

and tools, which could be used for their own research lines. We thus

conclude this letter by warmly inviting the international community

interested in logical modelling to participate in future CoLoMoTo

activities.
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Tool Reference Main features

BoolNet Müssel et al. (2010) R package for the construction, analysis and simulation of Boolean networks,

includes a variety of updating schemes.

The Cell Collective Helikar et al. (2012) Web-based platform for the construction, simulation, and analysis of Boolean-

based models.

CellNetAnalyzer Klamt et al. (2007) MATLAB toolbox providing a graphical user interface with various computational

methods and algorithms for exploring structural and functional properties of

metabolic, signalling, and regulatory networks.

CellNOpt Terfve et al. (2012) Free open-source (R/BioConductor, Python, and Cytoscape) tool to train logical

models to experimental data, using Boolean, Fuzzy-logic and ODE formalisms.

GINsim Naldi et al. (2009) Java application for the construction and analysis of multivalued logical models.

MaBoSS Stoll et al. (2012) C++ software for the simulation of continuous time Markov processes directly

derived from Boolean models.

BoolSim Di Cara et al. (2007) Efficient identification of all the attractors (stable states and cyclic attractors).

SQUAD Construction of continuous dynamical models from logical models.

Table 1. Software tools that support the SBML qual format, either directly or through the LogicalModel library. And updated list with further descriptions

and links is maintained at CoLoMoTo’s website (http://colomoto.org/software).
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