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Preface

I have the pleasure of introducing this edition of in Silico Systems Biology: Methods and
Protocols in the successful Methods in Molecular Biology series. I must express my gratitude
for the work done by the many contributors of this book. Their many efforts have made
possible the realization of this project. Systems biology can now be considered an estab-
lished and fundamental field in life sciences. It has allowed moving from the identification
of molecular ‘parts lists’ for living organisms towards synthesizing information from
different ‘omics’-based approaches to generate and test new hypotheses about how
biological systems work. To acquire a systems-level understanding of biology, neither
experimental nor computational biology alone is sufficient. Parallel to the advances in the
research front of systems biology, maturation in the approaches and actual analysis of
the data and the resources/tools have also advanced. New generation of life scientists are
able to find excellent text books in this field, as well as on the variety of flavours the term
systems biology seems to acquire and its related disciplines. From experience in the
nonprofit bioinformatics training sector it is clear that our days researchers in this field
need to be able to master a complexity of tasks: (1) from handling and annotating net-
works, (2) getting acquainted and learning how to deal with network-based approaches to
model, (3) investigating high throughput biological data, (4) understanding the formal-
isms and methods of existing correlation network models and gene pathways as well as how
to model perturbations in the systems. All of these remain essential skills for which many
have had no formal training. Scientists seek for opportunities to learn and share experiences
upon. Based on this need, the idea of this book was born. It provides a practical set of
chapters based often on actual materials used and develop for face-to-face training with
examples and case studies. It centres on covering network biology and mathematical
models of biological systems. The contributors are a magnificent set of experts and lead
researchers in the field of systems biology. I am particularly grateful to Prof. Nicolas Le
Novere, the inspiration behind the actual face-to-face courses as well as this book, in
addition to Julio Saenz Rodrigues and all those that put time aside to offer useful and
timely materials for this book. Not all contributors have been part of the training courses,
but they have extended and enriched the contents to areas we had not covered previously,
providing a comprehensive picture of the approaches and advances made in the field of in
silico systems biology.

Norwich, UK Maria Victoria Schneider

v





Contents

Preface. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v
Contributors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix

1 Defining Systems Biology: A Brief Overview of the Term and Field. . . . . . . . . . 1
Maria Victoria Schneider

2 Approaches to Modeling Gene Regulatory Networks:
A Gentle Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
Thomas Schlitt

3 Integration of Genomic Information with Biological Networks
Using Cytoscape . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
Anna Bauer-Mehren

4 Visualization and Analysis of Biological Networks . . . . . . . . . . . . . . . . . . . . . . . . . 63
Pablo Porras Millán

5 Modeling Signaling Networks with Different Formalisms: A Preview . . . . . . . . 89
Aidan MacNamara, David Henriques, and Julio Saez-Rodriguez

6 From a Biological Hypothesis to the Construction
of a Mathematical Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
David Cohen, Inna Kuperstein, Emmanuel Barillot,
Andrei Zinovyev, and Laurence Calzone

7 Practical Use of BiNoM: A Biological Network Manager Software. . . . . . . . . . . 127
Eric Bonnet, Laurence Calzone, Daniel Rovera, Gautier Stoll,
Emmanuel Barillot, and Andrei Zinovyev

8 Using Chemical Kinetics to Model Biochemical Pathways . . . . . . . . . . . . . . . . . . 147
Nicolas Le Novère and Lukas Endler

9 Simulation of Stochastic Kinetic Models. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169
Andrew Golightly and Colin S. Gillespie

10 BioModels Database: A Repository of Mathematical Models
of Biological Processes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189
Vijayalakshmi Chelliah, Camille Laibe, and Nicolas Le Novère

11 Supporting SBML as a Model Exchange Format in Software Applications. . . . 201
Sarah M. Keating and Nicolas Le Novère

12 Controlled Annotations for Systems Biology. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 227
Nick Juty, Camille Laibe, and Nicolas Le Novère

13 Bayesian Approaches for Mechanistic Ion Channel Modeling . . . . . . . . . . . . . . . 247
Ben Calderhead, Michael Epstein, Lucia Sivilotti, and Mark Girolami

14 Building Models Using Reactome Pathways as Templates . . . . . . . . . . . . . . . . . . 273
David Croft

vii



15 Uniform Curation Protocol of Metazoan Signaling Pathways to Predict
Novel Signaling Components . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 285
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Chapter 1

Defining Systems Biology: A Brief Overview
of the Term and Field

Maria Victoria Schneider

Abstract

Here we provide a broad overview of the definition of the term “systems biology” as well as pinpoint specific
events in biological research and beyond that are consistently cited to have contributed and led to the
current science of in silico systems biology. Since there have been many reviews and historical accounts
describing the term, it would be impossible to include all single references. However, we do attempt to
provide a consensus vision of how the field has evolved and consequently the terminology that followed it.
We also highlight the development and general acceptance, and use, of standards for model representations
as being crucial to the continued success of the in silico systems biology field.

Key words Systems biology, In silico systems biology, Omics, SBML, Modeling

1 Introduction

Several reviews, specifically describing the semantic meaning and
historical use of the term “systems biology” have been written.
There is a general consensus that the term “systems biology” was
first coined in the 1960s, when theoretical biologists began creating
computer-run mathematical models of biological systems. Noble
[1] is cited as the first to use the term in this context. Prior to
Noble’s connotation of the term, Hodgkin and Huxley [2], pub-
lished a series of papers which described the initiation and propaga-
tion of a nerve impulse, using a set of Ordinary Differential
Equations (ODEs), for which they were awarded the Nobel Prize
in 1963. This mathematical approach to describe biological systems
was then adopted by others to reconstruct the function of other
body parts (e.g., reconstructing the electrical functioning of the
heart [1]). The work of Harvey and Mendel has also been cited as
having roots in this field [3, 4]. The actual origins of the term are a
matter of debate amongst scientists. For instance, some regard it as
originating from Claude Bernard about 150 years ago, or Norbert
Wiener and Erwin Schrödinger, around 90 years ago [5].

Maria Victoria Schneider (ed.), In Silico Systems Biology, Methods in Molecular Biology, vol. 1021,
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Others will cite the development of the concept of homeostasis
by Walter B. Cannon, who built upon Bernard’s homeostasis con-
cept, at the turn of the past century as a key factor towards the
development of systems biology [6–8].

Mathematical models were extensively used to understand
biological processes in life science, making their use in the field of
systems biology an actual continuation of a long tradition as seen in
many fields like genetics, physiology, biochemistry, evolutionary
biology and ecology. Noble [9] still underlines the importance of
“mathematical insight” being a compulsory component of the
available and increasing computational power in order to develop
the necessary theoretical framework required to deal with multi-
level interactions.

However, regardless of a strong start the field did not prosper
during the second half of the twentieth century. A leap forward
took place at the beginning of the 90s when high-throughput tools,
developed for the sequencing of the human genome, brought
experimental scientists up to the speed of theoretical biologists.
The widespread use of the Internet also made possible, for the
first time, international collaborations and the sharing of the huge
amounts of data.

“In silico Systems biology” herein refers to the actual modeling
of the parts at the systems level [10]. The late 80s and the whole
90s saw a large influx of biological data largely driven by the human
genome project [11, 12]. The need to actually decipher the infor-
mation gained from this project went beyond pure genomics,
leading to efforts in many related disciplines such as computational
biology, therein systems biology. Advances in systems biology have
also been driven by the assumed underlying predictive factor that
models of systems would provide, therefore giving significant
insights into the functionality of the systems as a whole, as well as
an understanding of the individual different parts. These would also
extend across species, since models from different species can be
used to predict behavior of similar systems in humans which in turn
can be applied to develop new medical remedies. The term “Sys-
tems Biology” has been defined and used also in the context (or
even as a synonym) for the suffix-term OMICS (a suffix indicating
the measurement of the entire set of a given level of biological
molecules and information). There are several Omics [13], most
commonly known are genomics, transcriptomics, proteomics and
metabolomics. In silico systems biology as intended in this book
relies on the definition of systems biology in terms of modeling and
simulations of biological processes. Ultimately, the goal of devel-
oping the various omics technologies is to combine the data into
iterative models in order to understand how the elements and
their interactions together give rise to emergent properties of a
system [14, 15].
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The aim of modeling a biological system is to gain sufficient
understanding such that the behavior of the system can be pre-
dicted. Simulations are utilized as a form of validation for virtual
experiments, saving time and resources.

2 Standards Matter

A truly important advancement in the field of in silico systems
biology was the understanding that a standard method for encod-
ing a model would encourage interoperability between different
modeling strategies. This could only be achieved with the set of
clear standards. No generally accepted standards existed for devel-
oping models of biological systems prior to 2000. Models were
developed according to individual tastes and trends within certain
fields. Generally, existing models were specific with only their
respective field in mind. The development of any standard needed
to be versatile enough to accommodate different fields. The idea
behind this being that by using these standards, established exist-
ing models can be integrated in order to develop larger more
comprehensive ones. A huge step forwards in standardized mod-
eling came with the adoption of the Systems Biology Markup
Language [16, 17] and Cell Markup Language [18]; both were
developed as XML based [19]. However, a hurdle that still needs
to be overcome is that most applications store important data in
application specific annotations [20].

There are several repositories that contain models of various
formats including SBML (e.g., BioModels.net) and KEGG (Kyoto
Encyclopedia on Genes and Genomes) (see Note 1). However,
recently (see Note 2 for link to the INBIOMEDconsortium) it
was underlined how the challenge remains when it comes to repro-
ducibility, reliability and verification of computational methods and
their use. Evaluating algorithms/models in an unbiased manner is
severely time consuming, journals themselves struggle with the
issue of how to verify computational results, since ultimately this
relies on being able to download and test the software used as well
as the data.

3 In Silico Systems Biology: All Around Modeling

The properties of systems are the result of two important charac-
teristics: (1) systems have a hierarchical structure, and (2) the
structure is held together by numerous links to construct very
complex networks. Systems were recognized by Woodger [21] as
a hierarchy of organization. Higher organisms (most at least) start
their life cycle as single cells, developing as multiple and diverse
cells. This happens with a specific spatial distribution and temporal

Defining Systems Biology: A Brief Overview of the Term and Field 3



order. Likewise, tissues are organized complexes of cells.
The recognition that many systems were constructed from hierar-
chies of organization represented an important advance in this field
[22–24].

In the study of systems, one often starts with modeling of the
individual components (e.g., protein networks, signal transduction
pathways). Models are initially used in descriptive manner (e.g.,
involving an equation that shows the relationships between the
proteins in the cell). Subsequently, graphical models visualizing
the cell (often as very complicated flow charts or webs) are gener-
ated and the relationships between the participants shown using
distance or color. The empirical part then starts by using model
systems (such as yeast) to explore what happens at the organism
level when the participants are disturbed. Often however, genetic
perturbations (e.g., knock out genes) or environmental perturba-
tions (e.g., give or take away certain kind of sugars) lead to
observed data that cannot be explained by the actual model.
Thus, new hypothesis are formulated to justify such discrepancies
and the cycle starts again. Of course, the insights and advances
achieved in studying yeast models can be extrapolated to better
understand human cell models for example (e.g., scaling up
the model for simple systems), bringing comparative genomics
(see Note 3) as a powerful tool in systems biology. There seems to
be a big favorite in the field when it comes to modeling approaches,
led by differential equations (e.g., using a series of differential
equations where parameters are chosen in order to predict the
behavior of the system). There are of course other approaches,
which would also reflect a better representation of a biological
scenario (e.g., on/off switch process, where the best representation
is a binary system instead of a differential equation, more adequate
when modeling diffusion dependent processes for example). There
are several reviews on modeling formalisms and the comparison of
the features and their integration (e.g., Machado et al. [25]).
Uhrmacher et al. [26] also discussedmulti-level models, as opposed
to most models in Systems Biology which can be located within the
space that is spanned by three dimensions of modeling: continuous
and discrete; quantitative and qualitative; stochastic and determin-
istic. Many modeling approaches are hybrid as they combine con-
tinuous and discrete, quantitative and qualitative, stochastic and
deterministic aspects [27, 28].

An approach that has been used in in silico systems biology
is to use a series of smaller models that overlap with each other
to represent the biological tasks of a complex system [29]. How to
translate this into the bench later is far from trivial. In order to be
able to integrate experimentally the various levels of information
(e.g., omics) it is vital that all the “omics” are integrated from the
start to ensure the experimental design and variables measured are
done so coherently as to allow real integration of data derived from
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a variety of experiments and labs. Merging data is one of the crucial
steps researchers are striving for. Ideally, if all were to use the same
standards as well as actually submit the data to (open) repositories,
merging could be achieved by several (simple) databases pointing
to the same experimental design. However, a critical flaw when it
comes to integrating data (across the Omics) does not derive from
the computational technical aspects, but from trying to integrate
data from experiments that had no integrated design (e.g., trying to
integrate data at the genomic level from study a with proteomics
level from study b). The future seems to bring biology, computa-
tional science closer with nanotechnology (see Note 4) and micro-
fluidics (seeNote 5). Such technologies have the potential to enable
researchers to measure small amounts of material in parallel, at
the single-molecule level (see Note 6). Now that a common lan-
guage for systems biology has been developed and is being accepted
by the community, there is a concrete pathway where data sharing
could truly happen. However, this will require not only those
working in silico (e.g., the scientists that feel comfortable looking
at data, writing programs, some numerics) but also those that know
about the disease and environmental changes, that can truly aid the
actual interpretation of what is observed, all to work together and
make an effort to use and apply the standards developed.

4 Systems Biology: Significant Events and Where It’s Heading

When looking at the historical developments around and leading to
the generally recognized field of systems biology one could define
two phases, one prior to the age of genomics and large-scale
biology, another one starting from the advent of the technological
developments in the actual production of data to the current dawn
of High Throughput technologies. Figure 1 shows a time line
pinpointing (some) of the significant events that contributed to
the development of this field and its evolution in time till 2002
marked by Barabasi’s contributions, based on several historical
reviews written about this. The previous decade showed the foun-
dation of new Institutes devoted to the study and research in
systems biology (see Note 7). The recognition of the maturity of
the field does not only transpire from the proliferation of actual
institutions, departments, groups named after but also through the
last 10 years of publications in terms of books (including text
books) now available as well as trends at funding levels (Le Novère
per comm.). The current pressures on the field now lie in how
applicable the advances from in silico systems biology are towards
the empirical research and contributions into revealing mechanisms
and processes at a variety of levels: molecular, cellular and physio-
logical. Yarden & Pines [30] pointed out the lack of numbers when
it comes to examples of deeper molecular understanding of the

Defining Systems Biology: A Brief Overview of the Term and Field 5



1885
• Claude Bernard, theory of the permanence of the milieu intérieur (later called homeostasis) due to integrated

regulatory mechanisms

1926
• Smuts, criticise reductionism

1929
• Woodger, recognized that systems are a hierarchy of organization.

1932
• Cannon, recognized feedback controls and termed the process homeostasis.

1940
• Weiss criticise reductionism

1943
• Cori and Green, Protein kinases and phosphatases were identified first in animals

1948
• Weiner’s initiating cybernetics and raising the profile of negative feedback owed much to Cannon (1932)

1950
• von Bertallanfy suggested all systems shared the common property of being composed of interlinked

component underlying  similarities in detailed structure and control design. 

1952
• Hodgkin and Huxley integrated equations for the nerve impulse

1954
• Burnett and Kennedy, identified Protein kinases and phosphatases in animals

1956
• Williams publications ended mechanistically belief illustrating individual variations across a variety of levels

1956
• Umbarger as well as Yates and Pardee described molecular feedback

1965
• Toulmin and Goodfield, construction of clockworks leading to deterministic principles for living organisms

1966
• Crick noted that only in the cell are certain crucial nucleotide sequences constrained to act as a code.

Marking where biology departs from physics and chemistry and enters into a systems perspective.

1968
• Polyani clarified the relationship between levels in a hierarchy, echoed in Weiss, 1973

1969
• Kuo and Greengard, detected the first second messenger kinase; Leake and Whyte independently

recognised that systems are a hierarchy of organisation

1972
• Bateson pointed to the two-way interaction between genes and environment that had earlier been established

 by Schmalhausen(1949), Waddington (1953, 1957), and later by Rendel (1967)

1973
• Kacser and Burns developed unambiguous methods for measuring the control exerted by any particular

 enzyme.

1973
• Weiss noted much greater variation at lower levels output of individual pathways is more ordered within

a system than expected from random operation of those pathways outside the system.  

1977
• Waddington (1977) described manipulation of systems behaviour can only be sensibly accomplished

by modifying many steps (recalls Bateson (1972)

1989
• van Roon et al., noted that protein composition varied

1990
• Ko et al., 1990 corroborates van Roon et al finding: protein composition does vary!

2002
• Barabasi and Buchanan independently, brought recognition that a common stable systems structure is

represented by hubs and connectors. 

Fig. 1 Illustrative chronological list of events and key researchers considered to have influenced and shaped
the field of systems biology research
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underlying pathogenesis to improve treatment of patients with
cancer. They suggest the need for a constant dialogue between
basic research and medical oncology to reach a sustained pipeline
of novel drugs and ways to overcome acquired treatment resistance
in patients under a systems biology framework. Trautman and
Sekali [31] refer to systems biology as an emerging and promising
research strategy that can be applied to vaccine development and
the identification of new mechanisms and predictors of inactivated
vaccine immunogenicity. Although the holistic idea, conceptual
framework and application of mathematical modeling and simula-
tion for representation and predicting living systems is not new, in
terms of the actual impact in application of the discoveries in the
field, systems biology is considered still a young field (InBIomedvi-
sion consortium see Note 2).

The last decade shows a clear active attempt to bring into real
applications the findings and results obtained at the modeling level.
Expected benefits from systems biology research include faster
routes towards candidates for new drugs [32, 33], better diagnos-
tics for diseases of animals and plants [34], increased ability to
“design” products such as bio-compatible materials for bio-fuels
[35, 36] and healthier foods [37].

Finally, there is a strong trend and potential future investments
from research funding programs towards synthetic biology,
intended here as both the re-design and fabrication of existing
biological systems as well as the design and fabrication of biological
components and systems that do not already exist in the natural
world. Obviously, the advances in the field of in silico systems
biology (whose focus has been on natural systems), would benefit
from the application of engineering to study how to build artificial
biological systems. One could not exclude synthetic biology from
contributing to in silico systems biology, by providing insights into
the ways parts of natural biological systems works, characterizing
and simplifying them and using them as a component of a highly
unnatural, engineered, biological system. Synthetic biology pro-
vides a complementary perspective from which to consider, analyse,
and ultimately understand the living world.

5 The Next Chapters

This book reflects the topics and contents originally brought
together for a practical course on in silico systems biology. The
books also expands on topics and aspects not covered in the course,
keeping always in mind to offer the information at a practical level
with the idea to complement the several excellent resources that
cover the concepts and background information of this field
[38, 39].

Defining Systems Biology: A Brief Overview of the Term and Field 7



5.1 Part I: Network

Reconstruction and

Visualization

This section presents three chapters. Chapter 2, from Schlitt provides
an overview of the approaches to modeling gene regulatory
networks, including examples of the use of different data sources. In
Chapter 3, Bauer illustrates how to analyse the functional effect of
sequence variations in the context of biological networks such as
protein–protein interaction networks and signaling pathways by
using Cytoscape. The focus on the practical aspect of the book is
apparent by the use of a step-by-step case study examples by the
authors. Porras (Chapter 4) provides a practical overview of many
different tools and approaches used to build, represent and analyse
biological networks by illustrating the full process using a practical
example.

5.2 Part II: Network

Analysis & Logical

Modeling

This section starts with a contribution from MacNamara and Saez-
Rodriguez, covering the overview of the various approaches most
commonly used for modeling cell signaling network, using as illus-
trative example the MAPK cascade (Chapter 5). Cohen et al. pro-
vide a complete overview of Chapter 6, on how to get from a
formulated biological hypothesis to the construction of a mathe-
matical model. Bonnet et al. (Chapter 7) illustrate how to use a
specific software package: Biological Network Manager software
(BiNoM).

5.3 Part III:

Mechanistic Modeling

& Stochastic

Simulations

This section starts with a contribution in Chapter 8 from Le Novère
and Endler explaining how to use chemical kinetics to model
biochemical pathways. Chaper 9, by Golightly & Gillespie provides
an introduction to Stochastic simulations. Finally Chapter 10 pre-
sents and describes the BioModels Database as a repository of
mathematical models of biological processes.

5.4 Part IV: Encoding

Syntax & Semantics

This section is devoted to the so important advances in standards!
Two chapters present SBML as a model exchange format in soft-
ware applications (Chapter 11 by Keating & Le Novere and
Chapter 12 by Juty et al.)

5.5 Part V: Bayesian

Modeling in Systems

Biology

One single (Chapter 13) but crucial contribution is made here on a
Bayesian System Identification for Biological Pathway Modeling by
Calderhead et al.

5.6 Part VI:

Pathways and Data

Integration Workflows

In Chapter 14, Croft very descriptively presents how to build
models using Reactome pathways as templates. This is followed
by Chapter 15, which illustrates using a metazoan signaling path-
way to predict novel components by uniform curation protocol
(by Pálfy et al.). The book concludes with a chapter from Jimenez
and Corpas. This chapter aims to show, using a step by step prag-
matic example, how to create and expand workflows and use web
services. This is done in such a way as to be easily understandable by
non-computational scientists or non-bioinformaticians.
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It is foreseeable that this book will evolve in years to come by
increasing the number of chapters covering new approaches but also
illustrating case studies where the concepts herein presented have
been applied. Sharing experiences, know-how, and actual workflows
through case studies as presented in this book, remain effective ways
to disseminate valuable information, which so many researchers
have, but cannot share at a peer review level, as well as enabling
many others to effectively choose and apply such knowledge.

6 Notes

1. URLs of three main repositories of models (formats including
SBML and CellML):
BioModels.net: http://biomodels.net/
KEGG: http://www.genome.jp/kegg/
CellML.org repository: http://www.cellml.org/

2. INBIOMEDvision: http://www.inbiomedvision.eu/index.
html, particularly relevant this document entitled “Strategic
Report for Translational Systems Biology and Bioinformatics
in the European Union,” link: http://www.inbiomedvision.
eu/PDF/Report-TranslationalBioinformatics-FINAL.pdf

3. Comparative genomics defined herein as the ability to learn
about complex systems by modeling simpler systems that have
similar genetics.

4. Nanotechnology involves manipulating molecules smaller than
100 nm—the scale of viruses.

5. Microfluidics, commonly used in ink-jet printing, uses pumps
and valves to transport nanoliter volumes of fluids through
microchannnels in a tiny glass or plastic chip.

6. Emerging and evolving technologies are increasing in this area.
Single cell sequencing high throughput techniques have a big
potential, recently a technique called Strand-seq, which works
by labeling newly synthesized DNA during replication selec-
tively damaging these new strands in the daughter cells, so only
the original parental strand gets sequenced has just been pub-
lished [40].

7. Some of the major Institutes devoted to systems biology and
their urls:

– Institute for Quantitative Systems Biology at the University of
Washington (Seattle, WA); https://www.systemsbiology.org/

– The Systems Biology Institute in Japan http://sbi.jp/
aboutSBI.htm

– Institute for Genomics and Systems Biology, USA http://
www.igsb.anl.gov/Chicago

Defining Systems Biology: A Brief Overview of the Term and Field 9

http://biomodels.net/
http://biomodels.net/
http://www.genome.jp/kegg/
http://www.genome.jp/kegg/
http://www.cellml.org/
http://www.cellml.org/
http://www.inbiomedvision.eu/index.html
http://www.inbiomedvision.eu/index.html
http://www.inbiomedvision.eu/index.html
http://www.inbiomedvision.eu/PDF/Report-TranslationalBioinformatics-FINAL.pdf
http://www.inbiomedvision.eu/PDF/Report-TranslationalBioinformatics-FINAL.pdf
http://www.inbiomedvision.eu/PDF/Report-TranslationalBioinformatics-FINAL.pdf
https://www.systemsbiology.org/
http://sbi.jp/aboutSBI.htm
http://sbi.jp/aboutSBI.htm
http://sbi.jp/aboutSBI.htm
http://www.igsb.anl.gov/Chicago
http://www.igsb.anl.gov/Chicago
http://www.igsb.anl.gov/Chicago


– Institute of Molecular, Cell and Systems Biology (2010) in
Scotland, Berlin Institute for Medical Systems Biology—
MDC http://www.mdc-berlin.de/en/bimsb/index.html

– ETH—IMSB Institute of Molecular Systems Biology Note
http://www.imsb.ethz.ch/

– The Simons Center for Systems Biology http://www.sns.
ias.edu/csb

– Department of Systems Biology @HMS: https://sysbio.
med.harvard.edu/

– FAS Center for Systems Biology: http://sysbio.harvard.
edu/csb/and many more, see http://en.wikipedia.org/
wiki/List_of_systems_biology_research_groups

Acknowledgement

I am grateful to Boye Gricar for useful comments on earlier and
final versions of this chapter. Thanks to Nicolas Le Novère for
inspiration. Big thanks to Jacqueline Dreyer, Nick Juty and Julio
Saez-Rodriguez for useful comments to the final version of this
chapter.

References

1. Noble D (1960) Cardiac action and pacemaker
potentials based on the Hodgkin-Huxley equa-
tions. Nature 188:495–497

2. Hodgkin AL, Huxley AF (1952) A quantitative
description of membrane current and its appli-
cation to conduct and excitation in nerve.
J Physiol II7:500–544

3. Auffray C, Noble D (2009) Origins of systems
biology in WilliamHarvey’s masterpiece on the
movement of the heart and the blood in ani-
mals. Int J Mol Sci 10:1658–1669

4. Auffray C, Imbeaud S, Roux-Rouquie M,
Hood L (2003) From functional genomics to
systems biology: concepts and practices. C R
Biol 326:879–892

5. Saks V, Monge C, Guzun R (2009) Philosoph-
ical basis and some historical aspects of systems
biology: from Hegel to Noble—applications
for bioenergetic research. Int J Mol Sci 10
(3):1161–1192

6. Csete ME, Doyle JC (2002) Reverse engineer-
ing of biological complexity. Science
295:1664–1669

7. Cannon WB (1941) The body physiologic and
the body politic. Science 93:1–10

8. Joyner MJ, Pedersen BK (2011) Ten questions
about systems biology. J Physiol 589:1017–1030

9. Noble D (2010) Biophysics and systems
biology. Philos Trans R Soc A 2010(368):
1125–1139

10. Selinger DW, Wright MA, Church GM (2003)
On the complete determination of biological
systems. Trends Biotechnol 21(6):251–254

11. Collins FS, Morgan M, Patrinos A (2003)
The human genome project: lessons from
large-scale biology. Science 300:286

12. Frazier ME, Johnson GM, Thomassen DG,
Oliver CE, Patrinos A (2003) Realizing the
potential of the genome revolution: the gen-
omes to life program. Science 300:290

13. Schneider MV, Orchard S (2011) Omics tech-
nologies, data and bioinformatics principles.
Methods Mol Biol 719:3–30

14. Jamers A, Blust R, De Coen W (2009) Omics
in algae: paving the way for a systems biological
understanding of algal stress phenomena?
Aquat Toxicol 92(3):114–121

15. Gopalacharyulu PV, Lindfors E, Bounsaythip C,
Kivioja T, Yetukuri L, Hollmén J, Orešic M
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Chapter 2

Approaches to Modeling Gene Regulatory Networks:
A Gentle Introduction

Thomas Schlitt

Abstract

This chapter is split into two main sections; first, I will present an introduction to gene networks. Second,
I will discuss various approaches to gene network modeling which will include some examples for using
different data sources. Computational modeling has been used for many different biological systems and
many approaches have been developed addressing the different needs posed by the different application
fields. The modeling approaches presented here are not limited to gene regulatory networks and occasion-
ally I will present other examples.
The material covered here is an update based on several previous publications by Thomas Schlitt and Alvis

Brazma (FEBS Lett 579(8),1859–1866, 2005; Philos Trans R Soc Lond B Biol Sci 361(1467), 483–494,
2006; BMC Bioinformatics 8(suppl 6), S9, 2007) that formed the foundation for a lecture on gene
regulatory networks at the In Silico Systems Biology workshop series at the European Bioinformatics
Institute in Hinxton.

1 Introduction to Gene Regulatory Networks

The term gene regulatory network refers to regulatory relationships
between genes. Genes are the units of heredity in living organisms
and encode proteins or RNAs. On molecular level genes corre-
spond to stretches of DNA. The activity of genes crucially depends
on proteins, such as the transcription factors.

Unfortunately I cannot go here into the molecular detail that
would be necessary to really understand transcription control, but
there are excellent scientific textbooks on the topic such as [4].
I will describe here a very much simplified version of the transcrip-
tion process.

Transcription factors are proteins that consist of a DNA bind-
ing domain and a transactivation domain. The DNA binding
domain allows the transcription factors to recognize and bind
specific stretches of DNA by recognizing a specific DNA sequence.
These so-called binding sites are usually defined by short

Maria Victoria Schneider (ed.), In Silico Systems Biology, Methods in Molecular Biology, vol. 1021,
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(consensus) sequences that the DNA binding domain recognizes.
A gene harbors a so-called promoter region which contains binding
sites for the core transcription machinery and specific transcription
factors. The core transcription machinery ensures that the mRNA is
correctly made, while additional transcription factors determine the
correct timing. Once a transcription factor has bound to the DNA
it can modulate the activity of a nearby gene via its transactivation
domain.

Let us look at a very simplified example (see Fig. 1a): one
transcription factor might be enough to initiate the transcription
of a gene. Once the transcription factor has bound to its binding
site in the promoter its transactivation domain triggers the tran-
scription machinery to produce the corresponding mRNA. This
mRNA encodes a protein, it might be another transcription factor.
Thus, after this transcription factor has been made, it will modulate
the activity of its target genes. Many transcription factors control
the activity of their own genes forming so-called feedback loops.
This feedback might be inhibiting further transcription activity
(negative feedback) or promoting transcription activity (positive
feedback). By ignoring all genes not encoding transcription factors,
we see that we can build a network of transcription factors. Obvi-
ously such a system is a crude abstraction of the real world: many
proteins are necessary to modulate the activity of transcription
factors, for example in response to different environmental condi-
tions. And it is also obvious that many proteins are necessary to
ensure the maintenance of the cell and the organism as a whole.
A system as presented in Fig. 1a is a stark abstraction of the real
world. Figure 1b illustrates the complexity and size of the eukary-
otic transcriptional machinery. A large number of proteins working
together in complexes are necessary to ensure the correct produc-
tion of mRNA, which involves unwinding and opening the DNA
double helix, production of the corresponding mRNA, and
subsequent closing and winding up of the DNA helix. In addition
to the core promoters there are regulatory elements that can be at
more distant locations in relation to the gene, such as enhancers.
These long range effects on the transcriptional activity of genes are
thought to be due to the DNA folding back onto itself. Additional
processes can be involved in the control of gene activity, for exam-
ple large sections of a chromosome can be inaccessible depending
on its acetylation and methylation status.

Living organisms, even relatively simple ones such as bacteria,
contain a large number, often several thousands of genes. The
activity of these genes needs to be tightly controlled and additional
factors need to be taken into account. One example where tight
control is essential is the control of cell cycle, whether a cell is
growing or dividing (see Fig. 1c). For multicellular organisms fac-
tors such as cell identity—is it a liver cell or a kidney cell—are
import as well as timing. It is important to keep in mind that at

14 Thomas Schlitt



each promoter represented in Fig. 1c, the whole transcriptional
machinery described earlier (see Fig. 1b) needs to be active in a
coordinated fashion involving probably hundreds of proteins.

While this complexity appears overwhelming, there have been
early successes in understanding gene regulatory networks. Let us

GENE 1 GENE 2 GENE 3 GENE 4

DNA

promoter

coding DNA

transcription factor

a

b

c

TATA ORFGC-box

TBP

TAFs

TFIID
RNA poly-
merase II

SWI/
SNF
PBAF

CRSP/
ARC

DNA

SP1

enhancer core promoter

Fig. 1 (a) Simplified example for a gene regulatory network; it is assumed that all
genes encode transcription factors and that one or two transcription factors are
sufficient to control the activity of a gene; (b) the reality is more complex; each
promoter involves a large number of proteins controlling the activity of RNA
polymerase II (adapted from [112]). (c) Gene regulatory network model for yeast
cell cycle control (adapted from [113])
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consider one example: the well-understood gene regulatory network
of a simple model system: the bacteriophage lambda [5]. Bacterio-
phages are viruses that infect bacterial cells: lambda infectsEscherichia
coli cells. Upon infection the phage DNA is injected into the E. coli
cell and a decision is made between two “life styles” [6]. The phage
either integrates into the host genome and stays dormant, a process
called lysogeny. Or, it triggers the production of new phage particles
including the replication of its genome, ultimately leading to bursting
the host cell and spreading of the new phage particles; this process is
called lysis. If the conditions for the host cell deteriorate, lambda can
switch from lysogeny to lysis, triggering the production of new virus
particles ready to infect new host cells.

A series of very elegant experiments helped to understand the
molecular basis of this complex decision making process, some-
times referred to as “lambda switch” [5, 7, 8]. Viruses and phages
have usually small genomes; they are not independent organisms,
but hitchhike host cells and modify their metabolism to produce
new virus particles. The phage lambda genome encodes about
28 proteins, most forming parts of the phage capsule. There are
some regulatory proteins that control the activity of other phage
genes, most importantly the repressor cI and the activator cro. The
decision between lysis and lysogeny crucially depends on the con-
centrations of these two molecules.

Modeling the gene regulatory network of phage lambda allows
to study the system in detail and to predict the outcomes of experi-
ments, for example, of gene deletions. The results of these predic-
tions can be compared to the model and might elucidate
shortcomings in our understanding of how the regulatory network
works. Furthermore, if the model is in good agreement with exper-
imental findings we might use the model to perform theoretical
experiments that are not possible with the experimental system.
We can, for example, compare the effects of all single gene dele-
tions, double gene deletions, etc. We might as well be interested in
asking how many different behaviors a particular network might be
able to encode. Brazma et al. built a Finite State Linear Model
(FSLM) of phage lambda [9, 10]. Without going into the details
of the model I will only describe the major observations. The FSLM
approach allows simulations of the model and it is possible to
observe the systems’ behavior, how the concentrations of the vari-
ous molecules change over time. Using various parameter settings
one can in principle observe two different kinds of dynamic “beha-
viour.” One “behaviour” leads to the inactivation of all genes
except lambda repressor cI after some initial burst of gene activity.
This “behaviour” seems to correspond to lysogeny observed in
phage lamba. The second “behaviour” leads to the inactivation of
cI and a cascade of gene activations, corresponding to “lysis” in the
phage lambda. Despite intensive simulations under many different
parameter settings we were not able to discover a “behaviour” of the
network model that was distinct from “lysis” and “lysogeny,”
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suggesting that the network is very robust. But canwe be sure that we
did not miss a “behaviour?” And how many different behaviors can
we obtain if we delete one gene, two genes, ormanipulate someother
parameters of the model?

A further problem that has had a lot of attention is the so-called
“reverse engineering” of gene regulatory networks. Let’s assume
we work with a novel organism that has not been studied before.
Given a list of genes and experimental measurements can we recon-
struct the gene regulatory network? Obviously, this problem is far
from trivial. While it might be possible to reconstruct “a” network,
how do we know we found “the real” network? How do we know
that the network predicted by us is complete and that it is the
“correct” network? How many other networks would explain the
data equally well and which experiments would allow us to identify
the correct model?

Obviously these are important questions that can be addressed
by the appropriate modeling system, but how do we choose the
best modeling system?

Before getting into more detail, let us consider different
approaches to gene network modeling that have been undertaken.

2 Approaches to Gene Network Modeling

What do we need to build a model for a gene regulatory network?
In the first instance we need a list of the elements that make up the
model. We could refer to this as a parts list. Actually, we could
consider the parts list a, albeit very simplistic, model.

Onceweobtained a parts list we need to elucidate the connections
between the parts. We could call this the architecture or topology of the
network. For a gene regulatory network we need to know which
proteins control the activity of genes and which genes they control.

Often several proteins will influence the activity of a gene; we
therefore need to find out how those proteins interact, if at all. Do
several factors have to be there for the gene to be active (A “and” B)
or is any one of the proteins sufficient (A “or” B). Which factors do
act as activators or repressors? We call this level of description detail
the “logics level.”

So far, we did not consider if a gene is active or inactive. We just
said “if A and B are present C is active,” without making a statement
on whether A or B actually are present. Therefore we also could not
consider changes over time. Various dynamic modeling approaches
have been developed that allow us to do precisely this to varying level
of detail. Boolean networks allow only binary representations of gene
activities, the states of the genes. Genes can be either “active” or
“inactive”; time is representedbydiscrete time steps. It is obvious that
these limitations have an impact on the level of detail we can obtain

Approaches to Modeling Gene Regulatory Networks 17



from a model. Differential equation models, on the other hand,
represent continuous time and concentration changes with much
more detail. So why not just always build a differential equation
model? Because sometimes the level of detail is not necessary and
often we do not have sufficient experimental measurements to fit all
the parameters of a very detailed model. Therefore it is useful to
explore a range of modeling approaches and choose the most appro-
priate depending on the application.

2.1 Parts List: Genes,

Transcription Factors,

Promoters, Binding

Sites, . . .

Compiling a parts list is probably the first step for building any
model in molecular biology. Often this is done implicitly, the parts
list is extended when the model is growing. However, I believe that
parts lists can be a valuable tool in understanding biological pro-
cesses. It is useful to explicitly compile parts lists when building a
model and to collect relevant information about the parts in an
organized manner.

Such a parts list might, for example, be the result of a whole
genome sequencing project where we subsequently annotate all
open-reading frames and map them to genes already known in
other organisms. Given such parts list we could start to compare
between organisms and ask questions such as “Howmany genes are
there?” or “Are there systematic differences in the distribution of
gene functions between different organisms?” We can compare
parts lists for a large number of different organisms and therefore
derive information about evolutionary and environmental pro-
cesses that might drive the functional composition of the genomes.

The comparison of parts lists from different organisms can be
used to predict the presence or absence of particular gene regu-
latory elements, as well as signaling and metabolic pathways, see for
example [11–13]. Obviously it is not trivial to find the
corresponding proteins between different organisms, esp. if they
are evolutionarily far apart. Confounding factors are gene loss and
gain, for example, due to genome duplications, so that there will
not be a 1:1 mapping between the different organisms [14].

In summary, parts lists provide a first impression of gene networks
in different organisms and they are necessary before we continue to
have a look at the network topology.

2.2 Architecture:

A Graph Depicting

the Connections

of the Parts

Once we have established a parts list we are interested in describing
the links between the different network elements. In gene regu-
latory networks we are, for example, interested which transcription
factors regulate which genes. One indication for a regulatory rela-
tionship is the existence of a binding site for a transcription factor in
the promoter region of a particular gene. Graphs are used to
represent these relationships. Graph theory is a discipline within
mathematics and computer science; its origins can be traced back to
Leonhard Euler and his work on the walk across the Seven Bridges
of Königsberg [15]. He found a mathematical proof showing that it
is not possible to find a walk that crosses all seven bridges without
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using at least one bridge twice. Graphs allow the abstract represen-
tation of pairwise relationships between objects (or nodes) by edges
(pairs of nodes). In graphical representations of graphs, the nodes
are often represented by circles and the edges by lines (Fig. 2a).
For the Königsberg problem, we could represent the different
locations on the walk by the nodes and the bridges connecting
the locations by edges. For gene regulatory networks genes are
represented by nodes and regulatory relationships between the
genes are represented by edges. The regulatory relationships are
often directional, e.g., a particular transcription factor activates a
particular gene but not vice versa. These directed relationships are
usually represented by directed edges, sometimes called arcs (repre-
sented by arrows in graphical representations of graphs). The rela-
tionships might represent measurements of interaction strengths;
in a graph these could be represented by weighted edges, where
each edge is assigned a weight.

Several data structures are commonly used to store graphs in a
computer. Graphs can be represented by a list of node pairs, for
example an edge between nodes A and B would correspond to the
pair of nodes (A, B). For undirected graphs we assume the order of
the nodes in a node pair to be irrelevant, whereas for directed graphs
the order of the nodes in a node pair is important. A simple data
structure to represent a graph would be a table with two columns,
column 1 containing the first node of an edge, column 2 containing
the second node (see Fig. 2b). A weighted graph could be stored as a
table with three columns, where the additional column would con-
tain the weight. Other graph representations are commonly used,
depending on the nature of the graph, for example the adjacency list,
where a node in column 1 is followed by a list of all nodes connected
to this node in column 2, see Fig. 2c. We can also use a matrix to
represent a graph, where the columns c and rows r of the matrix
represent the nodes and a matrix element m(rn,cm) is 1 if there is an
edge between the nodes and 0 if not (see Fig. 2d). To represent a

A B

B C

D E

D B

D A
A D

B
C

E

A B

B C

D A,B,E

A B C D E

A 0 1 0 0 0

B 0 0 1 1 0

C 0 0 0 0 0

D 1 1 0 0 1

E 0 0 0 0 0

graphical
representation

adjacency list adjacency matrixedge list

a b c d

Fig. 2 Data structures for graphs. For the network depicted in (a) we show
the corresponding edge list (b), the corresponding adjacency list (c), and the
corresponding adjacency matrix (d)
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weighted graph the matrix could contain real numbers instead of
0s and 1s. If 0 is a possible weight, then we would have to
introduce an additional element NA that represents missing
edges. High-throughput experiments often lead to a matrix sum-
marizing the results of the experiment, such as gene expression
microarray experiments lead to a gene (co-) expression matrix.
This matrix can be converted in a graph representation either by
applying a strict threshold above which genes are considered to be
expressed, or by more sophisticated methods including the
weighted network analysis method by Horvath et al. [16, 17]
for which an R package is available [18].

There is no “best” representation of a graph; the optimal
representation depends on the nature of the graph and the algo-
rithm that we want to apply. Some graphs have very many edges and
are almost fully connected; in this case the matrix representation
might be memory efficient. If, however, the graph contains only a
few edges relative to the number of nodes, adjacency lists are the
better choice, since a matrix would mainly contain 0s. There are
many tools that allow to analyze and visualize graphs [19]; one of
the most popular tools for graph analysis in molecular biology is
Cytoscape [20] for which a large number of specialized plugins
exist (www.cytoscape.org).

2.2.1 Experimental Data So, how do we obtain a graph representation for a gene regulatory
network? Well, various experimental and computational methods
allow to determine transcription factor binding sites in the genome.
If we omit the distinction between genes and proteins, we can
represent a gene regulatory network by using nodes to represent
genes or their gene products (proteins) and directed edges to
represent regulatory relationships. Only genes encoding transcrip-
tion factors therefore would have outgoing edges, but all genes
with known regulatory input would have incoming edges. If we
want to distinguish between activators and repressors, we could use
positive edge weights for activators while repressive interactions
would be represented by edges with negative weights.

Transcription factor localizations can be identified experimentally.
For example, individual binding sites can be detected using the
DNAse I footprinting assay; proteins bound to the DNA protect it
fromdegradation byDNAse I, therefore these regions canbe analyzed
further [21]. Another common experimental method is the “electro-
phoretic mobility shift assay” (EMSA) sometimes called “band shift
assay” or “gel retardation assay”—DNA fragments that are bound by
protein move slower in an electrophoretic gel than unbound frag-
ments [22]. These methods allow fine mapping of individual binding
sites, but are very labor intensive. High-throughput methods such as
the ChIP-on-chip method allow the genome-wide detection of bind-
ing sites for a transcription factor [23], but the spatial resolution and
signal quality is limited. Furthermore, assigning transcription factors
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to their target genes based on the genomic localization can be difficult
due to the size of intragenic and intronic regions and long range
effects of some transcription factors.

These experimentally determined sequences can be used to
derive consensus sequences summarizing the sequences found to
be bound by the transcription factor, for example as position specific
scoring matrices (PSSMs) [24]. These consensus sequences are
collected by databases such as Transfac [25] or JASPAR [26].
Computational methods have been developed allowing to screen
genome sequences for putative transcription factor binding sites
using PSSMs. To obtain a graph we would connect the genes
encoding the transcription factors for which we used the PSSMs to
their putative target genes. To decide if a regulatory relationship is
an activation or repression we would need additional data.

Not for all transcription factors consensus binding sites are
known, but it might be possible to identify short sequences that
are overrepresented in the promoters of coexpressed genes by
comparing those promoter sequences to the promoter sequences
of all other genes [27]. This approach obviously depends on the
availability of the sequences for many genes and their upstream
regions. Such an approach was applied in a cell cycle study in
Schizosaccharomyces pombe, where Rustici et al. showed that the
presence or absence of consensus binding sites in the promoter
regions corresponds to the cyclic expression pattern of the genes
[28]. Genes with a peak expression at similar cell cycle stages often
share similar sets of consensus binding sites.

However, the exact promoter regions are usually unknown
and even the transcription start sites are only known for a few
genes. For baker’s yeast Saccharomoyces cerevisiae which has a
relatively small genome with short intergenic regions, considering
about 600–1,000 bp upstream of the translation start site (ATG)
appears to be a good approximation for the promoter regions. In
higher organisms like vertebrates the intergenic regions and thus
the putative promoter regions are much larger than in yeast,
therefore the identification of regulatory elements in the DNA
sequence by computational means has turned out to be rather
elusive. Some studies have focused on the computational analysis
of higher-level organization of transcription factor binding sites in
promoters, such as frequently occurring combinations of known
binding sites [29], or restricted the search for regulatory elements
to conserved sequence regions, identified by genome compari-
sons, a method often referred to as phylogenetic footprinting
[30, 31]. However, phylogenetic footprinting does not always
work, because the localization and the binding sites themselves
are not always conserved.

While the existence of the binding site is necessary, this alone does
not guarantee that the transcription factor will bind there—epigenetic
modifications of the chromatin might make the binding site
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unaccessible or there might be steric competition with other DNA
binding factors that block access to the binding site. Furthermore,
many transcription factors need to be activated, for example by phos-
phorylation. Bansal and Califano developed a computational method
to find post-translational interactions [32].

A very cost-efficient method to detect functionally related
genes experimentally is to identify “synthetic lethals”—this method
looks for double deletion mutants which are not viable. If single
genes are deleted for example in baker’s yeast, some deletions turn
out to be lethal for the organisms. These genes are termed essential
genes. Some deletions are not essential, but affect the cell, for
example its appearance or ability to grow quickly, while deletions
of other genes have no apparent effect. By mating yeast cells of
strains carrying different deletions of non-essential genes it is pos-
sible to generate double deletion mutants. Again, it turns out that
some cells survive without detectable effect, some are affected but
survive, while some double deletions turn out to be lethal. The
latter group is particularly interesting, because we know the single
deletions were not essential, therefore, the double deletion, i.e.,
the combined effect of the two deleted genes, is responsible for the
lethality. This could have various reasons, for example, the two
genes are redundant; they have the same or similar function that
is essential for the cell. If neither protein is present, the cell dies, but
either protein is sufficient to ensure survival. By performing a large
screen for synthetic lethal mutants in yeast Costanzo et al. were able
to generate a large network of functionally related genes [33].
Unfortunately, it is challenging to interpret the biological meaning
of the synthetic lethal network, as there might be many different
reasons that lead to synthetic lethality. Furthermore, this method is
more difficult to apply to multicellular organisms, where we can
have tissue specific effects. Nonetheless, these data sets can provide
an important resource when integrated with other types of experi-
mental evidence described here.

We have considered different types of (large scale) experimental
evidence that can be used to generate gene regulatory networks.
Obviously an important approach for building gene regulatory
networks is to read and collate evidence from literature, which can
be of different nature and quality. For example Guelzim et al.
compiled and analyzed a transcriptional regulatory network from
literature for yeast [34].

Having compiled all these different data that can be repre-
sented as networks, why is it worthwhile to look at the network
topology?

2.2.2 Why Study

the Topology?

A large number of scientific publications have appeared since the
mid-1990s examining the topology of many large networks of
very different nature. These include the internet, the connections
between the computers and servers as well as the connections (links)
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between websites, electrical power networks, social networks of
humans as well as animals and various biological networks, to
name a few. Intriguingly, all these networks seem to share topologi-
cal features such as power-law degree distribution and small-world
behavior. In a network with a perfect power-law degree distribution
a log–log plot of the degree distribution follows a straight line over
many orders of magnitude. Unfortunately for biological networks,
the number of nodes is often limited. There are currently only about
22,000 known human genes, therefore in a human gene regulatory
networkwewill not be able to generate a degree distribution plot for
more than four orders of magnitude. It can be argued that for such
“small” networks it is difficult to detect a power-law degree distri-
bution confidently. However, it is obvious that the degree distribu-
tion of biological networks is different from “classical” Erdös and
Rényi random networks where the degree distribution across the
nodes follows a Poisson distribution [35]. We observe that in gen-
eral in biological networks we find few nodes with very large degrees
(often called “hubs”) while most nodes have a very small degree.
Another interesting observation is that in these networks the distance
between any two nodes on average is smaller than in “classical”
random networks. As for the reasons why these particular network
structures arise is still the subject of active research and different
hypotheses have been published. Here, we will not go into further
detail but refer to the increasing literature on the topic (start for
example with the review by de Silva [36]).

Nonetheless, this network structure has important consequences.
Albert and Barabasi examined the consequences of removing either
random nodes or highly connected nodes (hubs) on the average
distance between all nodes and found that removing the hubs
(“attack”) had much more severe effects than removing random
nodes (“failure”), thus this network structure seems to protect against
random failure of network elements at the cost of increased sensitivity
to attacks targeted against the hubs of the network [37, 38]. It has
been speculated that biological networks are inherently modular and
that these modules are reused during evolution [39]. Subsequently
many groups developed methods for identifying modules or subnet-
works in (biological) networks. Being able to identify modules would
help in designing targeted experiments by minimizing side-effects
from other modules [40]. When building a computational model of
a biological system understanding the modular nature of the network
would help to select the key parts of the biological system that are
important for the functions of interest.Manymethods to findnetwork
modules work “top-down” starting from the whole network and
trying to break it down, e.g., [41, 42]. Uri Alon’s group took a
“bottom-up” approach.They startedwith enumerating all 13possible
connections between three nodes in a directed network. They then
counted how often these network motifs occurred in networks of
different origin. Comparing these results with the analysis of random
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networks allowed them to assess the complexity of connectivity in the
original networks. They examined the number and size of potential
feedback and feedforward loops in different networks and identified
“network motifs” that can be seen as building blocks of complex
networks [43, 44].

Genes that form hubs in the networks have been the focus of
several studies. It appears that hubs in the protein network are
more often encoded by essential genes than other proteins
[45–51]. In 2004 Han et al. published a study where they exam-
ined the hubs in protein–protein interaction networks more
closely [44]. Combining the interaction data with coexpression
data they were able to identify two different groups of hubs: the
party hubs and the date hubs [44]. The proteins directly
connected to party hubs tend to be coexpressed, whereas the
neighbours of date hubs are not. It appears that party hubs can
interact with lots of proteins at the same time, whereas data hubs
are able to bind to lots of different proteins sequentially. The main
conclusion from this study is that we need to be aware that
topological networks are a static representation of dynamical pro-
cesses. Not all the interactions we see in a topological network are
taking place at the same time, but might be active under different
conditions, at different times, and at different localizations, within
the organism but also within different cellular compartments.
This does not only apply to the protein interaction network but
also to gene regulatory networks, e.g., the localization transcrip-
tion factors on the chromatin. The group of Rick Young per-
formed chromatin-immunoprecipitation (ChIP) experiments for
203 transcription factors for yeast; 84 of these they tested under
several different growth conditions. They found that some tran-
scription factor binding patterns change considerably, depending
on the growth conditions, suggesting a dynamic system of bind-
ing and releasing of transcription factors [52]. Some transcription
factors bind their targets only under specific conditions (such as
Msn2), others bind additional (Gcn4) or alternative targets
(Ste12), whereas some show condition independent binding pat-
terns (Leu3). Luscombe et al. tackled the dynamics of the topo-
logical networks by performing an analysis of a transcription factor
localization network in combination with gene expression data for
yeast [53]. By tracing back the putatively active transcription
factors starting from actively expressed genes they found consid-
erable differences of network activity depending on the particular
conditions for the yeast culture [53].

We can therefore summarize here that studying the network
topology has led to some important and at times surprising insights
into the regulatory networks, despite its static nature. Elucidating
the topology of the system one wants to study is an important step
in deriving the scaffold for dynamic network models.
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2.3 Logics: How

Do Combinations

of Regulatory Signals

Interact?

Looking at a transcriptional regulatory network, we find that some
genes have inputs from several transcription factors.We immediately
see that in order to decide how the target gene behaves we need to
know how the input signals are to be combined. For all genes in the
model we need to define rules on how to map incoming signals to
gene activity. Network models at this level of detail can probably be
best described as “logical models.” Please note, that at this level of
description we still do not treat the networks as dynamic. All we
compile is information of the format “if A and B are bound C is
active.” The group of Eric Davidson has studied the development of
sea urchin in detail. In 1998 they published a study where they
successfully dissected the interactions of transcription factors
controlling the activity of one particular gene Endo16 [54]. They
were able to identify distinct seven modules in the upstream pro-
moter region of Endo16. But more intriguingly they were able to
express the rules governing the interactions between the transcrip-
tion factors binding to the various modules by an “if-then-else”
statement in the style of a programming language [54]. This stimu-
lated further work into the analysis of the processes controlling the
early development of sea urchin and culminated in a comprehensive
representation of the underlying transcription regulatory network
[55, 56]. To construct and analyze the transcription regulatory
network the group generated a widely used software BioTapestry
(www.biotapestry.org), an interactive tool for building, visualizing,
and simulating genetic regulatory networks that allows to export
models using the Systems BiologyMarkup Language (SBML) [57].
Logic networkmodeling has also been applied to signaling networks
[58, 59] and the CellNetAnalyzer toolbox for Matlab is one of the
tools that allow their analysis [60].

2.4 Dynamics: How

Does It All Work in

Real-Time?

Ultimately, we would like to obtain a model that describes changes
of activities and concentrations over time. Various approaches have
been developed and used to describe gene regulatory networks, see
for example the review by de Jong [61].

2.4.1 Boolean Networks Probably the most reductionist approach to gene regulatory net-
works are Boolean Network models, where genes can be in either of
two states on or off and the state of a gene is determined by Boolean
rules. A graphical representation often shows the genes as nodes
and two types of directed edges (ending in an arrow for activating
inputs or a perpendicular line for repressing inputs). Boolean net-
works can be represented in different ways, for example as a list of
Boolean rules for all genes in the model, as a “truth” table mapping
the current state to the following state (see Fig. 3). The state
diagram shows the progression of the states and allows finding
steady states and attractors (Fig. 3c); in this example there are two
attractors, a steady state attractor (001) and a state cycle consisting
of two alternating states (010–101). Probably the earliest work
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on transcription regulatory networks was published by Stuart
Kauffman [62]. Lacking information on the structure of biological
networks he worked with randomly generated Boolean networks
and analyzed their properties using computational simulations
[62]. In particular, he studied effect of varying the number of
“genes” and inputs per gene on the lengths and number of state
cycles. In his 1969 paper Kauffman speculated that the different
state cycles in a network might correspond to steady states in
biological networks representing different cellular differentiations
[62]. Kauffman extended the study of regulatory networks and
summarized his findings in an influential book [63]. Boolean net-
works remain an attractive option for modeling large biological
networks, especially if most of the reaction kinetic constants are
unknown [64–70]. BooleanNet, a software package for the simula-
tion Boolean models of biological regulatory networks [71], is
available from http://code.google.com/p/booleannet/.

An extension of Boolean networks are the asynchronous Boolean
networks. While in the “traditional” Boolean networks all genes are
updated at the same time (synchronously), asynchronous networks
allow that genes are updated in a particular order or randomly at
different times, see for example [72]. Rene Thomas developed a
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the progression of states over time for the Boolean network depicted in (a); (d) in the Petri Net representation
place nodes (circles) are denoted by p, transition nodes (boxes) by t, and token numbers by m. (e) linear
equation model: concentration changes are approximated by linear equations; g1(t) concentration of gene g1 at
time t; Δt time difference between two time steps; w12 weighted influence of gene g2 on concentration of
gene g1; w < 0 for repressors, w > 0 for activators, w ¼ 0 if no influence
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formalism for Boolean networks that distinguishes between the state
and the image,where the image is initially a copyof the state vector that
is updated as the individual genes are updated. Once all genes are
updated the image vector becomes the new state vector and a new
cycle begins [73, 74]. The group of Denis Thieffry are actively devel-
oping this approach [75] and provide with GINsim a graphical editor
and simulation software for qualitative models of genetic regulatory
networks [76] which is available from http://gin.univ-mrs.fr.

2.4.2 Petri Networks Boolean networks use binary representations for gene activities and
discrete time steps. However, some biological systems depend on
the accumulation of biological substances, for example, the bacte-
riophage lambda lysis-lysogeny switch introduced earlier. A crucial
step of the switch depends on the occupation of the so-called
operator sites in the promoter regions of some genes by either cro
or cI. cI, or lambda repressor, represses at low concentrations the
production of cro; at higher concentrations it also represses the
activity of its own gene in a negative feedback loop. Such a situation
is not easily described in the Boolean formalism, as they do not
generally represent different substrate concentrations. It would be
possible to use several network elements to represent cI at different
concentration levels, but this will make the model much less read-
able. If many processes in a biological system are concentration-
dependent, it is therefore better to use a formalism that allows to
represent different concentrations explicitly. Petri Nets provide
such a formalism with discrete representations for both concentra-
tions and time. Petri Nets were introduced by Carl Petri, originally
to build models for chemical reactions [77].

Petri Nets consist of place nodes and transition nodes (Fig. 3d).
In a model for biochemical reactions place nodes represent the
molecules and transition nodes represent biochemical reactions.
Concentrations or molecule counts are represented by marks or
tokens on the place nodes; they represent the number of molecules
of the respective molecule species. By convention in graphical
representations place nodes are depicted by circles, transition
nodes by boxes, and tokens as back dots. The transition rules define
when a transition is taking place. For example, a particular transi-
tion rule might require one token as input and produces two
different tokens as output (Fig. 3d). The transition rules therefore
encode the stoichiometry of the biochemical reactions. Petri
Net modeling approaches have been developed for over 40 years
and there are plenty of tools to support building Petri Nets, a
good overview provides the Petri Nets World website (http://
www.informatik.uni-hamburg.de/TGI/PetriNets/). Similar to
Boolean Networks, asynchronously acting transitions can add valu-
able insights compared to synchronous Petri Net models, but also
add complexity in the analysis. There is a very readable book on
Petri Net applications in Systems Biology [78]. In the same book
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Banks et al. describe the modeling genetic regulatory networks
using Petri Nets, more in particular, how to turn a Boolean network
model into an asynchronous Petri Net model [79].

2.4.3 Linear Models Moving fromdiscrete to continuous representations of concentrations
it is possible to use linear equations to represent gene regulatory
networks [80, 81]. Assuming that every gene is influenced by the
current level of activity of every other gene to some degree we use
linear equations to describe concentration changes over time.Tobuild
a model we need to obtain suitable entries for the weight matrix,
which correspond to the slopes of the linear functions. Positive entries
mean activation and negative entries represent repression; the entries
can be 0 if the expression of the corresponding genes is regulated
independently. We can then express the activity of the gene at time
t + Δt by multiplying the concentrations at time t with the
corresponding entries from the weight matrix (Fig. 3e). Linear equa-
tions are obviously an approximation to the concentration changes in
real systems; however, it would be possible to choose a smaller Δt to
achieve better approximation.

2.4.4 Differential

Equation Models

In the extreme case, Δt is chosen to be infinitely small and that
brings us into the realm of differential equation models. Differen-
tial equationmodels will be covered by other authors in this book in
much more detail, therefore I will not go into much detail here.
Using differential equation models, time and concentration
changes are represented in a continuous manner; very detailed
simulations are possible. Examples include the differential equation
model by von Dassow et al. for the segment polarity network which
is important for the correct formation of segments during the
development of the Drosophila melanogaster fly [82] and the
model for insulin-induced eukaryotic translation initiation by
Lequieu et al. [83]. However, to achieve this level of detail one
needs to obtain the correct values for many reaction constants and
those values might not often be readily available. It is possible to
estimate the best parameter values, but this might introduce a
considerable source of error. Luckily there are methods that allow
estimating the variability and uncertainty in ordinary differential
equation models, see for example [84].

Systems of many differential equations are usually not solvable
analytically; therefore one has to use numerical methods to find the
solutions. In order to build differential equation models in Systems
Biology there are some excellent tools available that support building
the model as well as running simulations and finding numerical solu-
tions such as Gepasi [85, 86], CellDesigner [87], and E-Cell [88].

2.4.5 Other Modeling

Approaches

Other modeling approaches have been chosen to build models for
particular systems. For example, McAdams et al. used an analogy to
electrical circuits to build a model for lambda phage [89].
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Bayesian approaches to build network models have been suc-
cessful in predicting causal relationships between genes and have
been applied to various biological systems [90–93]. They are a very
attractive avenue, but often computationally expensive. Dana Pe’er
has published a review that provides a good starting point to learn
more about Bayesian network analysis [94].

2.4.6 Stochastic Models So far, all modeling approaches we considered were deterministic.
However, biological systems are often subject to stochastic behav-
ior, especially if the number of molecules involved is small. Various
adaptations to the previously described methods have been devel-
oped to study stochastic effects. For example, in stochastic Boolean
networks, genes can randomly switch from on to off and vice versa
[95]. Stochastic approaches to the modeling with Petri Nets have
been developed as well [96–98]. McAdams et al. extended their
electrical circuit model approach to include stochastic effects
[99–101]. Stochastic simulations can be useful to study the proper-
ties of a range of networks if we lack the knowledge of biochemical
details. For example, when designing a Petri Net model we might
encounter transition nodes that compete for tokens at the same
place node. It would therefore be necessary to decide, which transi-
tions are treated preferentially, for example by examining binding
constants for substrates to enzymes, but this information might not
be available. Ruths et al. developed a stochastic approach where the
transitions fire in random order [98]. They analyzed the overall
behavior of a system after running large numbers of simulations
[98]; an independent implementation of this method is available
within Biolayout Express3D, a software for visualization and analysis
of network graphs, available at www.biolayout.org [102].

3 Conclusions

Many different biological systems are being studied and it is therefore
not surprising that many different modeling approaches have been
developed to capture and test our understanding of these biological
systems. This introduction only scratches the surface of a dynamic
area of research and only represents a personal view; nonetheless I
hope it provides some orientation for newcomers to the exiting field
of systems biology. There are excellent reviews covering the topics
raised here in much more detail [36, 61, 66, 94, 103–110].

One cannot be a specialist in all methods and the task of
identifying the best modeling approach for a particular system can
be daunting. It is important to understand the principles of the
modeling approaches and their requirements. There cannot be a
one-size-fits-all approach, because the level of detail of knowledge
differs vastly across the different biological systems. Even if we
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focus on gene regulatory processes only, there are well-studied
transcription factors for which a wealth of data is available and
others which have hardly been described. Picking the best model
is rather an art than an exact science. But the development of
methods and software tools is advancing rapidly; they are increas-
ingly easier to use. Data exchange formats such as the SBML [111]
help to migrate between tools and modeling approaches making it
much less likely to get “locked in” to a particular modeling
approach. This helps the biologists to keep their head free of the
mathematical details and focus on the biological details.
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Chapter 3

Integration of Genomic Information with Biological
Networks Using Cytoscape

Anna Bauer-Mehren

Abstract

Cytoscape is an open-source software for visualizing, analyzing, and modeling biological networks.
This chapter explains how to use Cytoscape to analyze the functional effect of sequence variations in the
context of biological networks such as protein–protein interaction networks and signaling pathways. The
chapter is divided into five parts: (1) obtaining information about the functional effect of sequence variation in
aCytoscape readable format, (2) loading anddisplayingdifferent types of biological networks inCytoscape, (3)
integrating the genomic information (SNPs and mutations) with the biological networks, and (4) analyzing
the effect of the genomic perturbation onto the network structure using Cytoscape built-in functions. Finally,
we briefly outline how the integrated data can help in buildingmathematical networkmodels for analyzing the
effect of the sequence variation onto the dynamics of the biological system. Each part is illustrated by step-by-
step instructions on an example use case and visualized by many screenshots and figures.

Key words Cytoscape, Biological network, Biological pathway, Integration, Genomic information,
Sequence variation, SNP

1 Introduction

The advent of high-throughput experimentation in research in the
last decades has led to a better understanding of the biological
processes within a cell. The identification and characterization of its
molecular components became possible in a systematic way. In addi-
tion, the discovery of connections between each of these components
promoted the reconstruction/identification of biological networks.
These networks are crucial for understanding the ways in which the
cells respond to external cues and how they communicate with each
other. In this context, a biological network can circumscribe several
types of biological processes including regulatory, metabolic, and
signaling processes or protein–protein interactions (PPI). For sim-
plicity, we will only distinguish between pathways, including regu-
latory, metabolic, and signaling processes, and PPI networks within
this chapter.
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A variety of pathway and interaction databases have emerged
storing our knowledge on the biological processes (see refs. 1, 2 for
an overview). The pathway and PPI databases contain manually
curated information and provide cross-references to other biomed-
ical databases such as Entrez Gene [3] or UniProt [4] and annotate
entities and processes with gene ontology (GO) terms [5]. More-
over, most of the databases allow programmatic access to their data
and support current pathway exchange formats such as BioPAX and
SBML, which allow data visualization and analysis of the biological
networks using dedicated tools such as Cytoscape [6]. Cytoscape is
an open-source software for network visualization and analysis.
Due to its plug-in environment, Cytoscape offers a vast variety of
analysis tools ranging from basic functions, such as the automatic
retrieval of pathways from pathway and PPI databases, to advanced
network analysis, such as the topological analysis of the networks or
network clustering.

The representation of biological networks in exchangeable, com-
puter readable formats in which entities (genes, proteins) are repre-
sented by standard identifiers enables the integration of the pathways
and PPI networks with genomic information such as gene expression
data [7, 8], as well as information on single-nucleotide polymorph-
isms (SNPs) [9]. SNPs are the most frequent type of sequence varia-
tion between individuals and represent a promising tool for finding
genetic determinants of complex diseases and understanding interin-
dividual drug response. SNPs are currently used in genome wide
association studies and pharmacogenomics studies. Once the SNPs
associated with a disease phenotype are identified, the elucidation of
their functional effect is a key factor for understanding the mechan-
isms underlying the disease. In this context, the genetic perturbation
introduced by the SNP has to be considered at two levels. First, the
SNP can affect the protein function directly, for example by affecting
the protein stability or folding [10], second the SNP can have further
consequences on interacting proteins/genes and downstream reac-
tions in the pathways in which the affected protein participates.
Hence, the functional effect of SNPs can be better appreciated if the
evaluation is performed at the systems level.

In this chapter, we first briefly outline the extraction of infor-
mation about the functional effect of SNPs from UniProt and the
conversion into a format useful for integration with biological net-
works in Cytoscape. Second, we use Cytoscape to load and visualize
biological pathways and PPI networks. Third, we integrate the
information about the functional effect of SNPs with the biolo-
gical networks loaded before. Here, we establish powerful visual
mappings across these data. Then, we perform an advanced analysis
using Cytoscape built-in functions as well as plug-ins to analyze the
effect of perturbations introduced by the SNP(s) onto the network
structure. Last, we outline how the integrated information can be
used to build mathematical network models, which allow assessing
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the functional effect of the SNP(s) onto the network dynamics. We
guide the reader step by step through the integration process using
an illustrative use case.

2 Materials

2.1 Software

Requirements

Cytoscape version 2.8.2 can be downloaded from http://www.
cytoscape.org/ including the following plug-ins:

l EnhancedSearch v.1.1.0 (ESP).

l AdvancedNetworkMerge v.1.1.2.

2.2 Attribute

and Visualization Files

The attribute files needed for the integration of information
about SNPs and mutations with biological networks, as well as
the visual style file allowing a better visualization of sequence
variations in the networks, can be downloaded from https://
drive.google.com/folderview?id=0B0xCoXo3BVZjVTNQRG9FMl
9yQUE&usp=sharing.

2.3 Biological

Networks Repositories

A review about current pathway repositories and tools for their
exploitation can be found in [1, 2]. In this tutorial, we use a
human PPI network from HPRD and a pathway in BioPAX format
from Reactome (see Table 1).

3 Methods

3.1 Extraction

of Information on SNPs

and Mutations from

UniProt

In this section, we briefly outline how to extract information about
SNPs and other sequence variations from UniProt and how to
build Cytoscape node and edge attribute files for integrating this
information with biological networks.

The Universal Protein Resource (UniProt) [4] is a centralized
resource for protein sequences and functional information. The
UniProt/SwissProt part of UniProt provides curated information
on the functional and phenotypic effects of natural variations,
including SNPs, as well as on mutations of protein sequences.

Table 1
Data sources of biological networks

Name Contains Link

HPRD Human protein–protein interaction network http://www.hprd.org/

Reactome Human biological pathways http://www.reactome.org/
ReactomeGWT/entrypoint.html

BioModels Curated mathematical network models http://www.ebi.ac.uk/biomodels-main/
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For several of these natural variants and mutants, it furthermore
provides associations to disease phenotypes. Thus, it provides a
comprehensive framework to extract information about the associ-
ation of sequence variations and human diseases.

3.1.1 Generation of Node

Attribute Files

Details of how to obtain information about the functional effect of
sequence variations from UniProt are described in [9]. In brief, the
procedure includes parsing of relevant information from UniProt
and several steps of mapping UniProt protein identifiers to Entrez
Gene identifiers and mapping SNPs to dbSNP identifiers. Addi-
tionally, within this tutorial, we map UniProt identifiers to HPRD
identifiers to allow the integration of the information about
sequence variations from UniProt with the PPI network from
HRPD [11].

Cytoscape uses a very simple node and edge attribute file
format and allows the import of attributes from tables. Such attri-
bute tables in their simplest format are tab-delimited text files
containing one column matching the primary identifier (or any
other attribute) of the nodes in the network, such as the UniProt
identifier of protein nodes, and additional columns containing the
attributes one wants to map onto the nodes, such as the functional
effect description of an SNP or the protein name.

In UniProt, the functional effect description is free text com-
plicating the automatic integration of the effect of the sequence
variation onto the reactions in the biological networks. Hence,
we use text-mining tools to detect mentions of proteins and
processes in the textual description that are likely being affected
by the sequence variation. For instance for the protein MUC1
(P15941), there is a sequence variation of an amino acid exchange
from Y to N at position 1243, which is annotated with the functional
effect description that greatly reduced binding to GRB2. Hence, we
use text mining to detect mentions of gene ontology (GO) terms,
as well as proteins in this text. In this example, we detect the GO
molecular function term binding (GO:0005488) and the GRB2
(uniProtId:P62993). There are several tools available for that
purpose including the Whatizit web service (http://www.ebi.ac.
uk/webservices/whatizit/info.jsf) or the National Center for Bio-
medical Ontology (NCBO) Annotator [12], which allows the
annotation of free text with terms of more than 250 biomedical
ontologies in BioPortal [13].

We then merge all information about sequence variations
from UniProt into one attribute file (mutPoly_nodes.attr). An over-
view of all attributes is given in Table 2. The two most important
columns are uniProtId and hprdId, which contain the UniProt
and HPRD identifiers, respectively, needed for the integration
of the information about sequence variations with protein nodes
in the networks. The other columns contain different kinds of
information including the mapped Entrez Gene identifiers, disease
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Table 2
Node and edge attributes

Attribute name Attribute type Description

hprdId Node HPRD identifier of the protein

uniProtId Node UniProt identifier of the protein

Mutagenesis Node List of the mutagenesis information contains
the amino acid exchange, the sequence position,
and the textual phenotypic description from
UniProt

Polymorphism Node List of the natural variant/polymorphism
information contains the amino acid exchange,
the sequence position, the textual phenotypic
description from UniProt, and if available an MIM
identifier and the textual description of the disease
association; if at the same position mutagenesis
data is also available, this data is listed as a sub-list
of the polymorphism

OMIM Node (list attribute) List of disease names and OMIM identifiers
associated with the natural variant

dbSNP Node (list attribute) List of dbSNP identifiers

GObiolProcess Node (list attribute) List of GO biological process terms that are
associated to the natural variant or mutant

GObiolProcessId Node (list attribute) List of GO biological process identifiers that
are associated to the natural variant or mutant

GOmolFunction Node (list attribute) List of GO molecular function terms that are
associated to the natural variant or mutant

GOmolFunctionId Node (list attribute) List of GO molecular function identifiers that
are associated to the natural variant or mutant

GOcellComponent Node (list attribute) List of GO cellular component terms that are
associated to the natural variant or mutant

GOcellComponentId Node (list attribute) List of GO cellular component identifiers that
are associated to the natural variant or mutant

extUniProtIds Node (list attribute) List of UniProt identifiers that are associated
to the natural variant or mutant

mutPolyFlag Node Required for the visual styles

1. Only mutagenesis information available
2. Only polymorphism information available
3. Mutagenesis and polymorphism information

available but not on the same position
4. Mutagenesis and polymorphism information

available on the same position

(continued)
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associations, and GO annotations, among others. Since there can
be multiple sequence variations per protein, we separate different
annotations by the pipe symbol (|) enabling their import as list
attributes (see Subheading 3).

3.1.2 Generation of Edge

Attribute Files

In addition to the node attribute files, we generate edge attribute
files for the integration of the functional effect of the sequence
variants with the edges in the biological networks. The text-mining
process described above allows the identification of protein men-
tions in the functional effect description provided by UniProt.
Proteins mentioned in the functional effect description of sequence
variations are likely being affected by the perturbation introduced
by the sequence variant. Let us consider the same example as
described above; for the protein MUC1 (P15941), there is a
sequence variations which greatly reduces binding to GRB2. Using
the text-mining tools described above, we identify the mention of
GRB2. In this case the functional effect of the variation in the
MUC1 protein affects the protein GRB2. Hence, when integrating
this information with a biological network, we want to mark all
edges between MUC1 and GRB2 because they might be affected
by the sequence variation of MUC1 causing a reduced binding
to GRB2. Therefore, we can use the columns hprdId defining the
HPRD identifier of the protein and extUniProtIds containing
the proteins, which are likely affected by sequence variations of
the protein, to create an edge attribute file. Similarly to node
attribute files, the edge attribute file contains the identifier of the
edge (which generally consists of the primary identifiers of the two
nodes defining the edge) and some additional columns represent-
ing the edge attributes. For each protein and sequence variation
pair, multiple proteins can be affected. Hence, we parse the
extUniProtIds column and create a new edge attribute for each
unique combination. We represent the PPIs (edges) using the
HPRD [11] protein identifiers because we want to integrate
the genomic information with the HPRD PPI network in this
tutorial. Nevertheless, for other PPI networks or pathways, edge
attribute files can be generated in a similar manner using the specific

Table 2
(continued)

Attribute name Attribute type Description

Edge Edge Edge identifier represented by the two HPRD
protein identifiers of the interacting proteins
delimited by the type of their interaction (pp)
for protein–protein interaction

edge_mutPolyFlag Edge Flag useful for visualization purposes
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protein identifiers. The file mutPoly_PPI_edges.attr is provided,
containing the edge attributes for the next step of the tutorial.
An overview of all attributes is given in Table 2.

3.2 Loading

Biological Networks

into Cytoscape

Let us start with a human PPI network from HPRD [11].
To download the HRPD PPI network, go to http://www.hprd.
org/download and download the latest HPRD FLAT FILES
containing protein–protein interactions in tab-delimited file format
as well as information about posttranslational modifications, tissue
expression, and subcellular localization, among others. In this
tutorial, we are working with HPRD Release 9 of 2010.

3.2.1 Import a

Protein–Protein Interaction

Network from HRPD

We first load the HPRD PPI network (BINARY_PROTEIN_PRO-
TEIN_INTERACTIONS.txt) into Cytoscape. For this purpose,
use the Cytoscape built-in function: File!Import!Network from
Table. It is important to use HPRD identifiers as primary identifiers
because they are unique for each protein (see Fig. 1). Also, it is
important to use the default interaction type (pp) since our edge
attribute file requires this type of interaction (see Note 1 for more
information). The resulting network contains 9,673 nodes
(proteins) connected by 39,204 edges (interactions). For a better
representation apply a layout algorithm. We recommend the
Organic layout to get the first idea of the network structure
(Layout!yFiles!Organic) (see Note 2).

3.2.2 Import a Biological

Pathway from Reactome

Next, we import a pathway from Reactome. Go to http://www.
reactome.org/ and search for pathways (restrict your search to
pathways only) related to ATM (Q13315) in Reactome and down-
load the ATM-mediated response to DNA double-strand break
(Homo sapiens) pathway in BioPAX2 format. Import the pathway
into your Cytoscape session using the Cytoscape built-in function
File!Import!Network (Multiple File Types). Rename the network
to double-strand break repair (right click on the network in the
Networks tab of the Control panel). Save your Cytoscape session.

3.3 Integrate

Information on SNPs/

Mutations with the PPI

Network

In this section, we integrate the information about sequence varia-
tions with the PPI network and pathways loaded in the previous
section. Also, we use built-in functionalities of Cytoscape to query,
filter, and analyze the networks.

3.3.1 Working with

Node Attributes

First, we import the information about sequence variations
(mutPoly_nodes.attr) into the PPI network as node attributes
(see Note 3). We also import the mutPoly.props as Vizmap Prop-
erty File and select the mutPoly_PPI visual style to visualize
SNPs/mutations on the protein nodes in the PPI network.
For this purpose, use the Cytoscape built-in function
File!Import!Vizmap Property File (see Note 4). Now, let us
explore the different node attributes. For this purpose, use the
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Select Attributes icon in the Data panel and select some attri-
butes such as uniProtId, geneSymbol, mutagenesis, polymorphism,
dbSNP, GObiolProcess, GObiolProcessId, and OMIM. Then,
select some nodes and check the values of the selected attributes
(see Fig. 2).

Now, we want to select those proteins for which there is
a sequence variant associated with “Crohn disease.” For this
purpose, we can use the built-in search for node attributes
(see Note 5). There are three proteins associated with “Crohn
disease”: SLC22A4, NOD2, and IL10. Check the information
about the SNPs for these proteins by inspecting the polymorphism
node attribute. Figure out which polymorphism is associated with
the disease, has a functional effect description, is annotated to a
dbSNP identifier, and has an annotation to the GO term transport
(see Note 5). We can also ask how many proteins in total have
annotations to SNPs/mutations in the PPI network. How many
of these SNPs/mutations are associated to disease (see Note 6)?

Fig. 1 Cytoscape dialogue to import a network from a table/text file. Import the HPRD PPI network into
Cytoscape. Columns 2 and 5 contain the necessary information to load the PPI network. The other columns are
not selected
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3.3.2 Working with

Edge Attributes

In the previous section we have imported attributes for the nodes
(proteins) in our PPI network and used them to select a set of
proteins sharing specific properties. Now, we are using edge attri-
butes to study the effect of the SNPs or mutation onto the inter-
actions (edges) in the network. For this purpose, we first import
edge attributes similarly as we did for the node attributes.

We import the mutPoly_PPI_edges.attr file as edge attributes
and select the mutPoly_PPI_edgeFlag visual style in the VizMapper
to highlight edges between proteins that are potentially affected by
the SNPs/mutations (see Note 7). Figure 3 shows how the edge
attributes are visualized in Cytoscape. The red edges denote those
being potentially affected by a sequence variant.

Fig. 2 Cytoscape screenshot of the HPRD PPI network. The visual style mutPoly_PPI is selected to visualize
SNPs/mutations on the protein nodes in the network. Purple nodes only contain information on mutagenesis
experiments; turquoise depicts nodes for which only polymorphism data exists. Some nodes have data for
both mutagenesis and natural variant either at different sequence positions (pink) or at the same position (light
purple). Several node attributes (geneSymbol, mutagenesis, and polymorphism) are selected and are therefore
displayed in the node attribute browser

Integration of Genomic Information with Biological Networks Using Cytoscape 45



3.4 Exploring

Disease-Associated

Sequence Variations:

Use Case Ataxia

In this section, we are focusing on a specific use case—ataxia. Ataxia
is a neurological sign consisting of a lack of muscle coordi-
nation during voluntary movements, such as walking or picking
up objects, due to cerebellar dysfunction. There are several ataxia
subtypes including spinocerebellar ataxias (SCAs), episodic
ataxias (EAs), ataxias telangiectasias (ATs), Friedrich ataxia (FA),
ataxia–oculomotor apraxia (AOA) syndrome, and sensory ataxic
neuropathy dysarthria and ophthalmoparesis (SANDO). Several
human inherited ataxias share clinical and pathological features,
and in 2006, Lim et al. used a PPI network constructed of proteins
related to ataxias to study if the phenotypic similarities can be
explained by some shared molecular mechanisms. They used the
PPI network to understand the pathogenic mechanisms common
for this class of neurodegenerative disorders and for identifying
candidate genes for inherited ataxias [14]. In this section, we
analyze the human HPRD PPI network and a pathway from Reac-
tome in context with mutation/SNPs that are associated to ataxias
to gain insight into the underlying mechanisms.

3.4.1 Creating

Subnetworks Related

to Ataxia

In order to start, we need to extract those proteins being associated
with ataxia. For this purpose, use the enhanced search plug-in
(see red circle in Fig. 4) to search for ataxia. Extract the proteins
and build a subnetwork containing them and their interactions.

Fig. 3 Cytoscape screenshot of the HPRD PPI network. Nodes are colored according to the type of annotation
available; edges are colored in red if there is a sequence variant for one of the interacting proteins, which
is likely to affect their interaction
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How many proteins do you find? Make use of the function
Select!Nodes!First Neighbors of Selected Nodes in Cytoscape to
extend the ataxia protein network, and check if the ataxia proteins
are directly or indirectly connected in the resulting network. How
many ataxia proteins appear in the largest connected component,
and what does that imply (see Note 8)?

To better identify proteins being associated with ataxia, we can
create a string attribute called ataxia_protein and fill it with “atax-
ia_protein” for the 16 ataxia proteins (seeNote 9). Select the visual
style mutPoly_PPI_ataxiaFlag. This adds a red circle around the
ataxia protein nodes. You can also create your own visual style using
the attributes or modify the provided styles. Now, find the ataxia
protein for which there is a mutation or polymorphism affecting
DNA binding. Is the sequence variation associated to the disease
(see Note 9)?

3.4.2 Analyzing

the Functional Effect

of Sequence Variations

Related to Ataxia

It is known that aprataxin (APTX) forms a complex with XRCC1
and XRCC4, which are partners of DNA ligase III and IV, respec-
tively. This complex is involved in the DNA repair mechanism.
Is there any sequence variation of aprataxin protein that could
have an effect on DNA repair mechanism, and what does that
imply (see Fig. 5 and Note 10)?

Now, we want to find the ataxia protein for which a sequence
variation is affecting the molecular function kinase activity.
This protein is highly connected (a hub node in the ataxia_first

Fig. 4 Subnetwork of the 16 ataxia proteins and their neighbors. Most ataxia proteins (12) are interacting
directly or indirectly in a large connected component. The enhanced search plug-in has been used to search
all attributes for the term “ataxia” (see upper right part )
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neighbors network). Howmany connections to other proteins does
it have? Is there any neighbor protein also associated to ataxia? Use
the visual styles to highlight the proteins (see Fig. 6 and Note 11).

3.4.3 Analyzing

the “ATM-Mediated

Response to DNA Double-

Strand Break” Pathway

First, we need to import the mutPoly_nodes.attr node attributes
into the BioPAX pathway we loaded before and saved as double-
strand break repair. Also, select the visual style mutPoly_BioPAX
to visualize the nodes for which information on SNPs and muta-
genesis experiments exists. Furthermore, we import the ataxia
flag attributes from the ataxia.attr and select the visual style
mutPoly_BioPax_ataxiaFlag. Then, we apply the layoutHierarchic
(see Fig. 7). Make sure to use the right identifiers for the mapping
(see Note 12).

Find the proteins in this pathway that are phosphorylated by
ATM. Next to ATM, are there any other ataxia proteins in this
pathway (see Note 13)?

3.5 Incorporating the

Effect of Perturbation

into Dynamic Network

Models

Once the data integration is accomplished, it is of interest to deter-
mine the effect of different perturbations onto the dynamics of the
biological processes in which the affected protein are involved. Here,
the perturbations are the functional effects of SNPs or mutations on
the activity of the proteins. This task is usually performed by laborious
and time-consuming review of the literature. We propose that the
integration of the data on the functional effect of sequence variations

Fig. 5 PPI subnetwork of ataxia-related proteins and their first neighbors. Aprataxin interacts with XRCC1 and
XRCC4. Both interactions are colored red indicating that they could be affected by a sequence variation of
APTX. The complex of aprataxin, XRCC1, and XRCC2 plays an important role in the DNA repair mechanism

48 Anna Bauer-Mehren



from UniProt with biological networks can aid in the evaluation of
different perturbations on the dynamics of a model. To illustrate how
this can be achieved, we use a model of the EGFR signaling network
in MCF-7 cells [15]. We follow the same steps as described in the
tutorial published in BMCBioinformatics [9]. In brief, we first load a
mathematical network model of the EGFR signaling in the SBML
format into Cytoscape (similarly to loading pathways from Reac-
tome) and then integrate information about sequence variations by
loading the mutPoly_nodes.attr file. We then select a variation of
interest; here we choose the mutation of serine 218 in the MEK1
kinase, which leads to protein inactivation. Next, we evaluate the
effect of this sequence variation onto the dynamics of the signaling
network by modifying the mathematical model accordingly (for
details see [9]). The described strategy allows the evaluation of differ-
ent conditions observed in experimental settings or in nature in
predictive mathematical models. This is of particular interest, if the
sequence variation is known to be associated with a disease, since the

Fig. 6 PPI subnetwork of the ataxia protein ATM and its first neighbors. There are two more proteins related
to ataxia (MRE11A and TERF1)
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model might help in understanding the mechanisms underlying the
disease. Moreover, the approach can be used to analyze the effect of
different mutations in the same model for the analysis of the poly-
genic character found in several complex diseases.

3.6 Conclusions In this tutorial we have presented a strategy for the integration of
information on SNPs and other sequence variations with biological
pathways and PPI networks using Cytoscape. We want to stress that
the presented workflow can be used to integrate any kind of geno-
mic information with biological networks if the information is
represented in a Cytoscape readable format such as a simple table.
We showed how pathways and PPI networks are loaded into Cytos-
cape and how the information about sequence variations can be
imported as node and edge attributes. In many illustrative use cases
we explained the application of Cytoscape’s built-in functions and
plug-ins for powerful visualization and for the analysis of the effect
of the sequence variations onto the network and pathway
structures. Furthermore, we outlined how the integrated data can
be used to study the functional impact of sequence variations onto
the dynamics of the biological processes.

4 Notes

(All results might vary depending on the Cytoscape, HPRD, and
Reactome version used):

1. Tab-delimited network representation: Use the readme file
(readme.txt) provided by HPRD for more information. The
PPI network is represented as tab-delimited text file (see BINAR-
Y_PROTEIN_PROTEIN_INTERACTIONS.txt). Each row
represents an interaction between two proteins. Columns 1 and
4 represent the gene symbols of the genes encoding the interact-
ing proteins. Columns 2 and 5 contain theirHPRD identifier and
columns 3 and 6 their RefSeq identifier, respectively. The other
columns contain additional information about the interaction,
such as the experimental evidence for the interaction and the
PubMed identifiers of the original publication reporting the
interaction. Such additional information regarding the interac-
tion (edge) could be imported as edge attributes. However, we
only import the raw interactions. Note that the first row repre-
sents an interaction of the protein ALDH1A1 with itself.

2. Import a network from text file: Use the Show Text File Import
Options to customize the import. Uncheck the space delimiter
box if you want to load edge attributes correctly while import-
ing the PPI network. We suggest to first load the network and
to add any attributes either for the nodes (proteins) or the
edges (interactions) in subsequent steps. Make sure that only
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those columns you want to import are actually colored. Disable
any column you do not want to import by clicking on them.
For a correct import use column 2 as Source Interaction and
column 5 as Target Interaction. In case something goes wrong
with the import, just delete the network by right clicking onto
the network in the Networks tab of the Control panel, and
repeat the import. Once the import is completed, the network
is visualized and theNodes, Edges tab in the left panel shows the
number of nodes/edges in brackets. For a better representation
of your network, you can apply any built-in layout algorithm.
If nothing is known about the structure of the network, the
Organic layout Layout!yFiles!Organic gives a good first
overview.

3. Node attribute import: Use the file!Import!Attribute from
Table function, and select themutPoly_nodes.attr file. Use Show
Text File Import Options to customize the import. Select only
the tab delimiter and check the Transfer first line as attribute
names to transfer the column header as attribute names. Note
that these names will be used throughout your Cytoscape
session as names for the attributes (e.g., to search for specific
attributes). Hence, always assign informative names to the
attributes. Some of our attributes, mutagenesis, polymorphism,
all GO attributes, extUniProtIds, OMIM, and dbSNP, contain
lists of elements (for an overview of all attributes applied, see
Table 2). To correctly import them as lists, we need to config-
ure the import for each attribute separately. Click on each of the
list attributes with the right mouse to open the dialogue for the
attribute import. Select List of Strings as attribute and the pipe
symbol (|) as List Delimiter (see Fig. 8) before clicking OK.
Repeat this step for each of the list attributes. Then, deselect
the Show Text File Import Options and select Show Mapping
Options. Here, it is crucial that the Key column in the annota-
tion file and the Key Attribute for the network match. In this
example, we want to map the hprdId column in the annotation
file with the ID attribute on the network. Always check your
mapping in the Key Attributes window in the lower right side,
and only click on Import if the format of both columns matches
(see Fig. 9). In case something goes wrong with the import, just
delete all attributes (using the Delete Attributes icon in the
Data panel) and repeat the import.

4. Visual style import: The mutPoly.props file contains information
for different visual styles and can be imported into Cytoscape
using the built-in function File!Import!Vizmap Property File.
Alternatively, we can create visual styles within Cytoscape (for
more information see http://wiki.cytoscape.org/Cytoscape_
User_Manual/Visual_Styles). To select a visual style, go to the
VizMapper tab in the Control panel on the left side.
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Fig. 8 Cytoscape dialogue to import node attributes as lists

Fig. 9 Cytoscape dialogue to import node attributes. The mapping file contains column headers, which are
imported as attribute names. HPRD identifiers (hprdId column) are mapped onto the primary identifiers (ID) in
the network. The Key Attributes window (lower right) allows to check the mapping



5. Query the network using the Cytoscape built-in search: We can
either use the Cytoscape built-in function to search the net-
work restricted by the node attribute OMIM or create a filter
based on the OMIM attribute. The easier option is to configure
the Search Options and select the attribute OMIM (see
Fig. 10). This attribute contains disease information for pro-
teins for which an SNP is known to be associated with
the disease. There are three proteins associated with “Crohn
disease” (CD), IL10, NOD2, and SLC22A4 (see Fig. 11).
To check which polymorphism has a functional effect descrip-
tion, is annotated to “Crohn disease,” and has a dbSNP identi-
fier, we can inspect the polymorphism, OMIM, and dbSNP
attributes of all three proteins. For IL10, there is no dbSNP
entry. For NOD2, there is no GO biological process annota-
tion. For SLC22A4, there are three SNPs listed: the first (I!T
at 306) has an annotation to dbSNP but there is no functional
effect description and it is not associated with “Crohn disease,”
the second (G!E at 462) has a functional effect description
and an annotation to dbSNP but is not associated with “Crohn
disease,” and the third (L!F at 503) is associated with
“Crohn disease,” has the functional effect description “reduces
the ability to transport carnitine,” and is annotated to “dbSNP:
rs1050152.” For this protein, there is a GO term annotation to
“transport” with the identifier “GO:0006810” (see the attributes

Fig. 10 Configuration of the node attribute search. In this example, the node
attribute OMIM is selected to allow queries for sequence variations associated
with a disease (e.g., “Crohn disease”)
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GObiolProcess and GObiolProcessId). If you have difficulties
visualizing the node attribute polymorphism for this protein,
copy all or one entry into a text editor (right mouse click opens
the dialogue).

6. Using the Cytoscape filter: To see how many proteins have SNP
annotations, we apply theCytoscape built-in filter using the node
attribute mutPolyFlag. Go to the Filters tab, create a new filter
(Option!Create New Filter), and name it SNP_filter. Add the
node.mutPolyFlag attribute to the filter, and if not done already,
pull the slider to the right to include all values between 1 and 4.
The attribute is empty if there is no information on SNPs/muta-
tions for this protein. Hence, by applying this filter we select all
nodes for which the mutPolyFlag is between 1 and 4. In total,
there are 6277 proteins with a sequence variant annotation. To
figure out how many of these proteins have an SNP that is also
associated with a disease, we can extend our filter using the
OMIM node attribute. Now the filter contains two constraints:
the mutPolyFlag must have a value between 1 and 4 and the
OMIM attributemust not be empty. We can now apply the filter
(seeFig. 12). There are 1,044 proteins for which this filter applies;
thus for 1,044 proteins an SNP is known to be associated with a
disease.

7. Import edge attributes: The edge attribute import from text
is very similar to the import of node attributes (seeNote 3). Use
the File!Import!Attributes from Table function. Be careful to
select Edge as the attribute type and to transfer the first line as
attribute names. Moreover, check that the correct identifiers are
mapped in the Key Attributes window in the lower right part of
the import window (see Fig. 13).

8. Create subnetworks: First, we search the PPI network for
proteins related to “ataxia” using the enhanced search plug-in
(see Fig. 5). Once, the ataxia proteins are selected, use the
Cytoscape built-in function File!New!Network!From
Selected Nodes, All Edges to create a subnetwork, and name it
“ataxia_proteins.” Also apply theOrganic layout. In total, there

Fig. 11 The three proteins, SLC22A4, NOD2, and IL10 for which an SNP is known to be associated with “Crohn
disease.” The polymorphism attribute contains information about which sequence variation is annotated to
“Crohn disease”
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are 16 proteins related to different ataxia subtypes. Some of the
proteins are connected with other ataxia proteins, e.g., ATM,
TERF1, and MRE11A. Second, we select all 16 ataxia proteins
in the large PPI network (e.g., by applying again the enhanced
search using “ataxia” as search string) and use the Cytoscape
built-in function Select!Nodes!First Neighbors of Selected
Nodes and then the File!New!Network!From Selected
Nodes, All Edges to extend the ataxia protein network by the
first layer of neighbors. We name this subnetwork with 169
nodes and 415 edges “ataxia_first_neighbors.” We analyze the
network using the Plugins!Network Analysis!Analyze Net-
work function provided by the NetworkAnalyzer plug-in to
study the network properties (treat the network as undirected).
The analysis tells us that the network contains five connected
components in total. We do not save or visualize the results.

9. Create node attributes: We can also create attributes within
Cytoscape manually, instead of loading them into the net-
works. The easiest way to create the attribute ataxia_protein

Fig. 12 Cytoscape filters with Boolean logic. A filter named SNP_filter is displayed,
which filters for proteins that have an SNP/mutation (attribute mutPolyFlag
between 1 and 4) and are also associated with a disease (attribute OMIM not
empty)
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manually is to select all nodes in the small subnetwork only
containing the 16 ataxia proteins. Then, we create a new string
attribute (second icon on the left in the Data panel), name it
ataxia_protein, and use the Attribute Batch Editor (first icon
on the right in the Data panel) to fill it with the string “atax-
ia_protein” (see Fig. 14). The ataxia_protein attribute is now
empty for all proteins except the 16 ataxia proteins, note that
the attribute is set globally, and also ataxia proteins in the large
PPI network have this attribute now. Next, we apply the visual
style mutPoly_PPI_ataxia_flag. This adds a red circle to all
ataxia proteins (those for which the ataxia_protein node attri-
bute contains “ataxia_protein”). In the ataxia_first_neighbors
network, we can see that most (12) ataxia proteins are in the
largest connected component and there are four small
connected components, each consisting of only two proteins
where one is an ataxia protein. The fact that most ataxia-
related proteins are either connected directly or indirectly

Fig. 13 Cytoscape dialogue to import edge attributes. The first line of the attribute file is used as attribute
names
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through their neighbors and therefore form the large connected
component suggests that similarmechanismsmight be associated
with the diverse ataxia types. The different forms of ataxia can be
caused by mutations in different genes, which in turn lead to
disruption of the same/similar processes represented by the large
connected component. This finding is in good agreement with
the research on ataxias by Lim et al. [14].

To search for an ataxia protein for which an SNP is affecting
DNA binding, we use the Cytoscape built-in search on the
node attribute GOmolFunction and search for DNA binding
in the small network consisting of 16 ataxia proteins. The
protein aprataxin with geneSymbol APTX and uniProtId
Q7Z2E3 is associated with the AOA syndrome [MIM:
208920]. There is a polymorphism in this protein at position
277 (V!G), which is associated with the disease and which
“abolishes DNA-binding and enzymatic activity towards Ap,
MIM: 208920.” If you have difficulties visualizing the node
attribute polymorphism for this protein, copy all or one entry
into a text editor (right mouse click opens the dialogue).

Fig. 14 Batch node editor to fill an attribute for selected nodes. In this example, the new node attribute
ataxia_protein is filled with the term “ataxia_protein” to allow the easy identification of ataxia-related proteins
in the PPI networks
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10. Analyzing the functional effect of sequence variations: We
manually inspect the polymorphism and mutagenesis attributes
of APTX and find that there is a mutagenesis experiment (R!A
at 43) with the functional effect description “Impairs
interaction with XRCC1 and XRCC4.” If this sequence varia-
tion disrupts the interaction of APTX with XRCC1 and
XRCC4 and the complex of the three proteins plays a role in
DNA repair mechanism, then it is likely that the sequence
variation has an effect on DNA repair. Note it is not known
that this sequence variation is associated with the disease; nev-
ertheless the disease-related mutations could have a similar
effect and also affect DNA repair mechanism.

11. Analyzing the functional effect of sequence variations: We
again use the Cytoscape built-in search using the node attribute
GOmolFunction and search for kinase activity. In total,
six proteins have sequence variations that affect kinase activity
in the ataxia_first_neighbors network. But there is only one
ataxia protein (ATM with uniProtId Q13315) for which there
is mutagenesis data available about the “loss of kinase activity”
for a mutation of D!A at position 2870. Interestingly, there
is also an SNP at the same position related to ataxia, even
though the amino acid exchange is different (polymorphism,
D!N at 2870; in dbSNP rs55798854, MIM, 208900). In the
ataxia_first_neighbors network, ATM has 52 neighbors, of
which two are also related to ataxia (TERF1 and MRE11A).
Use the Select!Nodes!First Neighbors of Selected Nodes
function to create a subnetwork of first neighbors of ATM,
name it “ATM_first_neighbors,” and use the visual style
mutPoly_PPI_ataxia_flag.

12. Import node attributes to a BioPAX pathway: The steps to
import node attributes onto a pathway in BioPAX format are
the same as for importing node attributes onto a PPI network
(compare Note 3). Again, it is crucial to map the correct
identifiers in the attribute file with the node attribute in the
network. The BioPAX format contains a lot of information
about the nodes (proteins, complexes, etc.) and edges (enzy-
matic reactions, formation of complexes, etc.). The node attri-
butes, which are generated by the import of a BioPAX pathway,
all contain the prefix “biopax.” Hence, for a correct integration
of the node attributes, we need to use the biopax.xref.
UNIPROT attribute in the pathway (see Fig. 15) and map
with the uniProtId attribute in the mutPoly_nodes.attr file.
Also, we again need to modify the import for all list attributes
such as polymorphism and mutagenesis (see Table 2).

13. Analyzing a BioPAX pathway: In the BioPAX format, triangles
represent catalysis reactions. Use the Hierarchic layout
(Layout!yFiles!Hierarchic). Now, select the protein ATM

Integration of Genomic Information with Biological Networks Using Cytoscape 59



using the Cytoscape built-in search for the biopax.xref.
UNIPROT Q13315. Then, use the Select!Nodes!First
Neighbors of Selected Nodes function twice and create a new
subnetwork. Apply the Hierarchic layout to the small subnet-
work. The network contains five phosphorylation events cata-
lyzed by ATM (see five triangles and the resulting
phosphorylation events). Check the biopax.entity.SHORT-
NAME attribute of these phosphorylation events. The proteins
being phosphorylated are H2AX, MDC1/NFBD1, BRCA1,
and NBS1. To inspect which other proteins are associated with
ataxia in this pathway, we use the visual style mutPoly_Bio-
PAX_ataxiaFlag, which marks all ataxia proteins (Note: you
either need to fill the ataxia_protein attribute for this purpose
or import the ataxia.attr node attributes file). Next to ATM,

Fig. 15 Cytoscape dialogue to import node attributes onto a BioPAX pathway. The uniProtId column in the
attribute file is mapped onto the node attribute biopax.xref.UNIPROT in the pathway
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there is another protein associated with ataxia (MRE11A). We
can also use the Cytoscape search using the ataxia_protein
attribute to search for ataxia-associated proteins in the pathway.
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Chapter 4

Visualization and Analysis of Biological Networks

Pablo Porras Millán

Abstract

The study of the interactome—the totality of the protein–protein interactions taking place in a cell—has
experienced an enormous growth in the last few years. Biological networks representation and analysis has
become an everyday tool for many biologists and bioinformatics, as these interaction graphs allow us to map
and characterize signaling pathways and predict the function of unknown proteins. However, given the size
and complexity of interactome datasets, extracting meaningful information from interaction networks can
be a daunting task. Many different tools and approaches can be used to build, represent, and analyze
biological networks. In this chapter, we will use a practical example to guide novice users through this
process. We will be making use of the popular open source tool Cytoscape and of other resources such as :
the PSICQUIC client to access several protein interaction repositories and the BiNGO plugin to perform
GO enrichment analysis of the resulting network.

Key words Interactome, Protein–protein interactions, Databases, Network analysis, PPI networks,
Cytoscape, PSICQUIC, GO enrichment analysis

1 Introduction

The advent of high-throughput methodologies for protein–protein
interaction (PPI) detection that has taken place in the last years has
resulted in an explosion of data and aims to systematically uncover
the totality of molecular interactions that take place within a cell,
what is known as the “interactome.” Protein–protein interactions
(PPIs) are the driving force behind most—if not all—cellular pro-
cesses. Thus, the detection, representation, and analysis of PPIs
have gained popularity in the scientific community, as its study is
of seminal importance to build an integrated and comprehensive
view on how cellular processes work. In this chapter we will show
one of the multiple ways in which PPI networks can be represented
and analyzed. We will discuss the limits and advantages of such
approach, going from obtaining the interaction data from public
databases and then representing it with the open source software
Cytoscape, to finally functionally annotating and analyzing the
dataset using the Gene Ontology.

Maria Victoria Schneider (ed.), In Silico Systems Biology, Methods in Molecular Biology, vol. 1021,
DOI 10.1007/978-1-62703-450-0_4, # Springer Science+Business Media, LLC 2013
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PPI information is an invaluable resource that can be accessed
through a number and variety of databases that curate, represent,
and make the data available for the scientific community both
manually and programmatically. Proper data representation enti-
tles the use of unique, stable identifiers, controlled vocabularies,
and cross-referencing to other types of resources such as the
UniProt database [1] or the Gene Ontology [2]. However, this
variety of resources also entails a significant amount of redundancy
and a lack of homogeneity in data representation (i.e., different
types of identifiers can be chosen to represent a gene or protein
and it is often not straightforward to map from one type of
identifier to another). Initiatives such as the International Molec-
ular Exchange (IMEx) consortium guidelines [3], part of the
Human Proteome Organization-Proteomics Standards Initiative
(HUPO-PSI), aim to standardize the level of detail that needs to
be captured in order to accurately represent an interaction.
Members of the IMEx consortium, such as IntAct [4], MINT
[5], or DIP [6], represent PPIs following these guidelines. These
databases also aim to curate non-overlapping spaces of the inter-
actome, with the goal to improve the coverage in the representa-
tion of PPI data. Nevertheless, heterogeneity in PPI data
repositories is still a problem and “secondary” databases (also
called “metadatabases”) such as UniHI [7] or the MPIDB [8]
aim to solve this by incorporating and clustering data from several
other “primary” databases—such as those cited above—instead of
curating their own data. Another integrative approach, even more
powerful, is the one taken by the Proteomics Standard Initiative
Common QUery InterfaCe (PSICQUIC) [9], a querying tool
that enables common access to a large number of repositories
containing PPI and pathway information datasets, including
both primary and secondary databases.

As we stated before, PPIs depicted in the form of graphical
networks are used as maps of the interactome where other types of
information can be integrated in order to accurately describe
cellular events. Cytoscape [10] is an open source software plat-
form written in Java that is widely used by researchers for network
representation and analysis. It features customizable options for
network representation and it is relatively easy to use, but the
reason behind its popularity and arguably its most powerful
feature is the variety of plugins that have been developed for it.
The plugins give the user the means to perform sophisticated
analysis, to provide elaborated representation features, or to
integrate complementary information to networks loaded in
Cytoscape. New plugins are constantly developed for Cytoscape
and if a researcher needs to perform a very specific type of analysis
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and he can write Java, he can create his own plugin and easily
integrate it following the Cytoscape team specifications. In this
chapter, we will make use of a plugin that enables access to the
PSICQUIC query tool directly to Cytoscape and generate a PPI
network. We will use the BiNGO plugin to perform GO enrich-
ment analysis.

Making sense of PPI networks can be a daunting task, given
the size and complexity of the information represented in them.
The correct visualization of the network is the first step of the
process and its importance should not be underestimated. We will
use a part of this chapter to provide you with the basic knowledge
you need to improve the visual features of a network as repre-
sented in Cytoscape. Apart from that, the study of the network
topology, the identification of highly connected clusters within a
network, and the integration of external annotations and addi-
tional information (such as, for example, expression profiles or
subcellular localization information of the proteins represented in
the network) are examples of the approaches that can be taken to
tackle the complexity underlying these representations. Using
these strategies allows for the production of meaningful biological
maps, but has its limitations. Apart from the problem of the
incompleteness of the interactome mappings and the presence of
significant amounts of false positives, the topological nature of
biological networks is still not well understood and the extension
of the annotations characterizing the proteins that take part in
them is far from comprehensive (see refs. 11, 12 for more infor-
mation on the subject).

Nevertheless, there are certain resources that have allowed for
meaningful analysis of PPI networks. One of the most popular
resources for protein annotation is the Gene Ontology (GO) [13],
a controlled vocabulary of terms that describe gene product char-
acteristics in its three branches of ontology that represent three
different aspects of the gene product biology: biological process,
cellular component, and molecular function. GO terms are
assigned both via manual curation and using computational
approaches based on sequence similarity and common ancestry,
for example. They are widely used to annotate large protein data-
sets and they are invaluable to characterize unknown regions of
the interactome. In order to identify which annotations best
describe a large list of proteins—either alone as list or as part of
an interaction network—GO enrichment analysis has become a
must in most works facing PPI network analysis. There are several
plugins in Cytoscape that can help performing this analysis
directly in a represented network. In this chapter we will briefly
describe the main features of one of them: the very popular and
simple BiNGO plugin [14].
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2 Objectives

With the present tutorial you will learn the following skills and
concepts:

1. To build a molecular interaction network by fetching interaction
information from a public database using the PSICQUIC client
through its app in the open source software tool Cytoscape.

2. To load and represent that interaction network in Cytoscape.

3. The basic concepts underlying network analysis and represen-
tation in Cytoscape: the use of attributes, filters, and plugins.

4. To integrate and make use of quantitative proteomics data in
the network.

5. To add Gene Ontology annotation to a protein interaction
network.

6. To use the BiNGO Cytoscape plugin to identify representative
elements of GO annotation and learn more about the biology
represented in the network.

3 Materials

3.1 Software

Requirements

Cytoscape version 2.8.3 (downloadable from www.cytoscape.org)
including the BiNGO v. 2.44 plugin (www.psb.ugent.be/cbd/
papers/BiNGO) and the PSICQUIC Universal Client v. 0.31 plu-
gin (see Subheading 7 for installation instructions).

3.2 Additional Files The files you need to follow this tutorial can be found in www.ebi.
ac.uk/~pporras/SpringerProtocolsBook/.

4 Methods

4.1 Introduction

to Cytoscape

Cytoscape 2.8.3 is an open source, publicly available network visu-
alization and analysis tool (www.cytoscape.org) [10]. It is written in
Java and will work on any machine running a Java Virtual Machine,
including Windows, Mac OSX, and Linux. We will use version
2.8.3 of Cytoscape in this tutorial. At the beginning of 2013, a
new version of Cytoscape was released (3.0). However, the migra-
tion of many plugins to the new version was not completed at the
time this chapter was written. The BiNGO plugin was not yet
available for 3.0, so we will stick to 2.8.3 in this tutorial. In case
you want to use Cytoscape 3.0, you can use ClueGO as an alterna-
tive to perform GO enrichment analysis and you will not have to
install the PSICQUIC Plugin, since it is built-in the new version.

Cytoscape is widely used in biological network analysis and
it supports many use cases in molecular and systems biology,
genomics, and proteomics:
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1. It can import and load molecular and genetic interaction data-
sets in several formats.

l In this tutorial, we will import a molecular interaction
network fetching data from IMEx-complying databases,
such as IntAct or MINT, using the Cytoscape PSICQUIC
plugin.

2. It can make effective use of several visual features that can
effectively highlight key aspects of the elements of the network.

l We will use node and edge attributes to represent quanti-
tative proteomics data and interaction features.

3. It can project and integrate global datasets and functional
annotations.

l We will make use of resources such as the Gene Ontology
to annotate the interacting partners in our network.

4. It has a wide variety of advanced analysis and modeling tools
in the form of plugins that can be easily installed and applied
to different approaches.

l The BiNGO plugin will be used to perform GO enrich-
ment analysis and try to identify the functional modules
underlying our network.

5. It allows visualization and analysis of human-curated pathway
datasets such as Reactome or KEGG.

4.2 Dataset

Description

In order to easily illustrate the concepts discussed in this tutorial,
we are going to follow a guided analysis example using a dataset
from a work published by König et al. Our working dataset is going
to be a list of proteins coming from a quantitative proteomic
analysis of the “kinome” (the totality of the protein kinases
encoded by the human genome) of regulatory and effector T cells
[15]. The authors use immobilized unspecific kinase inhibitors to
purify kinases from both regulatory and effector T cells and then
use iTRAQ™ labeling to differentially label the proteins obtained
from each one of these cell types. This way, they obtain a set of 185
kinases that can be identified in T cells with a high confidence. The
relative abundance of such kinases in regulatory vs. effector T cells
was calculated using the iTRAQ-based quantification in combina-
tion with a MS-devise-specific statistical approach called iTRAQas-
sist and a RF value is given for each kinase in the list. We are going
to use the list of kinases plus the RF values to find out which
proteins are known to interact with these kinases and in which
processes are they known to have a role.

4.3 Generating an

Interaction Network

Using the PSICQUIC

Plugin in Cytoscape

We are going to generate a protein interaction network that will help
us identify the biological functions associated with those kinases
identified in both regulatory and effector T cells. To do this, we
will find out which proteins are interacting with the ones
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represented in the dataset as stored in some of the different
molecular interaction databases that comply with the IMEx guide-
lines [3]. Here is a list of the databases that we will use:

1. IntAct (www.ebi.ac.uk/intact): One of the largest available
repositories for curated molecular interactions data, storing
PPIs as well as interactions involving other molecules [4]. It
is hosted by the European Bioinformatics Institute.

2. MINT (http://mint.bio.uniroma2.it/mint): MINT (Molecu-
lar INTeraction database) focuses on experimentally verified
protein–protein interactions mined from the scientific litera-
ture by expert curators [5]. It is hosted in the University of
Roma.

3. MatrixDB (http://matrixdb.ibcp.fr): Database focused on
interactions of molecules in the extracellular matrix, particu-
larly those established by extracellular proteins and polysac-
charides [16]. The data in MatrixDB comes from their own
curation efforts, from other partners in the IMEx consortium
and from the HPRD database. It also contains experimental
data from the lab of professor Ricard-Blum in the Institut de
Biologie et Chimie des Protéines in the University of Lyon,
where it is hosted.

4. DIP (http://dip.doe-mbi.ucla.edu/dip): DIP (Database of
Interacting Proteins) is hosted in the University of California,
Los Angeles, and contains both curated data and computation-
ally predicted interactions [17].

5. I2D (http://ophid.utoronto.ca/i2d): I2D (Interologous
Interaction Database, formerly OPHID) integrates known,
experimental (derived from curation), and predicted PPIs for
five different model organisms and human [18]. It is hosted in
the Ontario Cancer Institute in Toronto.

6. InnateDB (www.innatedb.com): InnateDB is a database of
the genes, proteins, experimentally verified interactions, and
signaling pathways involved in the innate immune response of
humans, mice, and bovines tomicrobial infection [19]. Regard-
ing their PPI datasets, they come both from their own curation
and from integrating interaction data from other databases.

We will use the Protemics Standard Initiative Common QUery
InterfaCe (PSICQUIC) importing plugin that can be found in
Cytoscape (named as PSICQUICUniversalClient v. 0.31 if you
look for it in the plugin installation wizard). PSICQUIC is an effort
from the HUPO Proteomics Standard Initiative (HUPO-PSI,
www.hupo.org/research/psi/) to standardize the access to
molecular interaction databases programmatically, specifying a
standard web service with a list of defined accessing methods and
a common query language that can be used to search from data in
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many different databases. You will learn more about PSICQUIC
further ahead in this chapter, but if you want to have more infor-
mation, check their Google Code website at http://code.google.
com/p/psicquic/ or have a look at the Nature Methods publica-
tion where the client is described [9]. PSICQUIC allows you to
access data from many different databases, but we will limit our
search to those resources that comply with the IMEx consortium
curation rules (www.imexconsortium.org/curation) as listed
before (see Note 1).

1. Open the file “TableS1_mapped.xlsx.” This is an updated ver-
sion of Supplementary Table 1 the König et al. publication in
which each kinase has been mapped to their UniProtKB (www.
uniprot.org) accession numbers (see Note 2).

2. Open Cytoscape and go to “File” ! “Import” ! “Network
from Web Services.” In the window that will appear, select the
“PSICQUIC Universal Web Service Client” option from the
“Data source” drop-down menu. To search for the interactions
in which the proteins from your list are involved, you just have
to paste the list of the UniProt AC identifiers in the query box
and click “Search” (see Notes 3 and 4).

3. You will get a dialog window with the total number of interac-
tions found by PSICQUIC among the different databases (or
“services”) that the client can access and you will be asked if
you want to create a network out of them. Click “Yes” and then
a list of services with the amount of interactions found for each
one of them will show up.

4. For the selection of the source of our interactions, we will stick
to just IMEx-complying datasets. You should get interactions
from IntAct, DIP, I2D-IMEx, InnateDB-IMEx, MINT, and
MatrixDB, among other resources that store predicted inter-
actions or pathways or are just not IMEx-compatible. We will
ignore these to avoid problems while merging the data from
the different repositories. Notice that some databases, such as
I2D or InnateDB, identify a subset of their interactions as
“IMEx-complying.” The number of interactions found for
each database changes with time, because they are constantly
updated. Select just the IMEx-complying datasets we men-
tioned before in the “Import?” column and then click “OK.”

5. You will get yet another dialog box from which you will have a
list of your databases of choice and the option to merge the
results from them or just have them in separated networks.
Click “Merge” and the “Advanced network merge” assistant
will pop up.

6. Now the “Advanced Network Merge” assistant will open up.
Select the networks you want to merge (in our case, all of them
except the “PSICQUIC Search Results. . .” one) and then click
on the “Advanced Network Merge” menu to select the
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identifier you will use as a common ID for the merge. In our
case, we are merging protein–protein interaction information
and we will use UniProtKB ACs as our primary identifier.
You will see a drop-down menu appearing for each network
you select to be merged (see Fig. 1). In each drop-down
menu you will find a list of the “attributes” that each node or
edge of the network is assigned during the import. We will talk
more about attributes later, for now, just select the attribute
“PSICQUIC25.uniprotkb.top” in each menu. This attribute

Fig. 1 “Advanced network merge” menu in Cytoscape 2.8.3. Notice the drop-down menus for each of the
networks you select that allow you to choose which attribute will be used as an identity reference for each
node when performing the merge
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contains the UniProtKB AC for each node, so the merging can
proceed properly.

7. Finally, several networks will be created by the PSICQUIC
client plugin. The first one is just a graphical representation of
the different resources that were associated with your query,
named “PSICQUIC Query Results. . .” and the time and date
of your query. Then a different network will be created for each
of the resources that were accessed by PSICQUIC and will be
named accordingly. The final one will be called “Merged.Net-
work” and is the one we will use for our analysis. The networks
will look like a grid of squares (nodes) connected by many lines
(edges). We will learn how to make sense of it in the following
sections of the tutorial.

8. Finally, since Cytoscape can be tricky (and buggy) and you
don’t want your precious time to be wasted, save your session
(go to “File” ! “Import,” click on the floppy icon up left or
just press “Ctrl + s”). A piece of advice: do this every time you
want to try something new with Cytoscape, since going back to
your initial file is sometimes not possible and you can waste a
lot of time re-doing a lot of work!

4.4 Representing

an Interaction Network

Using Cytoscape

Finding a meaningful representation for your network can be more
challenging than you might expect. Cytoscape provides a large
number of options to customize the layout, coloring, and other
visual features of your network. This tutorial does not aim to be
exhaustive in exploring the capabilities of Cytoscape; we just want
to give you the basics. More detailed information and basic and
advanced tutorials for Cytoscape can be found in their documenta-
tion page: www.cytoscape.org/documentation_users.html.

Now we will learn how to use the basic tools that Cytoscape
provides to manage the appearance of your network and make the
information that it provides easier to understand.

1. If it is the first time you use Cytoscape, have a look at the user
interface and get familiar with it. The main window displays the
network (all the network manipulations and “working” will be
visualized in this window). The lower-right pane (the Data
Panel) contains three tabs that show tabulated information
about node, edge, and network attributes. The left-hand pane
(the Control Panel) is where navigation, visualization, editing,
and filtering options are displayed.

2. By default, Cytoscape lays out all the nodes in a grid, so that is
why your network is looking so ugly. You can change the layout
going to “Layout” ! “Cytoscape Layouts.” There is a wide
range of different layouts that will help displaying certain
aspects of the network, like which proteins have a large number
of interaction partners (the so-called “hubs”). Give some of
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them a try and stick to the one you prefer, like the “organic”
layout shown in Fig. 2.

3. If you right-click on a node in the network representation, a
small menu will open where you can see some representation
options and the “LinkOut” tool (see Fig. 2, right-hand side).
This tool allows you to quickly perform a web search for the ID
of the node in question in a variety of databases and resources.

4. Save your session when you are happy with a layout and have
tried the “LinkOut” tool.

Exercise: Find a layout that sorts your network nodes by the
number of interactions that each one of them has.

4.4.1 Filtering with Edge

and Node Attributes

In network graphs, interacting partners are represented as nodes,
which are objects represented as circles, squares, plain text . . .
that are connected by edges, the lines depicting the interactions.
All information referred to an interacting partner or an interaction

Fig. 2 Network visualization using the organic layout in Cytoscape 2.8.3. If you right-click a single node, a
menu with different options will appear, and you will be able to select the “LinkOut” tool and perform further
searches for the information concerning that particular node
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must then be loaded in Cytoscape as a node or an edge attribute.
An attribute can be a string of text, a number (integer or floating
point), or even a Boolean operator and can be used to load infor-
mation and represent it as a visual feature of the network. For
example, a confidence score for a given interaction between two
participants represented as nodes can be represented as the thick-
ness of the edge connecting those nodes. Attributes can be created
and loaded directly in Cytoscape using the “Create New Attribute”
icon on the top of the Data Panel and then values can be added
using the “Attribute Batch Editor” icon (see Fig. 5 as a reference for
icons). The attributes can also be imported from data tables defined
by the user or from external resources, as we will see later, and
directly imported with the network from different network for-
mats, as we will see right now.

Because we have used the PSICQUIC client, the information
we took from the different PPI databases will be represented com-
plying with the PSI-MI-2.5 tabular format (see Note 5), so the
fields requested by the format will be loaded as attributes and we
can start making use of them right away.

1. Let’s have a look at the attributes that have been loaded
with our network. First, select all the nodes and edges of the
network.

2. Have a look at the Data Panel below the main window. By
default, you should be in the Node Attribute Browser tab. So
far, you can only see one column “ID” which corresponds to
the identifier that Cytoscape uses for each node.

3. Click on the “Select All Attributes” icon in the Data Panel. All
the attributes that have been loaded from the XGMML file will
now be visible in a tabular format.

4. As you can see, there is a large number of attributes (some of
them redundant, due to the merging of networks) and it is
difficult to read the table. You can also select and load only
those that you want to show by clicking the “Select Attributes”
icon in the Data Panel. Choose the following node attributes to
be displayed and try to figure out their meaning:

(a) Predicted gene name

(b) PSI-MI-25.uniprotkb

(c) PSI-MI-25.uniprotkb.top

(d) PSI-MI-25.taxid

(e) PSI-MI-25.taxid.name

5. If you right-click on the node attributes in the table that
appears below, you can perform a “Search [your term] on the
web” in a similar way you do when you right-click on the nodes
represented in the network and perform a “LinkOut” search.
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6. Now go to the “Edge Attribute Browser” tab and do the same
with the following edge attributes:

(a) PSI-MI-25.interaction detection method

(b) PSI-MI-25.interaction detection method.name

(c) PSI-MI-25.interaction type

(d) PSI-MI-25.interaction type.name

(e) PSI-MI-25.source database

(f) PSI-MI-25.source database.name

(g) PSI-MI-25.author

(h) PSI-MI-25.pubmed

(i) PSI-MI-25.ConfidenceScore.author-score/mint-score/
intact-miscore (see Note 6)

Let’s make use of some of these attributes. Sometimes, homolog
proteins coming from different species are used to perform interac-
tion experiments. For this reason there are a number of “human-
other species” interactions in the databases. Now we will use the
“PSIMI25.taxid” node attribute to produce a human proteins-only
network.

1. In the Control Panel, go to the “Filters” tab (see Fig. 3).

2. Choose “Create new filter” in the “Option” menu and give
your filter a name (e.g., “human only”).

3. Go to the “Filter definition” section. In the “Attributes” drop-
down menu, choose the attribute you want to use for filtering.
In this case, we will use the node attribute “PSIMI25.taxid.”
Select it and click “Add.”

4. A search bar/drop-down menu called “PSIMI25.taxid” will
appear where you can select the attribute value that you want
to use. This attribute stores NCBI taxonomy identifiers for the
species origin of each protein in the network. The code for
human is “9606,” write it down in the search bar and then click
“Apply filter.”

Fig. 3 “Filters” tab in Cytoscape 2.8.3. The “Option” box allows you to choose to create a new filter of different
types and rename or delete an existing one. Filtering details are entered using the “Filter definition” box
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5. The nodes that bear the “9606” attribute will be then selected
and highlighted in the network. Combinations of different
attributes can be applied by using the “Advanced” menu in
the Filter definition box.

6. Now generate a new network containing only human proteins
by going to “File” ! “New” ! “Network” ! “From
Selected Nodes, All Edges.” Alternatively, you can click the
quick “Create new network from selected nodes, all edges”
button at the top off the session window.

7. Save your session.

Exercise: Multiple methodologies can be used for PPI detection,
each method entailing its own strength and weaknesses and none of
them being perfect, since every PPI detection approach must be
considered artefactual to some degree (several reviews on the sub-
ject are recommended in the Subheading 7 at the end of the
chapter). Nevertheless, sometimes you want to look at interactions
found with a particular methodology. Use edge attributes to create
a network in which all the interactions have been found using the
“two hybrid” method.

4.4.2 Integrating

Quantitative Proteomics

Data: Loading Attributes

from a User-Generated

Table

In order to load large amounts of information associated with the
proteins in our network, it is often useful to import user-defined
tables containing external data that can complement the network
analysis. In our particular case, we will make use of the differential
expression values that are given in Supplementary Table 1 of our
selected publication in order to highlight the proteins that are
enriched either in regulator or in effector T cells. Since no interac-
tion information was extracted from the original article, the infor-
mation we put in will be exclusively node-centric (no edge
annotations) and can be loaded in the form of a user-produced
node attributes table (see Note 7).

1. Open the “Table1_mapped.xlsx” file. This is an adaptation of
the Table 1 in the original article. Have a look at the different
fields and figure out what is represented in each column.

2. In Cytoscape, go to “File” ! “Import” ! “Attribute from
table (text/MS Excel). . ..” The “Import Attribute from
Table” wizard will pop up.

3. Select the attributes file in the “Data Sources” section and be
sure to check the mapping and text file import options from the
“Advanced” section while performing the import. It is impor-
tant that you import the first line of the table as attribute names
and that you choose the primary key for the attribute that will
map with the key attribute in the network. In this case, the
primary key in the attribute file will be “UniProt_AC” and the
attribute you want to map to in the network is “PSI-MI-25.
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uniprotkb.top.” Both fields are populated with UniProtKB
ACs, as can be seen in the “Preview” section.

4. In the “Preview” section you can choose which fields to import
as new attributes in our network. Have a look and leave out the
“Name (UniProt) [1]” attribute, since it would be redundant
with the “predicted gene name” we got already in the network.
Click “Import” to finish the process.

5. Finally, show the new node attributes in the “Data panel” using
the “Select Attributes” icon in the Data Panel. Notice that only
the proteins that were part of the original proteomics dataset
from the paper have values in the newly imported attributes.

6. Save your session.

4.5 Using the Visual

Representation

Features of Cytoscape:

VizMapper

After having integrated the quantitative proteomics information
from the publication in the form of node attributes, we can use
the visual editor of Cytoscape, VizMapper, to represent this infor-
mation in our network in a meaningful way. This tool opens many
representation possibilities, so we will just give an example to learn
the basics.

1. Go to the “VizMapper” tab in the “Control Panel.” Click on
the “Options. . .” icon to create a new visual style and give it a
name.

2. Click on the “Defaults” panel and select some default values for
the node and edge colors, shapes, and size that make them easy
to see. Don’t use a big size (over 30) nor green or red as colors,
since we are going to use them later on.

3. We are going to show the confidence with which the proteins in
our dataset were identified with mass-spectrometry and
whether they were over- or down-represented in the regulatory
T cells with respect to the effector T cells. We will use the size of
the nodes to represent confidence and node color for over- and
under-representation.

4. In the “Visual Mapping Browser,” look for “Node Color” first.
Double-click and choose “Differential expression (RFmedian-
Treg/Teff) [6]” as reference and“NodeColor” and“Continuous
Mapping” as “Mapping type” option. A graphical interface will
appear and you can select how the node color will change between
two reference colors (green and red, for example). Pick your
favorite colors and have a look at the representation.

5. Now you can try to use the “Absolute differential expression
(RFmedian-Treg/Teff) [7]” for “Node height” and “Node
width.” This way, the relative enrichment of a given kinase in
one cell type or the other becomes even more evident. Use the
“Continuous mapping” option again. You can try to use other
mapping options and see what happens.
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6. Now you have a representation in which we can easily
differentiate between the original protein dataset, in which
quantitative proteomics data has been integrated and repre-
sented, and its interactome context as given by PSICQUIC.

7. Save your session.

Exercise: Try to create a sub-network to see how the proteins that
are over-represented in regulator T cells are connected (use
the >1.5 cut-off that the authors use in the publication). Make
use of filters and the “Create new networks for selected nodes, all
edges” function.

4.6 Adding

Annotation

to a Network: Loading

GO Annotations with

Cytoscape

Protein interaction networks can be used as backbones in which
to set up the elements of new pathways or functions; but in order to
be able to do that, we need to have access to information about the
elements of the network. We can make use of the functional anno-
tation that is associated to genes and proteins to enrich our network
with such information. One of the most important resources
that annotate genes and proteins is the Gene Ontology (GO)
project [2], which provides structured vocabulary terms for
describing gene product characteristics (see Note 8).

Every GO annotation is associated to a specific reference that
describes the work or analysis supporting it. The evidence codes
indicate how that annotation is supported by the reference. For
example, annotations supported by the study of mutant varieties or
knock-down experiments on specific genes are identified with the
IMP (Inferred from Mutant Phenotype) code. All the annotations
are assigned by curators with the exception of those with the IEA
code (Inferred from Electronic Annotation), which are assigned
automatically based in sequence similarity comparisons. See
http://geneontology.org/GO.evidence.shtml for more informa-
tion about evidence codes.

The PSICQUIC plugin might have a red exclamation mark by
it, stating that it has not been verified to work with this particular
version of Cytoscape. Do not worry about it, we have tried it and it
works.

First we will learn how to map GO terms, along with some
general gene and protein annotation, to our interaction network.
The objective is to bring some information to the nodes that were
added from PSICQUIC, where little more than the name and a set
of identifiers is given.

1. Go to “File” ! “Import” ! “Ontology and annotation. . ..”
This will open the “Import Ontology and Annotation” wizard
(see screenshot in the next page).

2. In the “Data Source” section, select the “Annotation” file from
the drop-down menu. In our case, we need the gene
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association file for Homo sapiens. For the “Ontology”
drop-down menu, select to import “Gene Ontology full.”

3. Select the “Show mapping options” tick box in the
“Advanced” section. As in the node attributes import, select
the appropriate field as “Primary Key” in the Annotation file by
checking the “Preview” section. In this case, the one to select is
“DBObject_ID.” The “Key Attribute” for the network is again
“PSI-MI-25.uniprotkb.top.”

4. In the “Preview” section, have a look at the information you are
about to import as node attributes and figure out the meaning
of the different fields. Click “Import” when you are done.

5. Go to the “Data Panel” and select the new node attributes
“annotation.GO BIOLOGICAL_PROCESS,” “annotation.
GO CELLULAR_COMPONENT”, and “annotation.GO
MOLECULAR_FUNCTION” to be shown.

6. Click on one of the cells showing any of these three attributes
and you will get a menu from which you can see all the GO
terms associated with each protein as a list. As it happens with
nodes and normal node attributes when you right-click on
them. From each term a menu will show up allowing you to
copy one or all the terms associated to that protein or to
perform a search with the LinkOut tool.

7. Save your session.

4.7 Analyzing

Network Annotations:

GO Enrichment

Analysis

As we have seen, we have incorporated annotation in the form of
GO terms to the proteins in our network, but it is difficult to
interpret and access that information when we try to analyze
more than a few nodes, due to both the amount of information
and its level of detail. Some of the terms will be redundant as well
and distributed throughmany of the proteins represented in our list
or network. GO enrichment analysis aims to figure out which terms
are over- or under-represented in the population, thus extracting
the most important biological features that can be learned from
that particular set of proteins.

There are a couple of important considerations to make
before doing any GO enrichment analysis, so we will briefly com-
ment on them.

To start with, you will need to have solid knowledge about the
biological and experimental background of the data you are analyz-
ing to draw meaningful conclusions. For example, if you analyze a
list of genes that are over-expressed in a lab cell line, you have to be
aware that cell lines are essentially cancer cells that have adapted to
live in Petri dishes. You will find a lot of terms related to negative
regulation of apoptosis, cell adhesion, or cell cycle control; but that
just reflects the genetic background your cells have.
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It is also important to take into account that certain areas of the
gene ontology are more thoroughly annotated than others, just
because there is more research done in some particular fields of
biology than in others, so you have to be cautious when drawing
conclusions. GO terms are assigned either by a human curator that
performs manual, careful annotation or by computational
approaches that use the basis of manual annotation to infer which
terms would properly describe uncharted gene products. They use
a number of different criteria always referred to annotated gene
products, such as sequence or structural similarity or phylogenetic
closeness. The importance of the computationally derived annota-
tions is quite significant, since they account for roughly 99% of the
annotations that can be found in GO. If, nevertheless, you do not
want to use computationally inferred annotations in your analysis,
they can be filtered out by excluding those terms assigned with the
evidence code “IEA” (Inferred from Electronic Annotation). Most
analysis tools support this feature.

Finally, another factor that will make the analysis of GO annota-
tion challenging is the level of detail and complexity you can reach
when annotating large datasets. GO terms can describe very specific
processes or functions—what is called “granularity”—and it is often
the case that even the result of a GO enrichment analysis is way too
complex to understand due to the large number of granular terms
that come up. In order to solve this problem, specific sets of GO
annotation that are trimmed down in order to reduce the level of
detail and the complexity in the annotation are provided by GO or
can be created by a user in need of a specific region of the ontology to
be “slimmed.” Check www.geneontology.org/GO.slims.shtml to
learnmore about them.Apart from that, some tools, such as ClueGO
[20], give the option to cluster together related terms of the ontol-
ogy, highlighting groups of related, granular terms together.

There are a number of tools that allow to perform this analysis
using a list of genes or proteins as input, such as the DAVID Web
Service [21] (see http://david.abcc.ncifcrf.gov/) or the previously
mentioned ClueGO. We will present here the use of a simple tool
that can use networks as an input and that make use of the visuali-
zation capabilities of Cytoscape to help the interpretation of the
analysis: the BiNGO plugin.

4.8 Using BiNGO

for Functional

Annotation

In order to perform network-scale ontology analysis, we are going
to use the BiNGO tool (www.psb.ugent.be/cbd/papers/BiNGO),
a Cytoscape plugin that annotates proteins (nodes) with gene
ontology (GO) terms and then performs an enrichment analysis
[14]. BiNGO works by providing an answer to this basic question:

“When sampling X proteins (test set) out of N proteins (refer-
ence set; graph or annotation), what is the probability that x or
more of these proteins belong to a functional category C shared by
n of the N proteins in the reference set.”
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The main advantage of BiNGO with respect to other
enrichment analysis tools is that it is very easy to use and it can
be complemented with the basic network manipulation and analysis
tools that Cytoscape offers. It also can provide its results in the
form of a network that can be further manipulated in Cytoscape, a
feature that eases the analysis, and it can be used in combination
with its sister tool PiNGO [22], which can be used to find
candidate genes for a specific GO term in interaction networks.
On top of that, it is relatively light-weight when it comes to usage
of computer resources and it can be run with reasonable speed
in any desktop computer. On the negative side, it is not as custom-
izable and does not offer as many visualization options as the more
advanced tool ClueGO, for example.

1. Before you start, take into account that the Gene Ontology
is updated continuously and both the ontologies and the anno-
tations that are loaded by default in BiNGO are usually out of
date. You should download the most updated version of the
ontology file, which holds the structure and relationships
between GO terms, from www.geneontology.org/GO.down-
loads.ontology.shtml. Get the full ontology file (OBO 1.2
version) and save it as “gene_ontology_ext.obo.” The annota-
tion file, holding list of proteins that are annotated for specific
terms grouped by organism, must also be updated and can be
downloaded from www.geneontology.org/GO.downloads.
annotations.shtml. Save the file corresponding to human as
“gene_association.goa_human.”

2. As a starting point, we will apply the BiNGO analysis to the
whole dataset, in order to see an overview of all the processes
over-represented in this network. Subsequent analyses may
then focus on sub-sets of the network, using a view suitable
to pick out functional modules. Select all the nodes in the
network.

3. To start BiNGO, go to “Plugins” ! “Start BiNGO 2.44.” Do
this only once: Cytoscape will not stop you from opening
multiple copies of the BiNGO setup menu (which will lead to
confusion and chaos!).

4. The BiNGO setup screen will now appear. There are several
operations you need to perform in this screen:

(a) Name the fraction of the network you are going to analyze
in the text box “Cluster name.”

(b) We will take the standard significance level and statistical
analysis options for this exercise. For a detailed comment
on these options, you might want to have a look at the
BiNGO User Guide that can be found in their website:
www.psb.ugent.be/cbd/papers/BiNGO/User_Guide.html.
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(c) We want to know which terms are over-represented in the
network with respect to the whole annotation, so we leave
the corresponding categories as they are.

(d) Under “Select ontology file” choose the Gene Ontology
file “gene_ontology_ext.obo” using the “custom” option
in the drop-down menu.

(e) Under Select namespace select “Biological Process.”

(f) Under Select organism/annotation choose the
“gene_association.goa_human” file.

(g) The “Discard the following evidence codes” box allows you
to limit the analysis discarding annotations that are given
based on a specific evidence code (see Note 9).

(h) If you want to save the results of the analysis, mark the
check-box and choose a path to save your files.

(i) Finally, press the “Start BiNGO” button.

5. You will receive a warning saying, “Some category labels in the
annotation file are not defined in the ontology.” The warning
refers to identifiers that are not properly mapped in the GO
reference file by BiNGO. There might often be a small discrep-
ancy between the identifiers provided in the interaction net-
work and those found in the GO reference file (when using
isoforms, for example). Ignore this warning and click OK.

6. The GO terms found are displayed in two ways. The first is a
table of GO terms found; the second is a directed acyclic
network in which nodes are the GO terms found and directed
edges link parent terms to child terms.

7. The table displays the most over-represented terms sorted in
with the smallest p-values on top. In this table we see a list of
GO terms (with their names and GO-IDs) and the uncorrected
p-value and corrected p-value. Apart from that, total frequency
values and a list of corresponding proteins (listed under the title
“genes”) are listed for each term. You can visualize which nodes
have been significantly annotated under the listed terms by
selecting the terms and then using the “Select nodes” button.
Since the list is sorted just by p-value, many general terms
(less descriptive terms) rise to the top of the table, making it
difficult to see the more specific terms that are more useful. If
you clicked the “save” option in the BiNGO setup window,
then this table is already saved to file. If not, then you will need
to copy and paste these results into an Excel file (or similar).
The data in this table is not saved as part of a Cytoscape session
file and you will lose this data if you do not save it separately.

8. The other representation of the results is a graphical depiction
of the enriched GO terms in the form of a network. Each node
is a GO term, and GO terms are linked by directed edges
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representing parent-to-child relationships. Nodes are colored
by p-value (a small window depicting the legend is also pro-
duced) and the size of each node is proportional to the number
of proteins annotated with that term. The default layout is less
easy to read, but we may take advantage of one of Cytoscape’s
tools to provide a user-friendlier representation.

9. Make sure the graphical representation of the BiNGO results
is selected. Choose “Layouts” ! “Cytoscape Layouts” !
“Hierarchical layout.” Gene ontologies are a directed acyclic
graph: Cytoscape utilizes this topology to organize the BiNGO
results graph so that more specific and informative terms float
to the top, while general, less informative terms sink to the
bottom. You want to focus on orange-colored terms that
branch-up the graph to find significantly enriched functions,
as shown in Fig. 4. Navigating through this view provides a
more useful impression of what biological processes are present
in this network. When you find a term of interest, you may look
it up in the table to see what proteins in the network were
annotated with that term.

10. Save your session (see Note 10).

Exercise: A final test to put together what you have learnt about
GO annotation.

Fig. 4 Hierarchical nature of GO as seen with a BiNGO analysis result. After applying the “Hierarchical” layout
we can see how granular children terms are placed at the top section of the graph, while parent, generic terms
take their place at the bottom (root) part of the network
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1. Which processes are specifically over-represented in regulatory
T cells in comparison with effector T cells?

l Repeat the BiNGO analysis and find out which processes
are involving specifically over-represented proteins in reg-
ulatory and effector T cells.

2. Some researchers don’t trust annotations inferred using auto-
matic annotation. Repeat your analysis filtering those annota-
tions and see how that affects the results.

4.8.1 Final

Considerations and

Going Beyond BiNGO

Even though altering the layout helps understanding the informa-
tion you get, the information is still difficult to interpret and you
might want to further explore your results beyond getting just a list
of terms or a network visualization of the most significantly
enriched branches of the ontology. As we said before, it is essential
to have a good knowledge of the genetic background from which
the proteins in your network come in order to make a correct
interpretation of the results. Beyond that, the analysis must be
often refined to bring the novelty out of the results.

Fine-tuning the parameters of your BiNGO analysis can help
bringing out interesting information, as well as performing specific
analysis of certain regions of your network. However, customiza-
tion of the analysis in BiNGO is limited in comparison with other
tools such as ClueGO, where sophisticated options such as the
“GO Term Fusion” redundancy reduction tool are available to
the user. Although more computation resources-demanding than
BiNGO (but still within the capabilities of a standard desktop
computer), ClueGO is an excellent alternative for the advanced
user when it comes to perform personalized analysis. It is also the
tool of choice if what you really want to perform is a differential
analysis of the annotation of two different networks/clusters/lists
of gene products. The “Compare” option of the ClueGO plugin
performs a comparison between the number and percentage of
genes that are annotated per term in two different clusters and
returns a results table and a color-coded network graph. If you
want to learn more about ClueGO and its capabilities, check their
excellent documentation in www.ici.upmc.fr/cluego/ClueGODo-
cumentation.pdf.

Beyond that, BiNGO can be nicely complemented with
PiNGO [22], its sister tool. With this tool we can easily identify
candidate gene products that are significantly associated with a GO
term of interest as derived from their network context. It uses the
same statistics tools as BiNGO does and the interface is very similar
to the one we have described in this tutorial. If you are interested in
this type of analysis and want to learn how to use the tool, check a
very detailed tutorial provided in their website: www.psb.ugent.
be/esb/PiNGO/Tutorial.html.
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5 Additional Information

5.1 Installing Plugins

in Cytoscape

This set of instructions is specific for the BiNGO plugin, but it can
be used for any other plugin you might need to install using
the plugins manager in Cytoscape, such as the PSICQUIC client
plugin.

1. In Cytoscape, go to “Plugins” ! “Manage Plugins.”

2. Look for BiNGO using the search box or browsing through
the “Functional Enrichment” group of plugins.

3. Press “Install”

4. Check that the plugin was installed, it should be visible in your
“Plugins” menu. You might need to re-start Cytoscape if it is
not there.

5.2 Further Reading Below you will find suggestions for further reading.
General review about the basic concepts required to under-

stand protein–protein interactions: De Las Rivas & Fontanillo,
2010 [12].

General review, this one focused on the use of the study of
the interactome in relation with human disease: Vidal, Cusick, &
Barabási, 2011 [23].

A recent review about differential network biology, the study of
the differences between particular biological contexts in contrast
with the static interactome: Ideker & Krogan, 2012 [24].

The assessment of confidence values to molecular interactions
requires the use of several, complementary approaches. In this
study, the performance of different protein interaction detection
methods with respect to a golden standard set is evaluated: Braun
et al., 2008 [25].

Our group has produced a tutorial in the HUPO discussing
the importance of molecular interactions network analysis and
applying a similar approach to the one presented here, using
BiNGO in combination with the topological cluster analysis plugin
clusterMaker. See Koh, Porras, Aranda, Hermjakob, & Orchard,
2012 [11].

Finally, a good example of network analysis using data coming
from literature-curated databases can be found in this recent paper
in Nature Biotechnology: X. Wang et al., 2012 [26]. They con-
structed a network with high-quality binary protein–protein inter-
actions where there is information about the interaction interfaces
at atomic resolution and integrated disease-related mutation infor-
mation, finding out an enrichment of disease-causing mutations in
interacting interfaces.
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5.3 Links to Useful

Resources

Useful repositories, databases, and ontologies:

1. The Universal Protein Resource, UniProt: www.uniprot.org

2. The Gene Ontology: http://geneontology.org/

3. The Proteomics IDEntifications database, PRIDE: www.ebi.ac.
uk/pride

4. Lots of IMEx-complying interaction databases in the IMEx
website: www.imexconsortium.org/about-imex

Summary of useful tools:

1. How do I get interaction data from most of the interaction
databases that are out there? Easy answer: use the Proteomics
Standard Initiative Common Query Interface (PSICQUIC).
You can learn more about it here code.google.com/p/psicquic
and here you have a link to its search interface, PSICQUIC
View: www.ebi.ac.uk/Tools/webservices/psicquic/view

2. To learn more about Cytoscape or to get access to documenta-
tion and tutorials, go to its website: www.cytoscape.org. You
can see a list of plugins (also called ‘apps’) for both Cytoscape
2.8 and 3.0 here: http://apps.cytoscape.org/.

3. More about the BiNGO plugin in their website, with a nice
tutorial and useful documentation: www.psb.ugent.be/cbd/
papers/BiNGO.

4. PiNGO is BiNGO’s sister tool and it can be used to predict
candidate gene products, not annotated for a GO term of
interest, as inferred from their network interaction neighbor-
hood: www.psb.ugent.be/esb/PiNGO/Home.html.

5. ClueGO, an advanced GO enrichment analysis tool, can be a
good alternative to BiNGO for the advanced user. Check their
extensive documentation to be able to use the tool to its full
capacity: www.ici.upmc.fr/cluego/cluegoDescription.shtml.

6. In order to find hidden functional circuits in large networks it is
often useful to try clusterMaker, a Cytoscape plugin for topo-
logical cluster analysis. Lots of documentation and useful tutor-
ials in their website: www.cgl.ucsf.edu/cytoscape/cluster/
clusterMaker.html.

7. APID2NET is a Cytoscape plugin for integrated network anal-
ysis that brings together different useful tools for interaction
retrieval and network annotation and visualization: http://
bioinfow.dep.usal.es/apid/apid2net.html.

5.4 Icons List Figure 5 here you have a list of the Cytoscape icons cited through
the tutorial for visual reference.
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6 Notes

1. There are several ways to get molecular interaction data into
Cytoscape apart from the one we present here. For example,
from the IntAct web page, the user can generate files in tab-
delimited or in Cytoscape-compatible XGMML formats that
can be later imported into this software.

2. UniProtKB identifiers are widely used among the different
resources we are going to need along the tutorial, so it is highly
recommended to use them when dealing with protein datasets.
The advantages of using these ACs are that (1) they are stable
(they are not changed or updated once assigned); (2) they can
reflect isoform information, if provided; and (3) they are recog-
nized by many interaction and annotation databases (in this
instance, the two databases we will be using: IntAct and GO).
To map this particular list we have used the PICR service
(Protein Identifier Cross-Reference Service) that can be
accessed in www.ebi.ac.uk/Tools/picr.

3. You can also perform queries using this tool by clicking on the
“Search property” tab and selecting “GET_BY_QUERY” in
the “Query Mode” option. Then you can search using TaxIDs,
gene names, or interaction detection methods and build com-
plex queries with the MIQL syntax reference (check www.ebi.
ac.uk/Tools/webservices/psicquic/view and click on the
“MIQL syntax reference” link you will find in the far-right
upper corner by the search bar).

4. In the version of Cytoscape we use here (2.8.3) you need to
have the PSICQUIC client plugin installed to fetch data using
PSICQUIC in Cytoscape. Check out how to install plugins
from Subheading 7.

Fig. 5 List of Cytoscape 2.8.3 icons cited through the tutorial
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5. The PSI-MI-TAB-2.5 format is part of the PSI-MI 2.5
standard and it was originally derived from the tabular format
that the BioGrid database used. You can learn more about the
fields represented in the format checking their Google Code wiki
at http://code.google.com/p/psimi/wiki/PsimiTabFormat.

6. Both the edge and the node attributes in this network are based
in the fields defined in the PSI-MITAB format that the IMEx-
complying databases use. Go to code.google.com/p/psic-
quic/wiki/MITAB25Format if you need to know what a
particular attribute means.

7. Proteomics data repositories such as PRIDE (www.ebi.ac.uk/
pride) store quantitative proteomics data in formats that can be
transformed in tab-delimited text files that can be used as
attribute tables for Cytoscape.

8. The GO project is an international initiative that aims to
provide consistent descriptions of gene products (i.e., pro-
teins). These descriptions are taken from controlled, hierarchi-
cally organized vocabularies called “ontologies.” GO uses
three ontologies covering three biological domains. These are
Cellular Component, or the location of the protein within the
cell (e.g., cytosol or mitochondrion); Biological Process, or a
series of events accomplished by one or more ordered assem-
blies of molecular functions (e.g., glycolysis or apoptosis); and
Molecular Function, which is the activity proteins possess at a
molecular level (e.g., catalytic activity or trans-membrane trans-
porter activity). More information can be found in their web-
site, http://geneontology.org/

9. Every GO annotation is associated to a specific reference that
describes the work or analysis supporting it. The evidence codes
indicate how that annotation is supported by the reference.
For example, annotations supported by the study of mutant
varieties or knock-down experiments on specific genes are
identified with the inferred from mutant phenotype (IMP)
code. All the annotations are assigned by curators with the
exception of those with the inferred from electronic annotation
(IEA) code, which are assigned automatically based in sequence
similarity comparisons. See www.geneontology.org/GO.
evidence.shtml for more information about evidence codes.

10. The graphical representation of your BiNGO results is just
another network that can be modified and analyzed in Cytos-
cape by making further use of analysis plugins. The “Network
Modifications” plugin can be used when you want to roughly
see the most diverging differences in the results of two BiNGO
analyses.
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Chapter 5

Modeling Signaling Networks with Different
Formalisms: A Preview

Aidan MacNamara, David Henriques, and Julio Saez-Rodriguez

Abstract

In the last 30 years, many of the mechanisms behind signal transduction, the process by which the cell takes
extracellular signals as an input and converts them to a specific cellular phenotype, have been experimentally
determined. With these discoveries, however, has come the realization that the architecture of signal
transduction, the signaling network, is incredibly complex. Although the main pathways between receptor
and output are well-known, there is a complex net of regulatory features that include crosstalk between
different pathways, spatial and temporal effects, and positive and negative feedbacks. Hence, modeling
approaches have been used to try and unravel some of these complexities.
We use the mitogen-activated protein kinase cascade to illustrate chemical kinetic and logic approaches to

modeling signaling networks. By using a common well-known model, we illustrate here the assumptions
and level of detail behind each modeling approach, which serves as an introduction to the more detailed
discussions of each in the accompanying chapters in this book.

Key words Cell signaling networks, Network-based modeling, Logical modeling, Stochastic
modeling

1 Why Model Cell Signaling Networks?

Signaling networks are complex systems of molecules that relay and
interpret signals. They can consist of any number and combination
of proteins, nucleotides, fatty acids, and even dissolved gases such as
nitric oxide and carbon monoxide that help conserve signal integ-
rity. These systems relay information from the cell surface through
to effector proteins that modify the behavior of the cell. Their
importance in health can be understood by the severity of disease
that occurs when components of these networks are perturbed. To
give an example, the epidermal growth factor pathway (EGFR)
regulates growth, survival, differentiation, and proliferation in
mammalian cells. It does this through a complex system of interac-
tions that converts extracellular signals into a cellular response with
high specificity. This specificity can be achieved despite the relatively
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low number of intermediate proteins involved in this pathway.
Deregulation in the EGFR pathway underscores most cancers;
mutation in components leads to uncontrolled up-regulation of
the pathway and increased growth and proliferation [1]. As such,
it is vital to have a sound mechanistic understanding of both the
components (“parts-list”) and the interactions of these pathways to
better design treatments [2, 3].

2 Data and Why a Parts-List Is Not Enough?

The information in signaling pathways is usually transmitted
through phosphorylated proteins—extracellular signals initiate a
cascade of such protein modifications from the receptors that
receive the stimulus, through to the effector proteins (usually tran-
scription factors) that propagate the signal through to a phenotypic
outcome. Hence, the phosphorylated (activated) protein can be
seen as a unit of measurement in signaling network systems (not
discounting the importance of secondary messengers such as Ca2+

and cyclic AMP). Each protein can have many such phosphoryla-
tion sites, and the activation/deactivation of each can affect its
propensity to transmit a signal in the system. Added to this, the
state of these proteins (whether they are active or not) is highly
dynamic both in space and time. These details make measurement a
challenge and a large variety of experimental techniques have been
adapted and developed to achieve these measurements:

2.1 Antibody-Based

Measurement

Traditionally, quantitative measurements of proteins in signaling
networks have used antibody-based methods. These include pro-
tein arrays, reverse-phase protein arrays, and the bead-based xMAP
technology from Luminex. A thorough review of these methods
can be found in Terfve et al. [4]. Briefly, these methods depend on
the quality of antibodies that target phosphorylated proteins in the
signaling network. Although such methods can be scaled up to
hundreds of samples and target proteins, they are ultimately con-
strained by the selectivity and affinity of the antibodies for their
targets and thus, can be biased towards more well-known pathways
such as EGFR.

2.2 Mass

Spectrometry-Based

Measurement

Mass spectrometry-based approaches have the advantage of being
biased-free in that the quantification of proteins in a sample is not
limited by prior-knowledge (in terms of antibody design) of the
system. However, low-abundance proteins can be difficult to detect
and assigning sequences to MS spectra is also challenging [5].
MS-based approaches such as targeted MS/MS have been devel-
oped to overcome some of these limitations but fall back into the
trap of needing some prior knowledge of the system of interest.
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Ultimately, the best approach if time and expense permits is to use a
combination of nonspecific and specific experimental approaches to
explore and then quantify the system of interest [6].

2.3 Measuring at

Single-Cell Resolution

Another dimension to signaling networks has come to the forefront
in recent years with the advent of techniques to measure signaling
events in single cells. The methods described above rely on the
average measure of proteins across many cells. In many cases this
gives an acceptable approximation of the dynamics at the single cell
level (i.e., where the cell-cycle is not a factor, or variable time delays
are minimal). However, it is known that even isogenic populations
of cells respond differently to the same cues, producing a heteroge-
neity of responses. Such heterogeneity can also be functionally
important if it is regulated by the cell or is intrinsic to a phenotype
[7]. Hence, measurement at the single-cell level is vital to under-
stand properties and dynamics that may be “averaged out” with
bulk-cell measurements.

There are a number of techniques that can measure protein
levels, localization, and activity at the single cell. These can be
broadly divided into flow cytometry and microscopy-based cate-
gories.

Flow cytometry is a technology that allows the interrogation of
individual cells by suspending them in a stream of fluid and passing
them individually through a detection apparatus. The technique
allows for quantification of cell-surface proteins in live cells
(FACS). However, the cells must be fixed for detection of intracel-
lular proteins. Protein levels can be detected using fluorescent anti-
bodies or, more recently, using mass tags for detection in mass
spectrometry [8].

Ultimately, signaling processes can display complex dynamics in
short periods of time that can affect downstream outcomes [9]. To
gain a true understanding of these rapid dynamics requires tracking
signal transduction in real time in live cells. Spiller et al. [10]
comprehensively introduce the myriad of techniques available for
such measurements. Briefly, the main techniques can be encom-
passed under genetically encoded activity sensors (e.g., FRET
probes), or genetically encoded fluorescent fusions. These techni-
ques can measure diverse biological events such as translocation,
protein modifications, and protein–protein interactions. The
advantages of using such data for modeling are myriad; observing
dynamics at the single cell level can lead to novel mechanistic
insight [11] and a truer understanding of decision making in
signaling pathways [7]. Unfortunately, the payoff for such detailed
measurements is countered by a reduction in scope of measurable
components. The design and optimization of fluorescent sensors
is complex and factors such as phototoxicity and fluorescent
overlapping limit multiplexing potential (i.e., the number of
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measurements in parallel). In such cases, normalization methods
such as computational multiplexing [12] can be used to compare
measurements between different cells.

3 So What Can Be Done with This Data?

Once a “parts-list” is obtained, the question becomes how to
understand this potentially multidimensional, complex, and noisy
data. The computational or statistical approach to take depends on
a number of factors, as summarized in Fig. 1.

Statistical models can be subdivided into predictive and non-
predictive categories [4]. Non-predictive methods include cluster-
ing and principal component analysis (PCA), where the goal is to
classify the data based on multivariate input. Predictive methods
include the family of regression-based methods. Such models are
nonmechanistic in that there is no attempt to understand the
underlying biochemistry; these models are simply concerned with
linking a set of input variables (e.g., phosphorylation measure-
ments) with an output or outputs (e.g., cell phenotypes).

4 Introducing Networks

Data-driven nonnetwork approaches such as those described above
can be informative in linking signaling pathway inputs and mea-
surements to outputs [13]. However, to gain a functional, deeper

Fig. 1 Modeling approaches can be ranked according to the type of data required, the mechanistic insight that
results from such a model, the prior knowledge in the form of protein interactions or biochemical detail that is
needed, and the size of the network that can be used with each approach. The software list is not
comprehensive but simply what is used or referenced in this book. Copasi [44] was used in the chapter to
generate the deterministic and stochastic time courses of the Kholodenko model and R [45] was used to
generate plots. CellNOptR [40] trains logic models to data and GINsim [46], BoolNet [47], and CellNetAnalyzer
[48] can be used to build, simulate, and analyze logic models (see also Chap. 6)
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understanding of the underlying biology, information about the
interactions between members of the “parts-list” of measured spe-
cies must be added. This information can be described as a network.
Networks consist of nodes and edges. Typically, the nodes repre-
sent the components of the network (e.g., a phosphorylated pro-
tein) and the edges describe the interactions between the
components (e.g., protein C is phosphorylated when protein A
and B are phosphorylated). Signaling networks can represent inter-
action detail at varying resolutions—from the coarse knowledge of
protein interaction networks (where only the presence/absence
of an interaction is known), through to detailed, biochemically
accurate representations (typical of more well-known signaling
pathways such as EGFR).

Even in the absence of data, such networks contain topological
properties that can be analyzed to understand emergent properties
[14]. In the presence of data, these networks can be utilized by
mapping data types onto the nodes [15]. Another powerful
network-based approach, and what we will focus on here, is to trans-
form such representations into models, which can be then used to
explain the corresponding data. Such models then offer a framework
for improved experimental design, validation, and prediction.

5 The Advantages of Network-Based Modeling

With a modeling approach to signaling networks based on mecha-
nistic understanding, it becomes possible to predict the effects of,
say, perturbations and mutations at the cellular level. There are
many examples of nonobvious emergent properties that cannot be
explored through a knowledge of system components alone. For
example, in signaling networks, factors such as protein dynamics
[9], localization [16], and stochasticity [17] contribute to cell-
specific responses that can only be explored through dynamic,
spatial, and stochastic modeling. respectively [3].

As can be seen from Fig. 1, the choice of modeling approach
should be made based on factors such as network size, data resolu-
tion, and the prior knowledge of the system. We will use this
chapter and a small example to introduce a number of approaches
sitting on this continuum of approaches—stochastic and determin-
istic chemical kinetic modeling and logic modeling. This is a brief
overview that serves as an introduction to more detailed discussion
of these formalisms in other chapters in the book (Parts II, III, and
V). There are a number of useful approaches that are outside the
scope of this book, such as rule-based, biophysical and spatial
modeling. We point the reader to a number of excellent reviews
that detail such formalisms (see refs. 18—rule-based 19- spatial
modeling in signaling networks).
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6 The Model: The MAPK Cascade as an Example

In order to illustrate some of the concepts presented in the
introduction, as well as the different approaches to modeling intro-
duced in the other chapters, we will use the example of the
mitogen-activated protein kinase (MAPK) signaling cascade. This
series of three kinases plays a vital role in cell signaling where it
regulates cell proliferation, survival, motility, and differentiation.
It can be viewed as a module that is downstream of a large number
of cell-surface receptors (e.g., tyrosine kinase receptors such as
EGFR, tumor necrosis factor receptor) but which also interplays
with PI3K and other signaling pathways through feedback mechan-
isms and crosstalk [20–22]. The main constituents of this signaling
pathway are three kinases—Raf, MEK, and ERK. The activation of
cell-surface receptors such as EGFR activates the GTPase Ras,
which in turn activates the first kinase in the cascade, Raf. This
three-kinase cascade has been subject to intense research over the
last few decades since its discovery in 1980 [23] for a number of
reasons: (1) it is a highly conserved pathway, which allows for
experimental data from different model organisms [24], (2) despite
its simplicity, its regulation is complex [20, 25] and is still being
unraveled, and (3) it is still a mystery how such a system can
regulate such a diverse set of cellular processes [26].

Accordingly, the MAPK cascade has been extensively modeled
in order to understand emergent properties that explain its regula-
tion and control of downstream signaling events. We will use the
example of Kholodenko [27] (see Figs. 2 and 3 below) to explore

Fig. 2 The kinetic scheme of the MAPK cascade model from [27]. The model is represented as a process
diagram and illustrates the dual-phosphorylation mechanism required for activation at each level of the
cascade
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the assumptions, limitations, and differences between the different
modeling approaches.

The Kholodenko model describes the MAPK cascade as a series
of phosphorylation events, each catalyzed by the preceding kinase.
Activation of each kinase requires 1 or 2 phosphorylations, which
occur in distinct reactions. It is known that these phosphorylation
reactions at each level are non-processive, i.e., the kinase dissociates
itself from the substrate after a single phosphorylation, rather than
phosphorylating all sites at the same time [24]. The model can be
adapted to different formalisms, which can help illustrate the
assumptions of logic and chemical kinetic (both deterministic and
stochastic) modeling. We refer the reader to more in-depth discus-
sion of these approaches in Chaps. 6, 8 and 9.

7 “Biochemical” Modeling of Signal Transduction

Biochemical (or physicochemical) approaches encompass formal-
isms that describe biomolecular interactions in terms of equations
based on chemical (and sometimes physical) theory [2]. Such
approaches require a sound knowledge of the underlying biology.
As stated above, we now have biochemically detailed knowledge of
the phosphorylation reactions of the MAPK cascade. However,
these reactions do not occur in isolation but include interactions
with scaffolding proteins and multiple crosstalk and feedback
interactions (including transcriptional control) within the cascade
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Fig. 3 The oscillatory behavior produced by the Kholodenko model: a product of
ultra-sensitivity at each stage of the cascade (i.e., small changes in input can
produce large changes in output) and negative feedback
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and with other pathways [26]. Given this level of knowledge,
biochemical modeling becomes a natural platform to study the
dynamics of the MAPK cascade.

The most common modeling formalism that falls into the
category of biochemical modeling is a system of coupled ordinary
differential equations (ODEs), henceforth chemical kinetic model-
ing. Chemical kinetic ODE systems represent the rates of production
and consumptionof individual species in themodel, hence the change
in concentration for each species is represented by a single ODE.

In modeling a system using ODEs based on chemical kinetics,
it is necessary to build on a series of assumptions. These assump-
tions are thoroughly explained in Chap. 8 but we will introduce
them briefly here. The fundamental assumption in chemical kinetic
modeling is mass-action kinetics—the rate of a chemical reaction is
proportional to the concentration of the reactants. The difficulty
with mass action kinetics is that it is only valid for elementary
reactions (i.e., a reaction with no stable intermediate). Unfortu-
nately, such reactions are often unknown in biology where it may be
the case that only the start and end-point of a series of reactions can
be measured or deduced. This is often the case for enzyme biology,
which brings us back to the MAPK cascade (a series of phosphor-
ylations catalyzed by kinases, a type of enzyme). Using the Kholo-
denko model already introduced, together with some previous and
updated models [28, 29], we can demonstrate how a variety of
assumptions are used and how they lead to different behaviors in
the system.

7.1 Chemical Kinetic

Modeling of the MAPK

Cascade

Initial modeling efforts used mass-action kinetics to simulate the
two-step non-processive mechanism of phosphorylation that
occurs throughout the MAPK cascade (see Fig. 1). With this
approach, Huang et al. [28] demonstrated that ultra-sensitivity
could be achieved within the constraints of this biochemical system
(ultra-sensitivity is the phenomenon where a small change in input
(substrate) leads to a large change in output (enzyme/kinase
activity)).

The Kholodenko model extended this model by including
negative feedback and replacing the mass-action kinetics of the
phosphorylation reactions with Michaelis–Menten kinetics.
Michaelis–Menten kinetics are a simplification of mass-action kinet-
ics where an added assumption is that the concentration of the
enzyme–substrate complex (e.g., MKK-PP with MAPK from
Fig. 2) does not change significantly over the time of the reaction
and relative to other concentrations (see Chap. 8 for a more in-
depth discussion). Kholodenko demonstrated that, under these
conditions, the MAPK cascade could produce oscillations—a sig-
naling pattern that has been proposed to encode output in signal-
ing pathways [9].
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The work ofMarkevich et al. [29] demonstrated the importance
of what the reaction assumptions of the MAPK cascade are. This
work explored the possibility of bistability (i.e., two stable out-
puts from the MAPK cascade) in the absence of feedback. It also
demonstrated that the use of Michaelis–Menten kinetics in
the context of the MAPK cascade can be an over-assumption.
The argument is that, at any level of the cascade (see Fig. 2), the
concentration of the kinase in complex with its substrate cannot
be ignored if the total concentration of kinase, phosphorylated
and unphosphorylated, is to be constant. Other work has also
shown that properties of the MAPK cascade can make it non-
compliant with normal enzyme kinetics; sequestration of the
substrate by the kinase undermines Michaelis–Menten kinetics
[30]. This has the implication that there are retroactive effects
[31–33] that render the behavior of the MAPK cascade more
complex than a simple chain of signal transducers.

Ultimately, any assumptions used to help make ODE systems
tractable have to come from knowledge of the underlying biology.
MAPK cascade models have grown to incorporate upstream effects,
such as receptor traffic and internalization of receptors [34], tran-
scriptional feedback, [20] and the influence of scaffolds [35], as
well as localized and spatial influences [36]. Despite these increases
in model size and complexity, the above work has shown that the
“devil is in the detail” with regard to reaction kinetics in this system.

7.2 Stochastic

Modeling of Signal

Transduction

The emergence of single-cell measurement techniques has high-
lighted the heterogeneity of cell signaling networks, even under
similar conditions and in isogenic populations [7]. The stochastic
nature of molecular interactions accounts for much of this hetero-
geneity (notwithstanding extrinsic sources of noise in any measure-
ment technique) and there has been a realization that such effects
need to be taken into account in a modeling framework. Chapter 9
provides a concise introduction to the simulation of stochastic
kinetic models. For now, we will again use the Kholodenko model
to briefly highlight the main differences between deterministic and
stochastic chemical kinetic approaches.

The fundamental difference between stochastic and determin-
istic approaches in chemical kinetic modeling can be described as
the following: deterministic simulation uses reaction kinetics to
describe the change in concentration of each species over time.
Stochastic simulations instead describe the change in the number
of molecules of each species over time according to the probability
of each reaction occurring (reaction propensities).

There are subtle differences between reaction rates used in
deterministic modeling and reaction propensities. These are impor-
tant when describing reactions with low numbers of molecules. For
example, in the case where there is a second order rate law or higher
(see Chap. 8), the product of the reactants is replaced by a term to
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insure the reaction only takes place if there are at least two particles
present (i.e., x2 becomes x � x�1).

In the case of the Kholodenkomodel and theMichaelis–Menten
approximation of phosphorylation, the assumption of the enzyme-
substrate complex being in a steady state may not be valid for
stochastic systems [37]. However, we will assume its validity in
performing a stochastic simulation of the model to demonstrate
the potential importance of stochastic simulations in such oscillating
systems.

Figure 4 shows two simulations of the Kholodenko model that
demonstrate the stochasticity introduced into the model. When
these simulations are averaged (see Fig. 5), the oscillations disap-
pear. Such an exercise demonstrates the importance of single cell
data (if we take each simulation run as a different cell) to discover
underlying mechanism. However, the choice of stochastic versus
deterministic chemical kinetics is not straightforward and again
comes back to understanding the biology of the system and what
one is using the model for [38].

8 Logic Modeling of Signal Transduction

Logic models use logical operators (AND, OR, NOT) to describe
the relationships between nodes in a graph. In modeling signaling
pathways, these nodes usually represent activated proteins and the
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Fig. 4 A time course of the Kholodenko model using a stochastic simulation. The
reaction kinetics were converted to propensities internally in Copasi. The volume
of the “reaction chamber” was “shrunk” (i.e., the cell volume was set to 6e�16l)
to reduce molecule numbers and more ably demonstrate the variation that can
occur. The figure shows the count of MAPK-PP molecules in two simulations
over the same time-frame as Fig. 3
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edges between the nodes describe the dependencies between
nodes. Chapter 6 describes how such models are built from prior
knowledge resources and also how they are built in comparison to
biochemical models.

There are a number of differences in the interpretation of a
logic model compared to the equivalent mechanistic model shown
in Fig. 2. In Fig. 2, each node represents a physical entity, in this
case the individual kinases (together with their phosphorylation
status) of the MAPK cascade. In standard (SBGN) notation, this
is labeled a process diagram [39]. However, the representation for
logic modeling is quite different (see Fig. 6 below). Here instead of
a physical entity, each node represents an activity (hence the SBGN
notation for such a graph: activity flow diagram). Therefore, the
node “MKKK” is not the kinase but instead represents “the activa-
tion of MKKK.” Such nodes are linked by directed activating or
inhibitory edges. Logic operators (AND, OR, NOT) then describe
how each output node is activated by its inputs.

The differences between chemical kinetic and logic modeling
can be illustrated by fitting logicmodels to the data generated by the
Kholodenkomodel (see Fig. 3). CellNOptR (www.cellnopt.org) is a
set of R packages (and a user interface in Cytoscape, CytoCopteR)
that trains logic models to data [40]. Depending on the type of data
used for training and the amount of prior knowledge of the system,
the logic simulations of the data can take a number of forms. These
range from Boolean (each species (or activity) in the model only has
the state ON/OFF) to logic ODEs (where the input–output rela-
tionships of the models are defined by ODEs, hence time and the
level of activity are continuous).

8.1 A Time-Course

Logic Model

We will start with the simplest logic approximation of the data
generated from the Kholodenko model that can model oscillations.
The CNORdt package of CellNOptR fits a scaling factor that
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Fig. 5 This figure shows the mean count of MAPK-PP over time for 50 simulations,
using the same starting conditions as Fig. 4 for each of the 50 simulations
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allows a Boolean (states can be ON/OFF only) simulation of the
model to be compared to time-course data [41]. An important
distinction between logic and chemical kinetic simulations is that
chemical kinetics describes the transformation of entities (in this
case proteins), whereas logic models describe the activation of an
output by its input(s). In the Kholodenko model we can distinguish
two categories of reaction where this distinction can be illustrated:

1. Each phosphorylation of a kinase in the cascade is represented
by the Michaelis-Menten rate equation. These reaction kinetics
produce characteristic curves when the rate of production of
“product” (in this case the activated kinase) is plotted against
substrate concentration.

The logic model describes each level of the MAPK as a single
variable, without any reaction. This simplification allows us to
ignore more complex reaction kinetics as we are only interested
in the relationship between input and output. Hence, a logic
model that interprets the system correctly in terms of activity
relationships can coarsely capture the dynamics of the system
(see Fig. 7).

2. The feedback from MAPK that negatively affects the activation
of MKK is modeled by Kholodenko [27] as noncompetitive
inhibition, i.e., binding of the inhibitor to the enzyme is not
affected by, or affects, the concentration of bound substrate.

Fig. 6 A logic model representation of Kholodenko [27]. The nodes represent
activities, as opposed to physical entities. Each edge describes the relationship
between activities in the network. For example, a single arrow denotes an
input–output relationship where the output becomes activated when the input
is activated. More complex relationships use logic gates [41]. For example, the
activation of MKKK here depends on the activation of Ras and the inactivation
(NOT) of MAPK
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The logic model represents this relationship using an AND
gate—the activity of Ras must be equal to 1 and that of MAPK
must be 0 for MKK activation to occur. As above, this is a fair
approximation to the Kholodenko model when considering
simply the ON/OFF (activated/deactivated states) of each
kinase in the cascade.
The payoff for the simplicity of approach and parameter-free

nature of Boolean modeling is evident from Fig. 7. The state/
activity of each node is limited to ON/OFF and hence the inter-
mediate activities of the kinases are poorly fitted. Also, mechanistic
insight is limited; the nature of the negative feedback is unknown;
and complex catalysis reactions are compressed into a simple inpu-
t–output relationship. Hence, although such an approach yields
limited mechanistic insight, the lack of parameters facilitates train-
ing these models to data.

8.2 A Continuous

Logic Model

CNORdt fits a Boolean model to time-course data. This allows for
a coarse-grained model that is dynamic but can only simulate the
states of the model constituents as ON/OFF. CNORode [40, 41]
fits logic models to data with ODEs describing input–output rela-
tionships [42]. Hence, logic ODEs describe the change in activity
of each “activity node” over time, as opposed to chemical kinetic
ODEs, where the change in concentration of each species is calcu-
lated. The logic ODEs used in CNORode are based on Hill func-
tions; by varying the parameters n and k of the Hill function, the
relationship between input and output can assume a variety of
biologically meaningful shapes, such as close to linear or sigmoidal.

Interpreting each relationship in Fig. 6 as a continuous homo-
logue of the Boolean functions used for CNORdt generates an
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Fig. 7 The fit of the time-course Boolean simulation (dotted line) to the in silico generated data of the
Kholodenko model (see Fig. 3). The stimulus “RAS” was set to 1 (black). The time course has been reduced to
5,000 s for clarity. As can be seen from the background shading, there is an error between the Boolean
simulation and the original data as intermediate values cannot be simulated. However, the oscillation
frequency closely approximates that of the Kholodenko model

Modeling Signaling Networks with Different Formalisms: A Preview 101



ODE logic model with 3 dynamic states and 11 parameters (the
Kholodenko model has 8 dynamic states and 22 parameters). Nine
of these parameters (two relating to “Ras” activity were fixed as this
node is constitutively active) were optimized to fit the data gener-
ated from Kholodenko (see Fig. 8). In doing so, we can directly
compare a logic-based ODE and a mechanistic biochemical model.

Ostensibly, the fit of the logic ODE model to the data gener-
ated by the Kholodenko model is good (see Fig. 8). The Hill
functions used in the logic ODE model are “plastic” enough to
replicate the ultra-sensitivity generated by the cooperative phos-
phorylation kinetic model of Kholodenko; this ultra-sensitivity
being necessary to generate oscillations. However, as a result of
this plasticity, the logic ODE Hill functions are essentially a black
box and do not reflect the mechanism of cooperative phosphoryla-
tion in the manner of chemical kinetics [27].

An additional issue with the increase in the number of para-
meters when using logic ODEs is parameter identifiability; it is not
possible to determine the exact values of the model parameters by
fitting them to data. From Fig. 9, we can see that the n parameter
that controls the steepness of the Hill function curve can vary over a
wide range for two of the activations in the model (MKK to MAPK
andMKKK), while still producing an optimal fit to the Kholodenko
data. The issue of parameter identifiability is not limited to logic
ODEs and is an issue with chemical kinetic models of the MAPK
cascade. Indeed, it has been shown that the mass action model of
the MAPK cascade [28] can return a variety of nonlinear dynamics
depending on parameter choice [43]. Such results emphasize the
need to couple modeling to experimental work.

As we have seen above, logic models can reproduce complex
dynamics with fewer parameters and distinct states compared to
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Fig. 8 The fit of the logic ODE model (dotted line) to the Kholodenko time-course data. The mean-squared error
between the logic model and the data is greatly reduced (background shading) compared to the Boolean
model (see Fig. 7). The stimulus “RAS” was set to 1 (black)
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chemical kineticmodeling, with the caveat of lessmechanistic detail.
The use of the MAPK cascade to illustrate this is slightly disingenu-
ous in that the cascade is biochemically well-studied. In such a case,
and if one is considering only this relatively simple system, it makes
sense to use biochemical models that can reflect this knowledge.
However, less well-studied systems can be explored with logic
models, especially where model training to data is being performed
(i.e., there is a necessity for fewer degrees of freedom) and in the case
of the two formalisms introduced here (CNORdt and CNORode),
the data is in the form of a time-course measurements.
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Chapter 6

From a Biological Hypothesis to the Construction
of a Mathematical Model

David Cohen, Inna Kuperstein, Emmanuel Barillot,
Andrei Zinovyev, and Laurence Calzone

Abstract

Mathematical models serve to explain complex biological phenomena and provide predictions that can be
tested experimentally. They can provide plausible scenarios of a complex biological behavior when intuition
is not sufficient anymore. The process from a biological hypothesis to a mathematical model might be
challenging for biologists that are not familiar with mathematical modeling.
In this chapter we discuss a possible workflow that describes the steps to be taken starting from a

biological hypothesis on a biochemical cellular mechanism to the construction of a mathematical model
using the appropriate formalism. An important part of this workflow is formalization of biological knowl-
edge, which can be facilitated by existing tools and standards developed by the systems biology community.
This chapter aims at introducing modeling to experts in molecular biology that would like to convert

their hypotheses into mathematical models.

Key words Network diagram, Mathematical model, ODE, Boolean, Formalism

1 Introduction

Mathematical modeling in molecular biology aims at understand-
ing a nonintuitive outcome of an experiment, or predicting how a
system would respond to various perturbations (e.g., genetic muta-
tions, environmental stress, or therapeutic molecules).

For most non mathematicians, the construction of a mathe-
matical model that is based on a biological hypothesis can be a
puzzling process: what does it do? How can we proceed from a
biological hypothesis to a mathematical model? What can we do
with it, and what can we not do with it? On the one hand, the
mathematical model can be seen as a tool that reproduces what is
known about the studied biological processes and proves the coher-
ence of our understanding. On the other hand, it can be
challenged, or perturbed to propose predictions that can be vali-
dated experimentally. The mathematical model is used for
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reasoning and choosing between several scenarios that might
explain an observed phenotype in particular conditions.

This chapter is intended to introduce how a mathematical
model is constructed to an audience that is not familiar to compu-
tational biology or mathematical modeling in particular. With a
simple example, we will try to answer the question: how do we
proceed from a biological hypothesis to a mathematical model?

2 From Articles to Mathematical Models

The models we refer to are models of biochemical reactions in the
cell. The most efficient method for building a mathematical model
has been, for us, to follow the workflow presented below. It is
neither a unique nor a universal method but, with practice, we
identified a series of steps that ultimately tackle the biological
hypothesis. Each step in the workflow is formulated as a question.

2.1 What

Is the Biological

Question That Needs

To Be Answered?

Although this seems quite trivial, a well-defined problem enables a
“focused” search for data. Once the problem is well defined, it will
lead to the next step. However, the vocabulary between a biologist
and a mathematician is not always the same. The time taken by the
biologist and the mathematician to formulate together the prob-
lem, or the hypothesis to test, will facilitate the collaboration.

2.2 What Will

Be Included and What

Will Not Be Included?

The border and the level of the molecular description should be
defined clearly thereby avoiding being unnecessarily broad in data
gathering. Here, it needs to be set how many details are required
and how detailed should the description of the mechanisms be.

2.3 Where to Find

the Information?

Using well-known databases like PubMed (http://www.ncbi.nlm.
nih.gov/pubmed/) [1], iHOP (http://www.ihop-net.org/Uni-
Pub/iHOP/), Google Scholar (http://scholar.google.com), etc.,
the scientific articles that contain information about the involved
entities, biochemical processes, etc., can be retrieved easily. Data-
bases of molecular pathway (see Note 1) diagrams such as KEGG,
BioCarta and Panther can also be used. It is important to describe
accurately the biochemistry behind the processes by gathering what
is already known about them. However, the required information is
often disseminated throughout hundreds, or even thousands, of
experimental articles that need to be gathered and put together to
tell a plausible story. Of course, information can also be extracted
from -omics data using high-throughput technologies that look at
gene expression, protein–DNA, RNA–protein, and protein–protein
interaction, protein quantities and activities.
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2.4 How to Organize

the Retrieved

Knowledge?

Once the information is collected, it can be stored in different ways:
for example, as a database, in the form of a list of known facts, or as
a network diagram (see Notes) recapitulating interactions between
the entities of a biological process of interest. Depending on the
available information, the level of details and the type of questions
that need to be answered, the appropriate diagram will be chosen
for a graphical network (see Note 2) representation.

2.5 How to Translate

the Diagram into a

Mathematical Model?

The diagram (see Note 3) is then translated into a mathematical
object. According to the type of constructed diagrams, the appro-
priate formalism must be applied.

2.6 How to Validate

the Mathematical

Model?

Once the model has been constructed, it has to be able to repro-
duce what is already known (published data, mutations, or pertur-
bations) or verified with experimental data (in CGH data: loss/gain
of a gene to explain a phenotype; in transcriptomics data: differen-
tial expression of genes in two different conditions; etc.). Note that
the obtained mathematical model may not be the only possible (or
the best) model; however, at this point, if it is able to reproduce
known facts, it has to be considered as a good and appropriate
model that particularly answers the biological hypothesis initially
formulated.

2.7 How to Propose

Mathematically

Derived Predictions

and Validate Them?

Once the model has been validated on known data and facts, some
not-yet performed perturbations (newmutants or drug treatments)
can be simulated in silico and predictions on the behavior of
the biological system can be formulated. Ideally, experiments will
verify if the predictions reflect the in vivo situation.

The whole process can be iterative. Some steps can be omitted
according to the formalism chosen.

Our aim, here, is not to explain all steps of this workflow in
detail. Rather, we wish to concentrate on the construction of a
network diagram and its translation into a mathematical model.

3 Formalisation of Knowledge

Biological knowledge can be retrieved by performing experiments.
High-throughput technologies are efficient in generating a vast
amount of data. For example, using transcriptome arrays, expression
ofmore than 20,000 genes can be analyzed at the same time, showing
possible connections between sets of genes and phenotypes. How-
ever, this kind of information about quantities of molecules does
not provide the mechanistic details of the pathway functioning and
their crosstalk.
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To gain insight in the mechanism behind an interaction
between (two) molecules, experiments are usually performed con-
centrating only on the molecules that are putatively involved in the
interaction. These types of experiments are well described in many
articles and the results of these experiments can provide details
about posttranslational modifications, complex formations, degra-
dations, etc. The information retrieved from all these articles
together will result ultimately in a network that recapitulates inde-
pendent experimental settings with different parameters and focus,
and, as a result, a generic representation of the biological process or
pathway.

4 Representation of Knowledge

As mentioned previously, the knowledge about a particular cellu-
lar process can be organized in a database. However, a “wordy”
representation of knowledge, though accessible for a computer,
cannot be as easily used by humans as a graphical representation of
this knowledge. This is the reason why, in addition to creating a
database, it is advantageous to summarize the biological knowl-
edge into a map. In geography, a map (see Note 4) is “a diagram-
matic representation of an area of land or sea showing physical
features” (see Note 5). As in geography, in biochemistry, creating
maps is a very natural way to represent knowledge about any
object (physical or abstract) [2].

4.1 Types

of Diagrams

There are different types of diagrams (see Note 3), each displaying
different types of information. We concentrate on four of these
types, the last three have been defined and extensively described
in Le Novère et al. [3] as the result of a community effort in
establishing standards in network visualization (Systems Biology
Graphical Notation, SBGN): (1) Interaction diagrams; (2)
Activity-flow diagrams; (3) Process-descriptive diagrams; and (4)
Entity relationship diagrams. Examples for each of these diagrams
are illustrated in Fig. 1.

4.1.1 Interaction

Network Diagram

Interaction diagrams indicate relations between two components.
These relations can be physical, genetic, correlations, etc. For
instance, protein–protein interaction networks inform on which
proteins can interact with other proteins within a cell. These dia-
grams are binary, and nondirectional. Sequences of events cannot
be represented, and neither can the mechanical description behind
the interactions [4]. Both physical interaction between pair-wise
proteins (or complexes) and genetic interaction showing a connec-
tion between genotype and phenotype can be visualized [5]. Inter-
action networks (seeNote 2) can be used for computing differential
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networks, in which edges between nodes are being suppressed or
added upon the different conditions [6]. Interaction network dia-
grams can be compared among different organisms or cell types
through the analysis of subgraph structures and the identification of
conserved motifs [7].

4.1.2 Activity-Flow

Diagrams

In contrast to interaction network diagram, activity-flow diagrams
or Regulatory Networks (RN) are directional and can represent
sequences of events. The nodes are connected through edges that
have either a positive or a negative influence on their neighbors.
That way, influences can be shown without the requirement of
knowing the detailed mechanism [3]. Although RN are nonmech-
anistic, the function and/or regulation of a complex biological
event such as the role miRNA in ovarian cancer [8], and the
transcriptional regulation during epithelial to mesenchymal transi-
tion [9] have been represented. Furthermore, RNs integrating
different high-throughput sequencing data have been constructed
involving pairs of nodes such as transcription factor (TF)-gene, TF-
miRNA, and miRNA-mRNA, giving the network a more holistic
view of the biological system [10].

Fig. 1 Four different types of network diagrams. (1) An interaction network diagram. (2) An activity flow
diagram. (3) A process descriptive network diagram. (4) An entity relationship diagram. For more details see
text (figure provided by N. Le Novère and adapted)
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4.1.3 Process

Description Diagram

The process description diagram shows, in sequential order, the
biochemical reactions between entities and is thus directional [3].
Because biochemical reactions can be explicitly displayed, these
diagrams show a mechanistic view. Many metabolic and signaling
pathways have been depicted using this representation [11–13].

4.1.4 Entity Relationship

Diagram

The entity relationship diagram shows the effect of a node onto
another node’s posttranscriptional modification thereby avoiding
multiple representation of the same node in the diagram and
showing all different states of an entity [3]. Furthermore, the
diagram is directional, the order of events are not sequential, and
it provides a mechanistic view [3]. The predecessor of the entity
relationship diagram is the molecular interaction map (MIM),
which was the first attempt to define symbols and rules for describ-
ing molecular interactions [3, 14].

Much effort has been dedicated to the creation of different
network diagrams that explicitly details interactions among differ-
ent entities involved in cellular processes. Many of them are avail-
able in the literature or can be retrieved from databases.

4.2 Biological

Pathway Databases

As mentioned before, the advantage of representing biological
processes in the form of diagrams is not only to bring together
components that participate in a process but also to summarize
regulatory circuits in one single map. With this philosophy, a signifi-
cant number of pathway (see Note 1) databases have been set up
for public use to facilitate the retrieval of information (see Table 1).
Some of these databases concentrate on well-known pathways, e.g.,
KEGG, Reactome, etc. [15, 16]. Others contain not only generic
pathways but also allow visualization of each pathway in the context
of different species (see Table 1). In addition, a number of pathway
databases provide disease-specific pathways like Cancer Cell map
(http://cancer.cellmap.org/) or Atlas of Cancer Signalling Net-
works (http://acsn.curie.fr). The majority of the databases listed in
Table 1 have been created manually and curated by qualified
biological experts.

To enable data exchange between several databases, common
data formats have been introduced (e.g., BioPAX, SBML, PSI-MI,
etc., see Table 1). Tools have also been developed to extract parts of
these databases and to manipulate and merge the pathways of
interest (Table 2).

4.3 Drawing Adequate tools to draw maps in SBGN standard have been made
available, among them CellDesigner [17] and SBGN-ED [18].
With CellDesigner, a particular effort has been put on process
description diagram representation. SBGN-ED is able to draw all
types of diagrams except for interaction networks. For both tools,
experimental data can be visualized on the network. To facilitate the
usability of the map, it is advised to annotate nodes and edges with
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identifiers when available (Entrez Gene, UNIPROT, etc.), with
citations (PubMed IDs), hyperlinks to existing databases, or with
any types of notes that could be helpful.

4.3.1 Visualization/

Navigation

Due to the size and complexity of molecular networks, dedicated
tools for navigation through such networks have been developed
such as CellPublisher [19], Pathways projector [20], and NaviCell
(http://navicell.curie.fr).

4.4 Network

Analysis

CellDesigner and SBGN-ED are good visualization tools but
are not able to perform extensive network analysis. Cytoscape
is an open source software platform for visualizing and analyzing
molecular interaction networks [21], which can be used to import
networks that are SBGN compliant [3]. Many plugins for Cytos-
cape have been developed to facilitate the analysis of pathways.
Among them, BiNoM (Biological Network Manager) concentrates
on importing, converting, and exporting networks with different
standards, such as BioPAX or SBML, on performing path analyses,
on extracting specific information from databases, etc. [22, 23].
These analyses can be done prior mathematical modeling to better
understand the structure of the studied networks.

Table 2
Tools for map drawing, and visualization/navigation

Tools Web link

Drawing Visualization/navigation

Drawing
editing

SBGN
format

Layout
change

Web
interface

Google
map
navigation

Zoom
options

CellDesigner http://www.celldesigner.
org

● ● ● ●

SBGN-ED http://vanted.ipk-
gatersleben.de/
addons/sbgn-ed

● ● ●

CellPublisher http://cellpublisher.
gobics.de

● ● ●

Pathways
projector

http://www.g-language.
org/PathwayProjector

● ●

Cytoscape/
BiNoM

http://www.cytoscape.
org

● ● ●

http://binom.curie.fr

Payao http://payao.oist.
jp:8080/payaologue/
index.html

●

NaviCell http://navicell.curie.fr ● ● ● ●a

aSemantic zoom
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5 From Diagrams to Mathematical Modeling

Mathematical models can reproduce what is known about a
biological process; can make a link between the physiology and
the molecular interactions; can prove that a set of molecular inter-
actions do explain a phenomenon; and can reproduce the system
behavior of wild type cells, mutant cells, and in diverse experimental
settings. Mathematical models can also provide predictions about
not-yet assayed perturbations. However, just building a map is not
sufficient to guarantee that the map represents a biologically coher-
ent picture of the biological process. What the dynamical modeling
does provide is a formal way to prove that the map, containing the
results of many isolated experiments, reflects in vivo observations.

Changing the map into a dynamic mathematical model requires
choosing an appropriate type of mathematical formalism. In other
words, the content of the map should be translated into formulae
using an appropriate mathematical language. This choice will depend
onmany aspects of the study: the type of data, the type of information
that was gathered earlier in the study, the type of questions asked,
and the type of answers to be expected.

5.1 Mathematical

Models

There are different types of models that are used to describe
biological processes at different levels of complexity. For interaction
networks, for instance, a statistical model dealing with correlation
between the biological entities’ quantities is the simplest one [24].
More complex systems depicted in activity flow diagrams, entity
relationship, or process description diagrams can be formalized
using logical, rule-based, or differential equations [24–27]. We
will concentrate here on two of these formalisms: Boolean and
chemical kinetics frameworks.

Boolean models are logic-basedmodels that compute the activity
of a node depending on the activity of the input nodes [26]. The
state or activity of a node can be either on or off and is governed by
logical rules linking the effect of the input nodes on the activity of
the current node itself. The Boolean gate “OR” is assigned when,
for example, either transcription factor A or B binds to a gene and
can initiate transcription of the gene. The “AND” gate is used
when both transcription factors are required for transcription and
“NOT” if transcription factors bind but inhibit the transcription
[25]. Once the logical rules are specified, the system can be solved
in order to get to the asymptotic solutions (the stable steady states
or cyclic attractors), either through synchronous or asynchronous
strategy. For the synchronous case, all variables that can be changed
according to the logical rules will be updated simultaneously,
whereas for the asynchronous case, they will be updated one at a
time. Boolean models offer a good starting point and are relatively
simple. For the steady-state analysis, they do not require extensive
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computational power. They can be used for the analysis of
large models and do not require a very detailed understanding
of the system [24–26]. They are useful when the data are not
quantitative and when the molecular details of the process are not
known. They can inform on how the cell decides between several
fates in response to different inputs [28, 29] or if a proposed
mechanism is coherent with observed phenotypes [30, 31].

A chemical kinetics model is a set of mathematical equations
that describes the rate of change of a set of dynamical variables
(nodes in the diagram). In chemical kinetics, variables are simple
functions of time [24, 26]. If needed, space can be considered in
the form of compartments and pseudo-reactions of transport
between these compartments. When taking continuous space into
account, which might be essential for the biological question, the
reaction–diffusion equations formalism needs to be used, but this
formalism will not be addressed in this chapter [32]. Also, the effect
of stochasticity is not covered here but can be approached by the
stochastic master equation [33].

We will show two examples of a translation from a diagram to
a mathematical model: from a reaction network (process descrip-
tion diagrams) to a chemical kinetics model and from an influence
network (activity flow diagram) to a Boolean model. The simple
networks that we will construct as toy examples of the methods
are centered on the retinoblastoma protein, RB, and its interaction
with the transcription factor E2F1. The simplified networks are
only illustrative to show the translation from a diagram to a mathe-
matical model.

5.2 Molecular

Description of RB

Regulation

RB is a tumor suppressor gene which is mutated, or whose regula-
tion is altered, in almost all cancers [34]. Often referred to as the
guardian of the cell cycle, the RB protein ensures that the cell
remains in G1 phase until proper mitogenic signals are emitted.
It is active when hypophosphorylated and inactive when phos-
phorylated by the cyclin/CDK complexes during the cell cycle.
RB sequesters the transcription factors, E2F1, 2, or 3, which are
responsible for the transcription of many genes involved in the cell
cycle and the apoptosis pathways [35]. In G1 phase, in response to
mitogen activation, RB starts to be phosphorylated by the G1
cyclin/CDK complex and Cyclin D1/CDK4(6) and releases its
negative control on E2F1 (for simplicity, representing the three
activating transcription factors here). E2F1 allows the transition to
S phase where Cyclin E/CDK2 and Cyclin A/CDK2 can maintain
RB in its phosphorylated state.

Recapitulating the above-mentioned facts and the different
choices made for modeling, we can say that:

l RB is active in its unphosphorylated form and inactive in its
phosphorylated form. It is phosphorylated by the cyclin/CDK
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complexes (see chemical equations R1, R2, R3). For simplicity,
the cyclin/CDK complexes are considered as parameters. Note
that here the cyclins are only able to phosphorylate RB when in
complex with E2F1. RB, once phosphorylated and separated
from the complex it was forming with E2F1, can be depho-
sphorylated by a phosphatase (phosphatase not explicitly shown
here) (R4). This information can be written down in the form
of chemical equations:

ðR1Þ E2F1=RBþ CycD1=CDK4 ) E2F1=RB-P

þ CycD1=CDK4

ðR2Þ E2F1=RBþ CycE1=CDK2 ) E2F1=RB-P

þ CycE1=CDK2

ðR3Þ E2F1=RBþ CycA2=CDK2 ) E2F1=RB-P

þ CycA2=CDK2

ðR4Þ RB-P ) RB

l E2F1 is synthesized (R5) and when phosphorylated, it is
degraded (R7). CycA2/CDK2 catalyzes the phosphorylation
of E2F1. Hence, it appears as both reactant and product in the
corresponding reaction (R6). The chemical equations are:

ðR5Þ ) E2F1

ðR6Þ E2F1þ CycA2=CDK2 ) E2F1-Pþ CycA2=CDK2

ðR7Þ E2F1-P ) ::

l E2F1 and the hypophosphorylated form of RB form a complex
inhibiting E2F1 function (R8). The complex can dissociate (R9):

ðR8Þ E2F1þ RB ) E2F1=RB

ðR9Þ E2F1=RB ) E2F1þ RB

l When RB is in its hyperphosphorylated form, the complex
dissociates. E2F1 is free and can mediate the synthesis of cell
cycle genes:

ðR10Þ E2F1=RB-P ) E2F1þ RB-P

The resulting reaction network is depicted in Fig. 2.

5.3 From a Reaction

Network to a Chemical

Kinetics Model

If time scales and amounts of molecular entities are important for
answering the biological hypothesis, then chemical kinetics formal-
ism is more appropriate to use.

From a Biological Hypothesis to the Construction of a Mathematical Model 117



In chemical kinetics, each reaction is assigned a speed referred to
as kinetic reaction rate. This rate depends on the concentration (or
amount) of the reactants through a function called a kinetic law.
There exist several forms of these kinetic laws, among them, mass
action kinetics represents the simplest way to define the reaction
kinetic rate and corresponds to the multiplication of the reactant
concentration to the power of the reactants’ stoichiometry. For
example, the kinetic rate of the reaction, A+2B ) C, is written:

k � ½A� � ½B�2, where k is the kinetic reaction rate parameter and the
squared brackets are used for the concentration of the chemical
species. With mass action kinetics, the speed of reactions can
increase infinitely with the increase of the reactants’ concentrations,
which is not observed in reality. It is often observed that, when the
concentration of a chemical entity increases, it does not increase
linearly and finally reaches a plateau. More complex kinetic laws
allow the description of saturation effect such as Michaelis-Menten
and Hill equations. Michaelis-Menten kinetics was introduced to
describe enzyme kinetics and takes the form of: Vmax½S�=ðKm þ ½S�Þ
where S is the substrate, Vmax is the maximum speed of reaction
for high concentrations of S, andKm is the value at which the speed of
reaction has reached half its maximally possible speed Vmax. Simi-
larly, the Hill equation introduces the idea of cooperativity between
two chemical entities: if a ligand S binds to a molecule that has
already a ligand attached to it, it may increase its binding affinity to
the molecule. It has the form: ½S�n=ðKn þ ½S�nÞ, where n is the

R5

R9

R8

RB

CycD1

CycD1/CDK4,6

CDK4,6

CycE1

CycE1/CDK2

CDK2

CycA2

CycA2/CDK2

CDK2

RB

R1

R4

R2 R3

RB/E2F1

RB

RB

RB/E2F1

E2F1

E2F1

E2F1

E2F1

P

P

P

R7

R6

R10

Fig. 2 Molecular reaction network of the RB/E2F interaction. Proteins are represented by simple gray boxes,
phosphorylated proteins have a “P” in the white circle attached to each box. Complexes are surrounded
by a black box and contain the proteins that compose the complexes
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cooperativity coefficient and K is the value at which the substrate
concentration occupies half the amount of the binding site. With n
andK tuned, the equation can show a rapid and abrupt activation of
the substrate.

Choosing the correct form for the chemical kinetics equation
depends on the observed behavior of the species. For instance, RB
is known to be phosphorylated at several amino acids residues
leading to an abrupt inactivation of the protein when enough of
these residues are phosphorylated. Mass action kinetics might not
be able to reproduce this behavior, thus we favor a Hill function or
use Michaelis-Menten kinetics instead of representing the phos-
phorylation of RB. In our example, the hyperphosphorylated
form of RB will be presented by only one phosphorylation
mediated by at least one of the three cyclin/CDK complexes.

The translation of a reaction network into a chemical kinetics
model is done knowing that:

l Each node (or chemical species) of the diagram becomes a dyna-
mical variable of the model, representing the amount or concen-
tration of the chemical species

l Each equation represents the rate of change of the variable
(d[Species]/dt = rate of the concentration change of the chem-
ical entity as a function of time),

l The right-hand part of the equation describing the rate of
change of a chemical species is constructed as follows:

– When this chemical species participates as a reactant in the
reaction i with kinetic rate Ri, then Ri is added to the right-
hand side with a negative sign.

– When this chemical species is a product of the reaction i
with kinetic rate Ri, then Ri is added to the right-hand side
with a positive sign.

The resulting equations are the following:

d½RB�
dt

¼ R9� R8þ R4

d½RBP�
dt

¼ R10� R4

d½E2F1�
dt ¼ R5� R6þ R9� R8þ R10

d½E2F1P�
dt

¼ R6� R7

d½E2F1=RB�
dt

¼ R8� R9� ðR1þ R2þ R3Þ

d½E2F1=RBP�
dt

¼ ðR1þ R2þ R3Þ � R10
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where

R1 ¼ ðk1 � ½CycD1=CDK4�Þ � ½E2F1=RB�n
Kn þ ½E2F1=RB�n

R2 ¼ ðk2 � ½CycE1=CDK2�Þ � ½E2F1=RB�n
Kn þ ½E2F1=RB�n

R3 ¼ ðk3 � ½CycA2=CDK2�Þ � ½E2F1=RB�n
Kn þ ½E2F1=RB�n

R4 ¼ kdephosphoRB � ½RBP�
R5 ¼ ksyn

R6 ¼ kphosphoE2F � ½CycA2=CDK2� � ½E2F1�
R7 ¼ kdeg � ½E2F1P�
R8 ¼ kass � ½E2F1� � ½RB�
R9 ¼ kdiss � ½E2F1=RB�

R10 ¼ kdissP � ½E2F1=RBP�
In our model, for simplicity, the concentrations of the cyclin/

CDK complexes are fixed. They will be considered as parameters.
Verifications can be made to avoid errors in the writing of these

equations. For instance, mass should be conserved for the different
forms of RB: RB non-phosphorylated, RB phosphorylated, in
complex or free. Moreover, some existing software can assist the
modeler and automatically generate the differential equations from
a description of all individual reactions (BIOCHAM [36], JigCell
[37], or CellDesigner [38], MATLAB Systems Biology Toolbox
[39]) provided the chosen kinetics (mass action, Michaelis Menten
kinetics, or Hill equations). Of course, the translation into a math-
ematical model is not unique since, for instance, some different
choices on the type of kinetics used for each reaction can be made.

The next step would be to determine the parameter values that
best reproduce the experimentally observed behavior of the dynam-
ics between RB and E2F1 and the corresponding initial conditions.
This task is difficult since measuring these parameters is not an easy
procedure and sometimes not feasible.

Once the parameters are set so to reproduce known behaviors,
the model can be challenged: some mutants can be simulated.
With such a small model, the possibilities are limited, but how
would we simulate a deletion of E2F1, for instance? Both the initial
conditions of all forms of E2F1 and the synthesis term, ksyn, should
be set to 0 before running the simulation.

For real applications of differential equation models involving
E2F1 and RB and mutant simulations, we advise the reader to
explore the articles from [40–42].
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5.4 From an

Influence Network to

a Boolean Model

The question answered with logical modeling is more qualitative.
It may be appropriate when biochemical mechanisms are not explic-
itly described but rather represented in ambiguous terms such as
“protein A inhibits protein B,” or when the kinetic rate parameters
are not known. In many cases, the set of biochemical processes can
be formalized in terms of influences of one entity on the others,
either positive or negative. A node in the influence network corre-
sponds to a variable in a Boolean model. The variable can then have
only two values: 1, which is equivalent to present (or active) or 0,
which is equivalent to absent (or inactive). That way, RB can be
represented by one node: RB, which represents two possible states
of RB protein. When the corresponding value is equal to 1, RB is
considered to be in its unphosphorylated form and in complex with
E2F1. When the value is equal to 0, RB is considered to be phos-
phorylated by the cyclins and therefore not in complex with E2F1
anymore. In the network diagram below, all edges are negatively
signed. As in the reaction network, the cyclin/CDK complexes are
fixed and are considered as inputs of the model, i.e., with no
incoming edges.

All three cyclin/CDK complexes negatively influence RB since
when they are present they phosphorylate and inactivate RB. If one
of the three complexes is present, it is sufficient to inactivate RB.
E2F1 is active in the absence of RB and of CycA/CDK2 since RB
sequesters it and CycA/CDK2 phosphorylates the transcription
factor which is then recognized for degradation, respectively (see
Fig. 3). The translation into Boolean terms is as follows:

RB ¼ NOT ðCycD1=CDK4 OR CycA2=CDK2 OR CycE1=CDK2Þ
E2F1 ¼ NOT RB AND NOT CycA2=CDK2

RB or E2F1 will be set to 1 if the corresponding right-hand
side of the equation is true. Otherwise, they will be set to 0. Since
“real” time is not easily represented in this formalism, to show that
CycD1/CDK4 can start phosphorylating RB before the other

Fig. 3 Activity flow network diagram showing the regulation of RB and E2F1
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cyclins cannot be represented straightforwardly. Allowing two
levels of RB (RB ¼ 1 for CycD1/CDK4 phosphorylation and
RB ¼ 2 for CycE1/CDK2 and CycA2/CDK2 phosphorylations)
might solve the problem but would increase the complexity of the
mathematical model. The steady-state solutions of this system show
two types of cases, when RB is on and E2F1 is off corresponding to
a G1 arrest and when RB is off and E2F1 is on corresponding
to entry in S phase.

The simulation of mutants in Boolean framework is done by
setting the variable to 0 in the case of deletion and to 1 in the case of
constitutive expression thereby ignoring the initial Boolean rule for
the concerned node. For example, E2F1 ¼ NOT RB AND NOT
CycA2/CDK2 will become E2F1 ¼ 0 in the case of deletion.

To simulate Boolean networks, there exist a number of tools
that can be used: GINsim [43], for relatively small networks, can
provide a thorough analysis of steady states and inform on the
different events that lead to these steady states with both synchro-
nous and asynchronous strategies. BoolNet [44] and CellNetAna-
lyzer [45] use synchronous updating strategies but allow the
analysis of bigger networks. Alternative approaches have used
hybrid systems including asynchronous strategy with noise and
continuous time [46].

More complete and complex models of the RB/E2F path-
way using Boolean modeling can be found, for instance, in Fauré
et al. [47, 48]

6 Conclusion

In this chapter, a possible workflow has been described that identi-
fies the steps from a biological hypothesis to a mathematical model
with the emphasis of constructing a network diagram and its trans-
lation into a mathematical model.

The most essential and time-consuming part of this workflow is
the formal representation of knowledge on the interplay of the
selected biochemical mechanisms involved in the described cellular
process. During this step, the biological knowledge that can be
dispersed in many publications and expressed in natural language
with all its ambiguities is converted into a formal mathematical
object visualized as a diagram of particular type and semantics.
This diagram, amenable to computer analysis, will serve as a bridge
between the written biological results and the formal mathematical
methodology.

The constructed diagram can then be translated into a set of
mathematical equations though this always requires specifying
some additional information such as the kinetic laws or the logical
rules. In this chapter, we concentrated our attention on two differ-
ent modeling methods: chemical kinetics and Boolean models, but
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according to the question, and although they were not addressed
here, other methods might be more appropriate to verify a
biological hypothesis. The choice of the methods depends on the
type of diagrams, which depend on the type of questions and
available information.

7 Notes

In the chapter, the terms diagram, network, pathway, and map are
used. We propose here definitions for each of these terms applicable
in the context of this chapter

1. Network: is a set of molecular entities and the various types of
biochemical interactions they share, such as regulations, influ-
ences, molecular transformations, or complex formations.

2. Diagram: is a particular graphical representation of a network,
which is typically composed of nodes and edges. These nodes
and edges can have different meanings according to the type of
diagram.

3. Pathway: is a network of molecular entities belonging to a
particular function or process.

4. Map: is a particular representation of a diagram with additional
features such as coloring, layout, boundaries and labels.

5. Reference from Oxford dictionary online: http://oxforddic-
tionaries.com/definition/english/map?q¼map.
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Chapter 7

Practical Use of BiNoM: A Biological Network
Manager Software

Eric Bonnet, Laurence Calzone, Daniel Rovera, Gautier Stoll,
Emmanuel Barillot, and Andrei Zinovyev

Abstract

The Biological NetworkManager (BiNoM) is a software tool for the manipulation and analysis of biological
networks. It facilitates the import and conversion of a set of well-established systems biology file formats.
It also provides a large set of graph-based algorithms that allow users to analyze and extract relevant
subnetworks from large molecular maps. It has been successfully used in several projects related to the
analysis of large and complex biological data, or networks from databases. In this tutorial, we present a
detailed and practical case study of how to use BiNoM to analyze biological networks.

Key words Biological networks, Graph-based algorithms, Subnetworks, Molecular maps, BiNoM

1 Introduction

The last decade has seen unprecedented advances in the production
of high-throughput experimental data in biology, fueled by drastic
technological improvements in various ways of measuring
biological entities. In return, those large amounts of biological
information have stimulated the need of developing standards for
an efficient representation and exchange of data. This is especially
true for the field of systems biology, which aims at building models
and quantitative or qualitative simulations of complex biological
systems [1, 2]. To achieve this goal, it is obvious that a good
communication and collaboration between modelers and experi-
mentalists having various scientific backgrounds will be facilitated
by the standardization of the representation of workflows, data
formats, and mathematical models. Several complementary stan-
dards have already been created and are increasingly used in a large
variety of projects. Most of them are based on an open-source
and community-based organization, ensuring an easy access to
the detailed specifications of the standard, flexibility, dynamic
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evolution, and wide acceptance. Examples of such community
standards are the System Biology Markup Language (SBML) [3],
a language focused on mathematical modeling, the Biological Path-
way Exchange standard (BioPAX) [4], devoted to storing and
exchange of pathway information and the Systems Biology Graphi-
cal Notation (SBGN), centered on the graphical notation for
biological maps [5]. It is worth noting that there are now more
than 40 databases and online resources supporting the BioPAX
format, while more than 33 databases are using SBML (http://
www.pathguide.org). Well-established examples are the Reactome
database [6], BioModels [7], and MINT [8]. More and more
systems biology software packages are also using standard formats
to store and exchange data. For example, CellDesigner is a tool
used to edit biological pathways diagrams [9] and is using a com-
patible SBML dialect to store the all the information related to
a given diagram. Cytoscape is a widely spread program used for
the visualization, modeling, and analysis of complex molecular
and genetic interaction networks [10]. BiNoM was developed as a
Cytoscape plugin, with the goal of facilitating the import and
export of various systems biology formats, and also proposing a
large set of graph-based algorithms for the extraction of relevant
subnetworks from large molecular maps [11]. BiNoM was success-
fully used in several projects related to the analysis of complex
biological networks [12]. Here, we present a set of detailed and
concrete examples of how to extract relevant information from such
maps using BiNoM.

2 Material

The Cytoscape [10] software should be installed on the computer
(http://cytoscape.org). The BiNoM plugin can be installed in
different ways. The first is to download BiNoM from our web
page (http://binom.curie.fr/projects/binom/), (http://binom.
curie.fr) and copy the file under the directory “plugins” of the
Cytoscape installation folder (administrator privileges might be
necessary to perform this operation). The latest version of BiNoM
(version 2.0) supports the latest versions of Cytoscape. The previ-
ous version (BiNoM 1.0) is also available on our website for older
versions of Cytoscape.

Another possibility to install BiNoM is to use the plugin man-
ager of Cytoscape. Starting in version 2.5, the plugin management
has been added to allow users to search for, download, install,
update, and delete plugins within Cytoscape.

1. Select the function “Plugins>Manage Plugins” from themenu.

2. Navigate in the tree view to the category “Analysis.”
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3. Select BiNoM v2.0 (or any more recent version available).

4. Click “Install.”

All the files used throughout this tutorial can be downloaded
from our website (http://bioinfo-out.curie.fr/projects/binom/,
http://binom.curie.fr).

3 Methods

3.1 Import

and Export

A major function of the BiNoM software is to provide import and
export functions for a given number of standard systems biology file
formats. It is therefore possible to import data from SBML level
2 files, CellDesigner 3.X and 4.X files, BioPAX level 3, CSML files
and also from simple text files formatted to the AIN (Annotated
Influence Network) format. The aim of BiNoM import/export
functions is not to be a universal converter but rather to favor a
number of scenarios where the conversion is making sense (Fig. 1).
It is worth mentioning that due to major changes in the specifica-
tions, the BioPAX level 3 format is incompatible with the previous
level 2 format [4]. The previous version of BiNoM (version 1.0, still
available from our website) was managing the BioPAX level 2, but
the latest version of BiNoM (2.0) can only deal with BioPAX level 3
files. The current version of Cytoscape does not support a direct
import of BioPAX level 3 files yet [10].

Let us take an example. The model of the yeast cell cycle by
Novak and colleagues [13] was encoded as a graph using CellDe-
signer software [9]. We can easily import it in Cytoscape using the
BiNoM functions. The file is available on the BiNoM website (file
name: M-Phase.xml).

1. Select the function “Plugins > BiNoM 2.0 > BiNoM I/O >
Import CellDesigner document from file” from the menu.

2. Select the file from the dialog window.

3. Click OK.

Fig. 1 The BiNoM import/export functions favor a number of scenarios that
are illustrated on the figure (left side: import file formats, right side: export file
formats). Note that for the CellDesigner to CellDesigner conversion, it is possible
to split the network, change the layout, and change the color and the scale
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4. A new network is created as “M-Phase.xml” with 36 nodes and
42 edges (Fig. 2).

BiNoM uses its own visual mapping to represent the different
molecules and their interactions, inspired by the SBGN standard
[5], but presents a simplified version of it. For example, simple
proteins are represented by white circles, while protein complexes
are pictured as gray circles. Similarly, there is a specific mapping for
the different relationships between molecules: for example, a catal-
ysis relation will be represented as a red colored edge with a circular
end. Figure 3 shows the BiNoM visual styles for BioPAX and
CellDesigner. When importing pathway information, BiNoM gen-
erates meaningful names for every chemical species, following pre-
established rules. Chemical species are defined as physical entities
(e.g., a protein) with an optional cellular localization and posttrans-
lational modifications. The name formatting rules are as follows:

(Entity1_name|Modification:Entity2_name|Modification)[_active|_
hmN]@compartment

The colon symbol “:”delimitates the different components of a
complex, the vertical bar “|” indicates the posttranslational mod-
ifications, while the “@” sign indicates the cellular compartment.
The optional suffixes “active” or “hm” indicate the state of the
chemical species and N-homodimer state, respectively. The par-
entheses delimitate the components concerned by the N-
homodimer state and are useful to eliminate ambiguities (see
Fig. 2 for examples).

We have recently developed a new import format-denominated
AIN. The principle of this format is to encode an influence net-
work, where edges represent either an inhibition or an activation,

Fig. 2 Zoom on a simple cell cycle network imported from CellDesigner into Cytoscape using BiNoM
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into a simple tab-delimited text file (see Table 1 for a detailed
explanation of the AIN format). Using this format, it is rather
straightforward for a biological expert to encode a network from
his or her own expertise and/or from published results, using a
spreadsheet program such as Excel, and then import it in Cytoscape
using BiNoM, rather than using more sophisticated tools such as
CellDesigner. All the information contained in the AIN file is
automatically converted in the BioPAX format when the file is
imported and can be subsequently retrieved with specific BiNoM
functions. Let us now import a simple cell cycle model encoded as
an AIN file (cell_cycle_AIN.txt, available from the BiNoMwebsite).

1. Select the function “Plugins > BiNoM 2.0 > BiNoM I/O >
Import influence network from AIN file” from the menu.

2. Select the file “cell_cycle_AIN.txt” from the dialog window
and click OK.

3. Click OK twice, for the windows “Defining families” and
“Select constitutive reactions to add.”

4. The network is imported as “cell_cycle_AIN” (Fig. 4).

Fig. 3 Comprehensive visual representations followed by the BiNoM software for different entities and their
relationships, for both the BioPAX and CellDesigner file formats

Practical Use of BiNoM: A Biological Network Manager Software 131



3.2 Manipulating

Existing Networks

The cell cycle model of Novak et al. (Fig. 2) has 36 nodes and 42
edges in total, making it a rather small network. However, this is
not very often the case. On the contrary, most networks publicly
available from online databases such as Reactome [6] or large
molecular maps built from the literature such as the RB/E2F map
[12] have hundreds of nodes and edges, if not more. Such gigantic
maps are barely readable and manageable when imported into
visualization software such as Cytoscape. One of the main ideas of
BiNoM plugin was to provide a set of network tools allowing users
to extract meaningful subnetworks from large molecular maps and
also to provide means to understand and read these maps [11]. We
will see now through a set of examples how to extract such mean-
ingful subnetworks.

Table 1
Description of the AIN format

Column
number

Column
caption Description Example(s)

1 ReviewRef A reference (e.g., a PubMed ID) to an
article

PMID:1234

2 ExperimentRef A reference to an experiment PMID:10783242

3 Link Connection (activation or inhibition)
between two entities. The name can
represent a single protein, a protein
complex “(C:D),” a phosphorylated
protein “(C^p),” or a family. For the
latter, the family can be given explicitly
by the full list of the members “(C1, C2,
C3),” or implicitly by using an undefined
name where a dot will represent any
character “(C.)”

“A->B,” “A-|B,” “((CCNE.):
CDK2)->E2F5^p,” “(E2F1,
E2F2)->CDKN2A”

4 ChemType Chemical type of the reaction Binding

5 Delay Delay of the reaction (numerical value
and unit)

0.9 h

6 Confidence Confidence level in the reaction
(value between 0 and 1)

0.8

7 Tissue Tissue where the reaction has been
observed

Fibroblast

8 Comment Comment about the reaction “Specific phosphorylated site of
E2F5”

Each line of the table represents a column of the AIN tab-delimited file. Columns are numbered from left to right.

Missing values should be indicated by a single dot and text strings should be quoted. The only mandatory column is the
Link (column number 3), representing the reaction
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As a first exercise,we create a simplermodular viewof theM-phase
example.Let us first decompose the cell cyclemapwehave imported in
the previous paragraph by pruning the graph. In large networks, this
step is important in order to simplify the network: we work on the
connected graph rather than the whole graph.

1. Select the network “M-Phase.xml.”

2. Choose the function “Plugins > BiNoM 2.0 > BiNoM
Analysis > Prune Graph” in the menu.

3. Three networks are created: “M-Phase.xml_in,” “M-Phase.
xml_scc,” and “M-Phase.xml_out.”

The function is decomposing any network in three components
corresponding to the nodes that are coming in (input), the nodes
that go out (output), and the central cyclic part. The central part
may sometimes be composed of several strongly connected compo-
nents. In some situations they can be disconnected, forming several
subnetworks. The decomposition of the strongly connected com-
ponents part can be done in two ways: (1) by cycle decomposition
and (2) by material components decomposition. Let us first see
how to decompose a network into relevant directed cycles, which
usually provides information about the life cycle of a gene or
protein of the network.

Fig. 4 A cell cycle network imported from an AIN text file (Annotated Influence Network)
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1. Select the network “M-Phase.xml_scc” (highlighted in the
Cytoscape navigation panel).

2. Select the function “Plugins > BiNoM 2.0 > BiNoM Analysis
> Get cycle decomposition” from the menu.

3. Three new networks are created: cycle1, cycle2, and cycle3
(Fig. 5).

Let us now merge in clusters networks that share a certain
number of components.

1. Select the function “Plugins > BiNoM 2.0 > BiNoM Analysis
> Cluster Networks” from the menu.

2. In the dialog window that appeared, select the networks cycle1,
cycle2 and cycle3 (holding down the CTRL key for multiple
selection).

3. Set the intersection threshold to 35 % using the sliding bar.

4. Click OK. Two networks are created: “cycle1” and “cycle2/
cycle3.”

In fact, only the networks cycle2 and cycle3 were clustered,
because they share a component (Cdc25 phosphorylated and
active; in a two-component network, they share more than 35 %).
Now that the modules are created, we need to include the inputs
and outputs that were put aside at the beginning of the analysis.

In order to merge networks, we can use a Cytoscape built-in
function.

Fig. 5 Subnetworks (cycles) extracted from the M-Phase network using BiNoM functions
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1. Select the function “Plugins > Advanced Network Merge”
from the menu.

2. Fromthedialogwindow, select “Union” in thefield “Operation.”

3. In the list of networks, select “Cycle1,” “M_Phase.xml_in,”
and “M_Phase.xml_out” and then click “Merge.”

4. The resulting network is named “Union” and should have 30
nodes and 19 edges.

5. Rename the network to “Union1” by right-clicking on its
name and selecting “Edit Network Title.”

6. Using the same procedure as above, merge the networks
“cycle2/3,” “M_Phase.xml_in,” and “M_Phase.xml_out.”
The resulting network should have 22 nodes and 12 edges.

7. Rename it to “Union2/3.”

Some edges present in the original file have been lost during all
these operations, and they need to be included again. For that, we
will now update the networks.

1. Select the function “Plugins > BiNoM 2.0 > BiNoM Utilities
> Update connections from other network” from the menu.

2. In the dialog window, select “M-Phase.xml” for the field
“From Network” and select the networks “Union1” and
“Union2/3” from the list “Networks to Update,” and clickOK.

3. The networks “Union1” and “Union2/3” are updated to 30
and 20 edges, respectively.

We can now remove unconnected and unnecessary components.

1. Select the network “Union1.”

2. Change the layout by using the Cytoscape function “Layout >
yFiles > Organic” from the menu (this step allows to visualize
the unconnected components more easily).

3. Select all unconnected nodes and remove them.

4. The Wee1 and Rum1 genes should be in a network of their
own, so we propose to remove them and all the edges
connected to them (they are in fact important proteins that
do not share a function with the two modules created).

5. The resulting networks should have 20 nodes and 20 edges for
“Union1” (Fig. 6) and 8 nodes and 9 edges for “Union2/3”
(Fig. 7).

Note that the analysis requires to make a certain number of
choices, based on biological knowledge and related to the final goal
of the user. Here, we want to create a modular view of the initial
network to highlight the main mechanisms involved in the yeast cell
cycle progression. Finally, we can now generate a modular view
from the networks Union1 and Union2/3.
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1. Select the function “Plugins > BiNoM 2.0 > BiNoM module
manager > Create Network of Modules” from the menu.

2. Select “Union1” and “Union2/3” from the list in the dialog
window and click OK.

3. Select the function “Plugins > BiNoM 2.0 > BiNoM
module manager > Create connections between modules”
from the menu. Select the network “M-Phase.xml” from the
list in the dialog window and click OK.

Fig. 7 A subnetwork resulting from the union of the subnetworks “cycle2/3”, “M_Phase.xml_in” and
“M_Phase.xml_out”

Fig. 6 A subnetwork resulting from the union of the subnetworks “Cycle1”, “M_Phase.xml_in” and
“M_Phase.xml_out”
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4. Rename the network to “Module1” by right-clicking on it
(Fig. 8).

The resulting map is a modular map of the initial network, in
which modules participate in a specific process. For instance,
“Union 1” shows all the events that lead to the activation of the
maturation promoting factor, a heterodimer composed of the
cyclin-dependent kinase Cdc2 and the cyclin B protein Cdc13.
Note that in order to navigate from a module to the corresponding
subnetwork, you have to perform the following operations:

1. Right-click on the module of interest. A contextual menu
appears.

2. In the menu, choose “Nested Network” and then “Go to
Nested Network.” The corresponding subnetwork is now
brought to the front window.

3.3 BiNoM

and BioPAX Files

Biological Pathway Exchange (BioPAX) is a standard language that
represents biological pathways at the molecular level and facilitates
the exchange of pathway data [4]. The current BioPAX specification
(level 3, released in July 2010; see http://www.biopax.org), supports
representation of metabolic and signaling maps, molecular and
genetic interactions, and gene regulation. Furthermore, there are
several additional constructs available to store extra details such as
database cross-references, chemical structures, sequence feature
locations, and links to controlled vocabulary terms encoded in vari-
ous ontologies (such as the Gene Ontology). BiNoM has a powerful
set of functions to manage large BioPAX files, allowing the user to
import, export, analyze, and extract the knowledge encoded using
this specification [11]. We have recently updated the BiNoM plugin
software to provide support for the latest BioPAX specification
(level 3; see http://www.biopax.org/specification.php).

3.3.1 Import and

Information Extraction

from a BioPAX File

In the next example, we will be working with a relatively large
molecular map representing the Apoptosis pathway in human,
extracted from the Reactome database [6]. The file is available
from our website (Apopotosis3.owl). Let us import the file in
Cytoscape using BiNoM functions.

Fig. 8 A modular representation of two subnetworks, Union2/3 and Union1
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1. Select the function “Plugins > BiNoM 2.0 > BiNoM I/O >
Import BioPAX 3 Document from file” from the menu.

2. Select the file “Apoptosis3.owl” from the dialog box.

3. A new dialog window appears. The three types of network
should be imported. For that, check the boxes “Reaction Net-
work,” “Pathway Hierarchy,” “Make Root Pathway Node,”
“Include Pathways,” “Include Interactions,” and “Interaction
map.”

4. Click OK. Three new networks are created, corresponding to
the reaction network (“Apopotosis3 RN”), Apoptosis Pathway
(“Apoptosis3 PS”), and Apoptosis protein–protein interactions
(“Apoptosis3 PP”).

5. Change the layout of eachnetwork for abetter readability: choose
“Organic” (“Layout> yFiles>Organic”) for “Apoptosis3 RN”
and “Apoptosis3 PP” and the type “Hierarchic” (“Layout >
yFiles>Hierarchic”) for “Apoptosis3 PS.”

The three networks represent different types of knowledge
extracted from the BioPAX file. We call them network interfaces,
because they allow to access the different parts of the content of a
BioPAX file. The Reaction Network (RN) is a graph which contains
nodes of two types: “species” and “reactions.” Proteins are repre-
sented as white rounded squares, complexes as gray rounded
squares, and reactions as small gray diamonds (Fig. 9c). The Path-
way Hierarchy (PS) contains pathway knowledge with two types of
nodes: pathways, pictured as green hexagons, and pathway steps,
pictured as pink triangles (Fig. 9b). The last interface contains an
interaction map (IM) extracted from the proteins and protein
complexes present in the BioPAX file, with edges of type “contains”
(Fig. 9a).

The whole network being quite large, it is not always easy to
find specific information. In the next example, we propose to query
the graph by performing a simple analysis on a BioPAX imported
file: the extraction of a path.

1. Select the network “Apoptosis3 RN” by clicking on the name
in the navigation panel.

2. Select all nodes and edges by using the function “Select >
Select All Nodes and Edges” from the menu.

3. Select the function “Plugins > BiNoM Analysis > Path Analy-
sis” from the menu.

4. A dialog window appears; choose the node “TNF:TNFR1@plas-
ma_membrane” in the “Sources” list and the node “GIG3:RIP:
TRADD:TRAP3@cytosol” in the “Targets” list.

5. Take the default search options “Find shortest paths” (you can
try the other options as an exercise).
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6. Click OK. The nodes of the shortest path between the two
nodes are now highlighted in the network (note that it is not
the case for the edges connecting them).

7. Extract the path as a new network by using the function “File>
New > Network > From selected nodes, all edges” from the
menu.

8. A new subnetwork is created with the name “Apoptosis3 RN—
child.”

3.3.2 Querying

a BioPAX File

The BioPAX format is now used by an increasing number of data-
bases and online repositories such as Reactome (http://www.reac-
tome.org), Cancer Cell Map (http://cancer.cellmap.org), the
Pathway Interaction Database (http://pid.nci.nih.gov/), or Path-
way Commons (http://www.pathwaycommons.org). The amount
of information contained in the files extracted from those databases
can be very consequent, making it difficult for the average user to

APTL:CD95:APTL:CD95:APTL:CD95:@plasma_membrane

APTL:CD95@plasma_membrane

a

c

b

APTL@extracellular_region

CD95@plasma_membrane

CAM_PRP_catalytic_subunit:Calcineurin_B1_alpha_regulatory@cytosol

BAD_protein@cytosol

KCIP_1@cytosol

Sequestration_of_BAD_protein_by_14_3_3

KCIP_1:Phospho_BAD|phosphorylated_residue_MOD:00696@cytosol

Phospho_BAD|phosphorylated_residue_MOD:00696@cytosol

Akt1_phosphorylates_BAD_protein

PKB@cytosol

Activation_of_BAD_by_calcineurin

Intrinsic_Pathway_for_ApoptosisStep

Intrinsic_Pathway_for_Apoptosis

Activation_of_BH3_only_proteinsStep

Activation_and_oligomerization_of_BAK_proteinStep

Permeabilization_of_mitochondriaStep

Fig. 9 Three types of networks resulting from the import of a BioPAX file. (a) Reaction network (RN).
(b) Pathway hierarchical structure (PS). (c) Protein–protein interaction network (PP)
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efficiently query and retrieve relevant data. We have included in
BiNoM an efficient BioPAX querying system. The BioPAX file is
converted to an index, by mapping the BioPAX content on a
labeled graph. This index can then be queried by the user for
specific elements of interest. The result is returned as a graph
directly in Cytoscape and can be further extended to include vari-
ous elements such as all the complexes in which a protein of interest
is involved, the reactions connected to those molecules, and the
related publications. For example, let us extract the complexes
related to a given protein from the Apoptosis BioPAX file.

1. First, we have to generate the index from the BioPAX file.
Select the function “Plugins > BiNoM 2.0 > BiNoM BioPAX
3 Query > Generate Index” from the menu.

2. From the dialog window that appears, select the file “Apopto-
sis3.owl” for the field “BioPAX File”. The second field named
“Index File” will be filled automatically with the same file
name, just changing the extension to “.xgmml”. In this case,
it will suggest the name “Apoptosis3.xgmml”; you can change
that name if you wish or just accept the proposition. Click OK.
The index is generated and saved.

3. Load the index with the function “Plugins > BiNoM 2.0 >
BiNoM BioPAX 3 Query > Load Index” from the menu.
Select the index file you have just created “Apoptosis3.
xgmml” and click OK. The index is now loaded in memory
(note that loading the index is an essential step to perform a
query; the creation of the index is not enough).

4. Basic statistics related to the index file content can be obtained
by the function “Plugins > BiNoM 2.0 > BiNoM BioPAX 3
Query > Load Index” from the menu. A window is displayed
containing a table with counts for different elements of the
index (proteins, complexes, publications, etc.).

5. Let us now do a basic query. Select the function “Plugins >
BiNoM2.0> BiNoMBioPAX 3Query> Select Entities” from
the menu.

6. In the text field entitled “Input,” type the name “SMAC,” and
click OK. A new network is created, having a single node
named “SMAC@cytosol.”

7. For a better visualization, you can set the visual style to
“BiNoM BioPAX” on the tab “VizMapper” on the left-hand
side of the Cytoscape interface.

8. Now we wish to expand this network by adding all the com-
plexes in which this protein is involved. Select the function
“Plugins> BiNoM 2.0> BiNoMBioPAX 3Query> Standard
Query” from the menu. A window appears, named “BioPAX
Standard Query from the index.” Check the boxes for the
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option “Add complexes” and “expand.” Un-select the boxes
“Add chemical species,” “Add reactions,” and “Add publica-
tions.” Verify that the option “All nodes” is checked for the
“Input” section and that “Output in the current network” is
checked for the “Output” section (by checking those options,
we make sure that all the nodes are by default selected as input
and that the result of the query will be added to the current
network). Click OK.

9. Several nodes and edges have been added to the current net-
work. For a better visualization, adjust the layout with the
function “Layout > yFiles > Organic” from the menu.
A green arrow with a diamond ending represents the inclusion
of one protein in a complex form. The resulting network
should have 9 nodes and 11 edges (Fig. 10).

As we have seen from the standard query interface, it is possible
to expand the network by including the chemical species, the reac-
tions connecting all present species that have a common reaction,
and the publications related to any of the components of the
network (for more information on how to use those options, please
consult the BiNoM manual available from our website). Note that
the resulting network of interest can be exported as a SBML or
BioPAX file as described in the previous paragraphs.

Fig. 10 A network constructed from a BioPAX query, centered on the SMAC protein, and including all protein
complexes where this protein is involved. Data extracted from the Apoptosis data of the Reactome database
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3.4 Other Useful

BiNoM Functions

We have seen that BiNoM has several useful functions to extract
relevant information from large-scale databases encoded with
standards defined by the systems biology community. Very often,
the results of those analyses will be one or more subnetworks of
interest, possibly grouping a set of molecules involved in a particu-
lar biological function (cell death, cell cycle, apoptosis, etc.). An
example of such an insightful extraction of a subnetwork is shown
in Calzone et al. [12], where a compact modular view of the RB/
E2F pathway composed of 16 protein modules and 8 E2F target
gene modules (see Fig. 3 of this chapter) was extracted from a
comprehensive network of hundreds of different molecules and
interactions. Once the map is constructed, several options are
possible to generate interesting and useful insights. These options
include (non-exhaustive list) (1) the creation of a computational
predictive model, making possible the analysis of the consequences
of deletion or mutation of various elements of the network, and (2)
superimposing external and experimental available data related
to the function of the network, in order to visually appreciate the
effect of different states/perturbations/disease effects. For exam-
ple, bladder tumor expression data was superimposed on the RB/
E2F pathway compact representation mentioned above, for both
invasive and noninvasive cases (see http://bioinfo-out.curie.fr/
projects/rbpathway/case_study.html). The nodes of the network
are then colored according to the averaged expression levels of the
different modules, indicating what parts are over- or under-
expressed. Clear differences can be seen between the invasive and
noninvasive state of the tumor samples, informing of the evolution
of tumors at the expression level of genes of the network.

Let us now see an example of how to color a map using BiNoM
functions, based on the M-phase network.

1. Import the CellDesigner file M-Phase.xml as described in the
Subheading 3.1.

2. Now import values for each gene. They are stored in a simple
text file having two columns “NODE_NAME” and “CON-
CENTRATION”. Select the function “File > Import > Attri-
bute from table (Text / MS Excel)”. In this case, the values
represent expression levels randomly generated, but they could
be any type of scoring. Note that for experimental data, pro-
teins with posttranslational modifications will not be colored.

3. Select the input file “M-Phase-Expression.txt.” A preview of
the file content should appear at the bottom of the dialog box.

4. In the “Advanced” box, click the box “Show text file import
options.”

5. A new box appears, entitled “Attribute names.” Check the box
“Transfer first line as attribute name.” Now the column titles
should read “NODE_NAME” and “CONCENTRATION.”
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6. Click on “Import.” The file is imported, and a new numerical
attribute “CONCENTRATION” is created for all the genes.

7. Now click on the “VizMapper” tab, on the left-hand panel of
Cytoscape.

8. In the “Visual Mapping Browser” box, click on the “Node
Color” small triangle to display the properties.

9. Change the property “Mapping Type” to “Continuous
Mapping.”

10. Change the value of “Node Color” to “CONCENTRA-
TION”.

11. Click on “Graphical View,” a new dialog box will appear. Set
the minimal and maximal values according to the values of your
dataset by clicking on the “Min/Max” button.

12. Set the colors by clicking on the small triangles located above
the minimum and maximum values. Click OK.

13. The nodes of the network should be colored according to their
expression value, as shown on the Fig. 11.

4 Conclusion

l Model building in systems (and mathematical) biology is a
complex multistep process: from the definition of a suitable
biological problem, knowledge is first collected and formalized
into a network and then translated in mathematical terms.

Fig. 11 M-Phase network (zoom) with nodes in shades of gray according to their expression values, ranging
from low values (light gray) to high values (dark gray)
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BiNoM helps with intermediate steps of this process, in the
construction of a network of biochemical or regulatory inter-
actions, and in the analysis of the structural properties of this
network. For this, BiNoM provides multiple ways: to access
pathway databases through their BioPAX representations,
manipulate (cut, decompose, reorganize) the network, apply
algorithms from graph theory to the network, and map avail-
able quantitative data on it.

l The future developments of BiNoMwill include functions such
as merging several independent networks, finding minimal
intervention sets to disrupt or modify the signaling flow from
a set of source nodes to a set of target nodes, and the ability to
generate a code for web-based representations of biological
networks using the Google Map API and semantic zoom.

l BiNoM is not supposed to be a modeling software per se; it
does not aim at implementing any engines for numerical simu-
lations, but it has interfaces with external simulators through
exporting networks to SBML and GINsim file formats (with
use of GINsim Cytoscape plugin [14]). The main application of
BiNoM is to facilitate the preparation phase of constructing,
annotating, and structuring a biological network for further
mathematical modeling and simulation, and this will determine
its future development.

5 Notes

l Cycle decomposition can result in a huge number of cycles. It is
advised to use it on small to moderate size networks.

l When trying to divide a large network into subnetworks, an
alternative to the cycle decomposition described in the Sub-
heading 3.2 is the function “Get Material Components” from
the menu “Plugins > BiNoM 2.0 > BiNoM Analysis”. This
function is using node name semantics to isolate subnetworks
in which each protein is involved.
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Chapter 8

Using Chemical Kinetics to Model Biochemical Pathways

Nicolas Le Novère and Lukas Endler

Abstract

Chemical kinetics is the study of the rate of reactions transforming some chemical entities into other
chemical entities. Over the twentieth century it has become one of the cornerstones of biochemistry. When
in the second half of the century basic knowledge of cellular processes became sufficient to understand
quantitatively metabolic networks, chemical kinetics associated with systems theory led to the development
of what would become an important branch of systems biology.
In this chapter we introduce basic concepts of chemical and enzyme kinetics, and show how the temporal

evolution of a reaction system can be described by ordinary differential equations. Finally we present a
method to apply this type of approach to model any regulatory network.

Key words Chemical kinetics, Chemical entities, Quantitative, Metabolic network, Systems biology,
Enzyme kinetics, Regulatory network

1 Introduction to Chemical Kinetics

A living cell is built up as a series of compartments of various dimen-
sions. The plasma membrane is an example of a bi-dimensional
compartment surrounding the cytosol, which is itself a tridimensional
compartment. Microtubules are examples of unidimensional com-
partments. These compartments can be considered both as
containers—we can count the number of instances of a certain
type of entity present in, or attached to, a compartment—and as
diffusional landscapes—the movements of the entities within the
compartment depend on its properties. Within the compartments,
the entities can move and react with each other. The object of
chemical kinetics is to study the temporal evolution of the positions
and quantities of the entities contained in a compartment, sometimes
called a reactor. In this chapter, wewill not deal with the displacement
of the chemical entities within a compartment.Wewill assume that an
entity-pool, that is a set of entities that are indistinguishable as
far as the model is concerned, is distributed homogeneously
within the compartment. This hypothesis is known as the well-stirred
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approximation (Fig. 1). This approximation is based on the
assumption that there is no diffusional anisotropy in the compart-
ment, i.e., the molecules move randomly in any dimension. This is
obviously a strong simplification in most of the cases pertaining to
biological functions. It has nevertheless proved to be very useful in
the past. In addition, the alternative requires to enter the realm of
reaction–diffusion modeling, which involves not only more complex
methods but also knowledge of distribution and diffusion character-
istics of the reacting entities.

1.1 Chemical

Reactions

A chemical reaction is the transformation of one set of substances
called reactants into another set called products. At a microscopic
scale, such a transformation is in general reversible, although there
are many cases in which the reverse reaction is of negligible impor-
tance compared to the forward one. In all cases, a reversible reaction
can be split into forward and reverse reactions. For a given reaction,
reactants generally combine in discrete and fixed ratios to form
products. These ratios indicate the amount of each substance
involved in the reaction. The amounts consumed or produced in
one reaction event are called the stoichiometric coefficients or num-
bers, νX, and are positive for products, and negative for reactants. If a
substance is neither consumed nor produced by a reaction, its
stoichiometric coefficient is 0. Equation 1 depicts a general reaction,
in which A and B are reactants combining to form the product P. νA
would be�a, νB ¼ �b and νP ¼ p. The list {�a,�b, p} is also called
the stoichiometry of the reaction.

aA þ bB ! pP (1)

Fig. 1 Representation of a well-stirred container with two types of entities,
represented by empty and filled circles. The arrows represent the direction and
speed of their movements
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In many cases in biology only an overall transformation
consisting of many sequential reactions is experimentally observ-
able. In the finest grained form these reactions are also known as
elementary reactions. An elementary reaction is defined as a mini-
mal irreversible reaction with no stable intermediary products. The
lumped stoichiometric coefficients of the overall reaction consist
of the sums of the stoichiometric coefficients for each reactant over
all elementary reactions.

Chemical kinetics is concerned with the velocity of such trans-
formations, the rates with which substances are consumed and
produced. As the rate of change for a reagent depends on its
stoichiometric coefficients, it can be different for individual sub-
stances. Therefore it is convenient to define the reaction rate, ν, as
the rate of change of a substance divided by its stoichiometric
coefficient. This effectively represents the number of reaction
events taking place per unit of time and unit of compartment size.

ν ¼ 1

�a

d½A�
dt

¼ 1

�b

d½B�
dt

¼ 1

p

d½P�
dt

Therefore, we can compute the change of each substance as the
product of the reaction rate and its stoichiometric coefficient for
this reaction.

d½A�
dt

¼ �a � ν

d½B�
dt

¼ �b � ν

d½P�
dt

¼ p � ν

Reaction rates depend on many factors and can effectively take
any form for the purpose of modeling. In the following subsec-
tions, we will describe the simple cases where the reaction rates
depend solely on the concentrations of the reacting substances.

1.2 Mass-Action

Kinetics

For a chemical reaction to take place, the participants have to
collide or come into close vicinity of each other. The probability
of such collisions depends, among other parameters, on the local
density of the reactants, and hence, in well-stirred environments,
on their concentrations.1 This relationship was first described by
Guldberg andWaage in the second half of the nineteenth century in
a series of articles on the dynamical nature of the chemical equilib-
rium [1]. They assumed that at equilibrium both the forward and

1Under nonideal conditions, as found in biology, activities instead of concentrations should actually be used both
for describing rate equations and equilibria. As this is not common practice in biological modeling, we do not
distinguish between activities and concentrations in the following. It should be noted, though, that activities can
differ significantly from concentrations in cellular environments.
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backward reaction forces or velocities were equal, and that these
velocities where proportional to the concentrations of the reactants
to the power of their stoichiometric coefficients. The relationship of
reaction velocities and concentrations is called the “Law of Mass-
Action”, and rate expressions equivalent to the ones employed in
their articles are sometimes referred to as “Mass-Action Kinetics”.2

The rates of simple unidirectional chemical reactions are usually
proportional to the product of the concentrations of the reactants
to the power of constant exponents, called partial reaction orders or
nX. The sum of all partial orders is called the order n of a reaction
and the proportionality factor is called the rate constant k. As the
name indicates, this parameter does not vary in a given system. For
example, for the reaction described in Eq. 1 assuming mass-action
kinetics the reaction rate appears as follows:

v ¼ k � ½A�nA � ½B�nB

The reaction has an order of n ¼ nA + nB. In general, the order
of elementary reactions is equal to the number of molecules inter-
acting, also known as the molecularity. A unimolecular reaction
A ! P for example would have an order of one, a bimolecular
reaction, such as 2A ! P or A + B ! P would be a second-order
reaction etc. However, this equivalence is not always true, and
anisotropy or crowding of the reaction environments may affect
the motion of molecules, resulting in different, and sometimes
nonintegral, reaction orders.

While mass-action kinetics are strictly only valid for elementary
reactions, they are widely and successfully applied in various fields
of mathematical modeling in biology. Especially for large and
vaguely defined reaction networks, as found in signal transduction,
mass-action kinetics are commonly employed as a very general
initial approach. Most often, the partial orders are taken to be
identical to the stoichiometric coefficients. The rate constants can
either be calculated from separately measured equilibrium con-
stants and characteristic times, or computationally fitted to repro-
duce experimental results.

1.2.1 Zeroth Order

Reactions

Reactions of order zero have a reaction rate that does not depend
on any reactant. Zeroth order reactions can be used for instance to
represent constant creations from boundary condition reactants,
such as:

X��!k P

2The termmass-action stems from the proportionality of the so-called reaction “force” to the mass of a substance
in a fixed volume, which is proportional to the molar concentration of a substance.
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where X represent a set of source reactants that are not depleted by
the reaction. The reaction rate is then equal to:

v ¼ k � ½X�0 ¼ k

in which k is the rate constant, and has the units of a concentration
per time.

1.2.2 First-Order

Reactions

In general unimolecular reactions are modeled using first-order
mechanisms. In irreversible first-order reactions, the reaction rate
linearly depends on the concentration of the reactant. Many decay
processes show such kinetics, for example radioactive decay,
dissociation of complexes or denaturation of proteins. For a simple
reaction:

A��!k P

the following rate law applies:

v ¼ k � ½A�
in which k is the first-order rate constant, and has the units of
a reciprocal time, [1/time]. If this is the only reaction affecting
the concentration of A in a system, the change of [A] equals
the negative reaction rate.Similarly, the change of [P] equals the
reaction rate.

d½A�
dt

¼ �v ¼ �k½A�
d½P�
dt

¼ þv ¼ þk½A�

1.2.3 Second-Order

Reactions

Second-order reactions are often used to model bimolecular
reactions, either between different types of molecules or between
two instances of the same molecules. Examples are complex forma-
tion and dimerization reactions. For a simple reaction:

A þ B��!k P

the following rate law applies:

v ¼ k � ½A� � ½B�
in which k is the second-order rate constant, and has the unit of
[1/(time � concentration)]. The change of [P] with time is
described by the following differential equation:

d½P�
dt

¼ v ¼ k � ½A� � ½B�
A special case of bimolecular reaction is when two reactant

molecules of the same type react to form the product, for example
in protein dimerization reactions. For the general reaction:

2A��!k P
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the reaction velocity and the temporal development of [A] and [P]
are given by the following equations:

v ¼ k � ½A� � ½A�
d½A�
dt

¼ �2v ¼ �2k½A�2

d½P�
dt

¼ v ¼ k½A�2

Note that this formula is only valid because we assume a very
large number of molecules are available to react. If picking one
molecule changes significantly the probability to pick a second one,
we must replace ½A�2 by ½A� � ðð½A�V � 1Þ=V Þ, where V the volume
of the reactor.

1.3 Representing

the Evolution of

Multi-Reaction

Systems

In the sections above, we only derived expressions describing the
temporal evolution of species altered by single reactions. In biological
systems, substances are involved in many different processes, leading
to complex ordinary differential equation systems, that normally can
only be solved numerically and with help of computers. Having
carefully designed the elementary processes composing the system,
reconstructing the differential equations representing the evolution
of the different substances is a systematic and easy procedure. We
already saw in Subheading 1.2.2 that the reaction:

A��!k P

Could be modeled by the system:

d½A�
dt

¼ �1v ¼ �1k½A�
d½P�
dt

¼ þ1v ¼ þ1k½A�

If the reaction is reversible, such as:

AÐkf
kr
P

then we can consider it as a combination of two irreversible reac-
tions, the rates of which depend on [A] and [P]:

v
f
¼ k

f
� ½A�

v
r
¼ kr � ½P�

The evolution of both substances therefore depends on the
forward and reverse reaction rates. A is consumed by the forward
reaction and produced by the reverse reaction. It is the other way
around for P.

d½A�
dt

¼ �1vf þ 1vr ¼ �1kf ½A� þ 1kr½P�
d½P�
dt

¼ þ1vf � 1vr ¼ þ1kf ½A� � 1kr½P�
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To understand how to handle non-unity stoichiometric num-
bers, consider the following dimerization:

2AÐkf
kr
P

The forward reaction will be modeled using second-order
kinetics, and the rates will therefore be:

vf ¼ kf � ½A�2
vr ¼ kr � ½P�

As above the evolution of both substances therefore depends
on the forward and reverse reaction rates. But this time two mole-
cules of A are consumed by each forward reaction and produced by
each reverse reaction. Therefore:

d½A�
dt

¼ �2vf þ 2vr ¼ �2kf ½A�2 þ 2kr½P�
d½P�
dt

¼ þ1vf � 1vr ¼ þ1kf ½A�2 � 1kr½P�
This approach can then be extended, independently of the size

of the system considered. An ODE system will contain (at most)
one differential equation for each substance. This equation will
contain components representing the involvement of the substance
in the different reactions of the system. For the substance Sn,
involved in a system containing r reactions, the differential equa-
tion takes the following form:

d½Sn�
dt

¼
Xr
i¼1

νnivi

νni denotes the stoichiometric coefficient of Sn in reaction i, vi the
rate of this reaction. The resulting ODE system can also be repre-
sented in matrix notation, by introducing the stoichiometric
matrix, N, and the reaction rate vector, v. The stoichiometric
matrix, N, contains a row for each of the n species in the system,
and a column for each of the r reactions. Its entries, Nij, are
the stoichiometric coefficients, of substance i in reaction j. v is a
column vector with each element vi indicating the rate of the ith
reaction. Using the above, the change of the concentration vector S
over time is described by:

d½S�
dt

¼ N � v

2 Numerical Integration of ODE Models

Once a set of differential equations has been determined, to
describe the changes of the variables per unit of time, the behaviour
of the system can be obtained by fixing initial conditions and
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solving the equations. In the case of a zeroth order reaction, the
solution describing the evolution of P is of course a monotonic
increase since a fixed amount of P is created per unit of time:

½P�ðtÞ ¼ ½P0� þ kt

The equation describing the evolution of A in a First-order
reaction can be easily rearranged and analytically solved, assuming
an initial concentration [A0] at time t ¼ 0. Furthermore, since
[P]t + [A]t ¼ [P0] + [A0]:

½A�t ¼ ½A0� � e�kt

½P�t ¼ ½P0� þ ½A0� � ð1� e�ktÞ
The rate constant in first-order kinetics is directly related to

some characteristic times of substances, which are often readily
available. For example the average life time of the reactant, τ, and
the time it takes for its concentration to half, the half-life t½, can be
derived as (see Fig. 2):

τ ¼ 1

k

t1
2
¼ ln 2

k

Integration of the equation describing the evolution of P in a
second-order reaction using the initial concentrations [A0], [B0]
and [P0] leads to a hyperbolic time dependency:

½P�ðtÞ ¼ ½P0� þ ½A0�½B0� e�kt ½B0� � e�kt ½A0�

½A0�e�kt ½B0� � ½B0�e�kt ½A0�

Contrarily from first-order reactions, the characteristic times in
second-order reactions are not independent of the initial condi-
tions, but depend on both the rate constant and the initial

Fig. 2 Decay of a reactant A, that is consumed by a First-order reaction with a
constant k from an initial concentration of [A0]. The average lifetime of a given
molecule of A, is given by 1/k. [A] tends toward 0 while [P] tends towards
[A0] + [P0]
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concentrations of the reactants. In case the two reactants are
instances of the same molecular pool (A ¼ B), and assuming the
initial concentrations to be [A0] and [P0], the resulting time courses
for [A] and [P] are described by the following hyperbolic functions:

½A�ðtÞ ¼ ½A0�
2k½A0�t þ 1

½P�ðtÞ ¼ ½P0� þ ½A0�2kt
2k½A0�t þ 1

However, beside the most elementary systems containing only
few well-behaved reactions, we cannot generally solve a system of
ordinary differential equations analytically. We have to resort to
numerical integration, a method that goes back to the origin of
differential calculus, where we approximate the current values of
the variables based on the knowledge we have of their values in the
(close) past. Many approximations have been developed. The sim-
plest and easiest to grasp (but also the most error prone) is the
forward Euler rule. If we discretize the time, one can make the
following approximation:

d½X�
dt

� Δ½X�
Δt

¼ ½X�tþΔt � ½X�t
� �

Δt
We can rearrange the equation above and extract the concen-

tration as follows:

½X�tþΔt � ½X�t þ
d½X�
dt

ðtÞ � Δt

We know d[X]/dt as a function of the vector of concentrations,
obtained with the method described above, and can therefore
compute the difference introduced during one Δt. This procedure
is represented in Fig. 3. We can see on the figure that a systematic

Fig. 3 Graphical representation of the forward Euler method to integrate ordinary
differential equations. The thick curve represents [X] ¼ f(t), and the vectors its
derivative. Note the progressive error introduced by the coarse time
discretization
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error is introduced by the time discretization. Such an error
becomes larger for more complex dynamics, such as non-
monotonic behaviours (e.g., oscillations), or systems with fast and
slow components. One can address the error by using tiny time
steps but at the expense of computational efficacy. Many methods
have been developed over the years to address this problem. A good
introduction is given in LeMasson and Maex [2] and a more
comprehensive survey of the field by Hairer et al. [3] and Hairer
and Wanner [4]. Biological modeling tools such as COPASI [5],
JDesigner/Jarnac [6], E-Cell [7] or CellDesigner [8] have their
own in-built numerical ODE solver. They also generate the system
of ODE to be solved automatically, so the required user input is
limited to the list of chemical reactions in some defined format and
of the parameters governing those reactions.

3 Modeling Biochemical Networks

Modeling the biochemical pathways does not require much more
than what has been presented in Subheading 1. The only complex-
ity we will introduce in the following sections are slightly more
complex expressions for the reaction rates.

3.1 Basal Level

and Homeostasis

Before modeling the effect of perturbations, such as extracellular
signals, it is important to set up the right basal level for the sub-
stances that we will consider in the model. This basal level is
obtained when the processes producing the substance and the
processes consuming it are compensating each other. We then
reach a steady state, where input and output are equal. To illustrate
this, we will build the simplest system possible that permits to have
a steady basal concentration of calcium. The system is made up
of a continuous creation of calcium, for instance due to leaky
channels in the plasma membrane or in the internal stores, modeled
as a zero-order reaction (see Subheading 1.2.1). The calcium is then
removed from the system for instance by pumps or buffers in
excess, modeled as a first-order reaction (see Subheading 1.2.2).

60��!kin Ca2þ��!kout 60
The instantaneous changes of calcium concentration then

result from the combination of the two reaction rates (Fig. 4).

d½Ca2þ�
dt

¼ kin � kout½Ca2þ�

The steady-state level is reached when the changes are null, that
is [Ca2+] ¼ kin/kout. If the concentration of calcium is higher than
this ratio, the second term wins and the concentration decreases.
In contrast, if the concentration of calcium is lower than this ratio,
the first term wins and the concentration increases. kout can be
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estimated from the decay observed after stimulation. kin can there-
fore be computed from the steady state. Changing kin in a discrete
manner is a simple way of modeling the opening or closing of
calcium channels. Such a homoeostatic control is extremely simple.
More complex schemes can be designed, with control loops such as
negative feed-backs on the creation steps and positive feed forwards
on the extrusion steps.

3.2 Representing

Enzymatic Reactions

In order to accelerate chemical reactions and select among different
isomers, cells use enzymes, which are protein-based catalysts. They
can increase reaction rates to a tremendous degree and often are
essential to make reactions occur at a measurable rate. Enzyme
catalyzed reactions tend to follow complex sequences of reaction
steps, and the exact reaction mechanisms are generally unknown.
The single reaction steps can be contracted into an overall descrip-
tion with lumped stoichiometries. However, since the detailed
reaction mechanisms are most often unknown, and also parameters
for each of these steps are hard to come by, such reactions can rarely
be modeled considering each single step and using mass-action
kinetics. Depending on how much detail is known, an enzyme
catalyzed reaction can be described on different levels. The reaction
equations for a simple conversion of a substrate S to a product P
catalyzed by an enzyme E, for example, can vary depending on the
consideration of intermediate enzyme complexes and reaction
reversibility:

Fig. 4 Evolution of calcium concentration over time. Between t0 and t1, the
extrusion is stronger than the creation. At t1, kin strongly decreases, for instance
by a block of leak channels, and the concentration is brought to a lower steady-
state value. At t2 the block is removed. The creation becomes stronger than
extrusion, and brings back the concentration to the initial steady state. Vertical
arrows represent the intensity and direction of the reaction’s flux for a given
concentration of calcium
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Sþ E Ð ESÐEP Ð Eþ P

Sþ E Ð ES ! EP Ð Eþ P

Sþ E Ð ES Ð Eþ P

Sþ E Ð ES ! Eþ P

Sþ E ! Eþ P (2)

Knowledge of the mechanism of an enzymatic reaction can be
used to derive compact and simplified expressions fitting the overall
kinetics. The alternative is to use generic rate laws that are known to
loosely fit wide classes of reactionmechanisms, and to choose the ones
that seem most appropriate for the reaction in question. The kinetics
of the overall reaction are determined by the reaction mechanisms of
the elementary steps, but exact derivations can become quite complex
and cumbersome to handle. In general it is safer andmore convenient
to use approximate expressions in biological modeling, even more so
as exact mechanisms are rarely known.

Two assumptions are available to simplify complex enzymatic
reaction descriptions. The more general one is the quasi steady-
state approximation, QSSA. The QSSA considers that some, or all,
of the intermediary enzyme-substrate complexes tend to a near
constant concentration shortly after the reaction starts. The other
widely used assumption, called the rapid equilibrium assumption,
is that some steps are much faster than the overall reaction, mean-
ing that the participating enzyme forms are virtually at equilibrium
and that their concentrations can be expressed using equilibrium
constants. This approach is often used to model fast reactant or
modulator binding to the enzyme. The application of these tech-
niques depends very much on how much of the reaction mecha-
nism is known. An excellent introduction into enzyme kinetics is
given by Cornish-Bowden [9]. For a more exhaustive treatment
with detailed derivations of rate laws for a multitude of mechanisms
please refer to the standard work by Segel [10].

At the beginning of the twentieth century, Henri [11] pro-
posed a reaction scheme and an accompanying expression for
describing the rate of sucrose hydrolysis catalyzed by invertase.
This reaction showed a deviation from normal second-order kinet-
ics and tended to a maximal velocity directly proportional to the
enzyme concentration. Making use of the existence of an interme-
diary substrate-enzyme complex, ES, and assuming that the sub-
strate S and the enzyme E were in a rapid binding equilibrium with
the complex, he could derive an expression fitting the experimental
observations. A similar approach was taken and expanded in 1913
by Michaelis and Menten [12], who proposed the current form of
the reaction rate based on a rapid equilibrium between enzyme and
substrate.
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Eþ SÐk1
k�1

ES��!k2 Eþ P

(k2 is the catalytic constant, or turnover number, and often called
kcat). The QSSA was proposed as a more general derivation by
Briggs and Haldane [13]. The substrate binding and dissociation,
as well as the product formation step, lead to the following expres-
sion for the time dependence of [ES]:

d½ES�
dt

¼ k1½E�½S� � k�1½ES� � k2½ES�

At steady state, the concentration of the intermediate complex,
[ES], is constant hence d[ES]/dt ¼ 0. Rearranging this equation
and setting KM ¼ k�1þk2

k1
, we obtain [E] ¼ [ES] � KM/[S]. Fur-

thermore, because the concentration of enzyme is constant, we
have [E] ¼ [Et] – [ES]. Equating both, we obtain:

v ¼ d½P�
dt

¼ k2½ES� ¼ k2½Et� ½S�
KM þ ½S� (3)

k2 � [Et] is sometimes called the maximal velocity νmax. This rate
expression is often used—and abused—when modeling biochemi-
cal processes for which the exact mechanisms are unknown. How-
ever, one has to realize that it only holds true if the concentration of
the enzyme-substrate complex stays constant, which in turns
implies that the concentration of substrate is in large excess.
Those conditions are very rarely met in signal transduction systems,
resulting in many artifacts.

Plotting the reaction velocity, ν, against the substrate
concentration, [S], gives a rectangular hyperbolic curve (see
Fig. 5). The parameter KM has the unit of a concentration and is
of central importance in describing the form of the substrate
dependence of the reaction velocity. As can be seen by inserting
KM for [S] in Eq. 3, it denotes the substrate concentration at which
the reaction speed is half of the limiting velocity. If ½S� � KM, then
[S] in the denominator can be disregarded and the reaction
becomes linear with regard to S, showing first-order characteristics:

½S� � KM ) v � vmax

KM
� ½S�

On the other extreme, for high substrate concentrations,
½S� � KM , the reaction speed becomes virtually independent of
[S] and tends toward νmax.

½S� � KM ) v � vmax ¼ kcat � ½Et�
Most enzyme catalyzed reactions show a similar rate behaviour

inasmuch as they exhibit first or higher order dependencies on the
substrate at lower substrate concentrations and tend to a limiting
rate depending only on the enzyme concentration when the reac-
tant concentrations are high.
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While the original Michaelis–Menten equation was derived to
describe the initial velocity of the enzymatic reaction in absence of
product, allowing the reverse reaction to be neglected, the QSSA
can also be used to derive a reversible Michaelis–Menten equation
describing the most extensive reaction scheme in Eq. 2. Using the
same procedure as above, the following expression for the reaction
velocity in dependence of ET, S and P can be derived:

v ¼ vfwd
½S�
KMS

� vrev
½P�
KMP

1þ ½S�
KMS

þ ½P�
KMP

(4)

As the net rate of a reversible reaction has to vanish at equilib-
rium, one of the parameters of Eq. 4 can be expressed using the
equilibrium constant by setting the numerator of the expression to
zero. The so called Haldane relationship connects kinetic and ther-
modynamic parameters of an enzymatic reaction. While some
mechanisms lead to much more complicated expressions, at least
one Haldane relationship exists for every reversible reaction.

Keq ¼ vfwdKMP

vrevKMS
¼ k2KMP

k�1KMS

3.3 Modeling Simple

Transport Processes

Compartmentalization of molecular species and transport across
membranes are of great importance in biological systems, and
often need to be implicitly accounted for or explicitly included
into models.

Fig. 5 Dependence of the reaction velocity, ν, of the irreversible Michaelis–Menten equation on the
concentration of the substrate, S. The left graph shows the uninhibited case. On the right various forms of
inhibition are shown in a semi-logarithmic plot. The horizontal dotted lines indicate the apparent half maximal
velocities, the vertical ones the apparent KMs. Competitive inhibition does not alter the maximal velocity, but
shifts the KM to higher values, while non-competitive inhibition simply decreases the apparent Vmax. The
special case of uncompetitive inhibition leads to an apparent increase of substrate affinity of the enzyme, that
is a lower KM, but a reduction of the apparent Vmax. Mechanistically this is due to the unproductive enzyme-
substrate-inhibitor complex (KM ¼ 1; [I] ¼ 1; comp., uncomp. and non-comp. inhib.: KI ¼ 1.)
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Transport across membranes can either occur passively by sim-
ple diffusion, or be coupled to another reaction to actively move
molecules against a chemical potential gradient. In the simplest
form of passive diffusion, molecules just directly pass through a
membrane or an open channel or pore. As the connected compart-
ments in general have differing volumes, the change of concentra-
tion of a substance flowing from one compartment to another is
not equal in both compartments. Therefore the rate of transloca-
tion is commonly described by the flux, j, of a substance, that is the
amount of a substance crossing a unit area per time unit. In case of
no other influences on the translocation, but simple diffusion, the
flux of a substance S into a cell through a membrane follows a
variant of Fick’s first law:

½Sout� Ð ½Sin�
js ¼ ps ½Sout� � ½Sin�ð Þ

in which [Sout] and [Sin] are the concentrations of S on the exterior
and inside the cell, respectively. pS denotes the permeability of the
membrane for S. The permeability for direct diffusion is propor-
tional to the diffusion coefficient of S and, for pores or channels, to
the number of open channels per area.

To derive an expression of the change of concentration of S, it is
important to consider that the flux is given as amount per area and
time and not as concentration per time. Therefore the volumes of
the exterior and the cell have to be included in the differential
expressions of concentrations. The overall rate of translocation, νt,
depends on the surface area, A, of the membrane, and the perme-
ability and area can be contracted to a transport rate constant,
kS ¼ pS � A. For the change of [Sout] and [Sin], respectively, the
following expressions can be derived:

d½Sout�
dt

¼ � vT
Vout

¼ � kS
Vout

½Sout� � ½Sin�ð Þ
d½Sin�
dt

¼ vT
Vin

with Vout and Vin being the volumes of the exterior and the cell.
In the case of a molecule that does not simply diffuse through a

membrane or pore, but needs to bind a carrier to be translocated
from one compartment to the other, the kinetic expressions depend
on the exact mechanism of translocation. The simplest case of
facilitated, or carrier-mediated, diffusion consists of a carrier with
a single binding site, C, which can bind a substance A with equal
affinity on each side of the membrane, and flips from one side of the
membrane to the other. Using the steady-state approach the fol-
lowing expression can be derived for the translocation rate:
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vt ¼ vmax ½Aout� � ½Ain�ð Þ
KM þ ½Aout� þ ½Ain� þ Ki½Aout�½Ain�

KM

In this equation νmax is the limiting rate of translocation and
depends mostly on the amount of carrier. KM is the concentration
of A on one side at half maximal translocation in case of zero
concentration on the other side of the membrane, and Ki, called
the interactive constant, depends on the relative mobility of the free
and loaded carrier (for details see Ref [14]).

4 Modeling Modulation of Dynamical Processes

Reactions in biological systems are not only regulated by the avail-
ability of reactants and catalysts, but also by compoundsmodulating
the activity of channels and enzymes, often without any direct
involvement in the specific reactions. Examples are neurotransmit-
ters that alter the flow of ions through channels, without direct
involvement in the transport process, enzyme allosteric effectors,
that will modulate the activity of an enzyme without being involved
in the catalytic reaction etc. In this section, we will introduce a
generic method to model activation and inhibition of reactions,
based on Hill equations.

4.1 Binding

of Modulators

and Activity

The activities of receptors, channels and enzymes are often regu-
lated by ligands binding to them. One important characteristic of
such binding processes is the fractional occupancy, Y of the bound
compound. It is defined as the number of binding sites occupied by
a ligand, divided by the total number of binding sites. For a ligand
X binding to a single binding site of a protein P, we can express [PX]
and �Y as follows, using the dissociation constant Kd ¼ koff

kon
and the

total protein concentration [PT] ¼ [P] + [PX]:

Pþ XÐkon
koff

PX

½PX� ¼ ½PT�½X�
Kd þ ½X�

�Y ¼ ½PX�
½PT� ¼

½X�
Kd þ ½X�

(5)

Equation 5, also known as the Hill–Langmuir equation, is very
similar to the Michaelis–Menten equation. Like [S] in Eq. 3, [X]
stands for the concentration of free ligand, but can be substituted
with the total ligand concentration [XT] ¼ [X] + [PX] in case that
½XT� � ½PT�. If P is active only when bound to X, one must multiply
the reaction rate by �Y to describe the actual reaction velocity. On
the contrary, if P is active only when not bound to X, one must
multiply the reaction rate by 1� �Y :
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1� �Y ¼ 1� ½PX�
½PT� ¼

Kd

Kd þ ½X� (6)

A general form of Eq. 5 was developed by Hill [15]. Drawing
on observations of oxygen binding to haemoglobin, Hill suggested
the following formula for the fractional occupancy �Y of a protein
with several activator binding sites:

�Y ¼
½X�h
KH

1þ ½X�h
KH

¼ ½X�h
KH þ ½X�h

where [X] denotes ligand concentration, KH is an apparent dissoci-
ation constant (with the unit of a concentration to the power of h)
and h is theHill coefficient, which needs not be an integer. TheHill
coefficient h indicates the degree of cooperativity, and in general is
different from the number of ligand binding sites, n. The Hill
equation can show positive and negative cooperativity, for expo-
nent values of h > 1 and 0 < h < 1, respectively. In case of h ¼ 1 it
shows hyperbolic binding behaviour. With increasing exponents,
the ligand binding curve becomes more and more sigmoid, with

the limit of a step function with a threshold value of
ffiffiffiffiffiffiffiffi
KH

h
p

. The

constant Kh ¼
ffiffiffiffiffiffiffiffi
KH

h
p

provides the ligand concentration at which
half the binding sites are occupied (equivalent to a dissociation
constant), or, in purely phenomenological uses, activation or inhi-
bition by the effector is half maximal. Note that negative values of
h produce the same decreasing sigmoid function than the above

1� �Y , so the generalized Hill function can be used for both
activators and inhibitors.

4.2 Modeling

Regulation of

Processes with Hill

Functions

The Hill equation can easily be adapted to provide functions to
describe interactions with little prior knowledge. Let us assume a
gene which expression is regulated in a nonlinear fashion for
instance by the binding of a transcription factor A. One can
model the gene expression with increasing concentrations of A
using a Hill function:

v ¼ vmax � ½A�h
Kh

A þ ½A�h
(7)

Here ν is the actual production of mRNA by the gene. νmax

indicates the maximal activity of the gene. KA and h indicate the
transcription factor concentration for half maximal activation, and
a cooperativity coefficient. If [A] ¼ 0, the correcting factor is close
to 0, ν is null, i.e., there is no gene expression. If [A] is large, the
correction factor is close to 1 and the expression is maximal. Simi-
larly, the effect of a repressor I can be described by:
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v ¼ vmax � Kh
I

Kh
I þ ½I�h

(8)

In this equation KI stands for the transcription factor
concentration triggering half maximal inhibition. If [I] ¼ 0, the
correcting factor is close to 1 the gene expression is maximal,
while if [I] is large, the correction factor is close to 0 and so is
the gene expression. Note that the same result is obtained with the
mathematical expression derived for activation above, with expo-
nents of �h. Therefore, one can provide a generic formula that can
phenomenologically describe the effects of all independent activa-
tors and inhibitors at once.

v ¼ vmax �
Yn
i¼1

½Xi�hi
Khi

Xi
þ ½Xi�hi

(9)

Such a formula can then be used in parameter estimation
procedures. For n effectors, one has to estimate 2n independent
parameters, or only n if the cooperativity is assumed negligible.
Note that such a formula is only valid if no significant interactions
take place between the effectors.

As an example of Hill equation use, let’s study the kinetics of
calcium-gated channels. An example containing two different types
of activation is given in Borghans et al. [16] for the Ca2+ induced
Ca2+ release (CICR) via the inositol triphosphate (InsP3) receptor.
Equation 18 of the paper describes the release of calcium from a
calcium sensitive pool. The flux rate is given by:

vInsP3R ¼ vmax
½Cap�2

K 2
1 þ ½Cap�2

½Cac�2
K2

2 þ ½Cac�2

In this equation νmax denotes the maximal release rate, and
[Cap] and [Cac] the Ca2+ concentrations in the pool and the
cytoplasm. The release is regulated by the Ca2+ concentrations on
both sides of the membrane separating the pool and the cytosol,
and K1 and K2 stand for the threshold concentrations for these
activations. Parthimos et al. [17] used an even more complex
expression for the CICR from the sarcoplasmic reticulum via the
InsP3 receptor. The receptor was modeled to be both activated and
inactivated by cytosolic Ca2+, Cac, using two Hill functions involv-
ing Cac. A possible mechanistic explanation for this form would be
the existence of independent activation and inhibition sites, with
different affinities and degrees of cooperativity for Ca2+. In the flux
rate through the InsP3 receptor

vInsP3R ¼ vmax
½Cas�2

K2
1 þ ½Cas�2

½Cac�4
K4

2 þ ½Cac�4
K4

3

K4
3 þ ½Cac�4

(10)
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K2 and K3 indicate the cytosolic Ca2+ concentrations at which
activation and inhibition of CICR, respectively, are half maximal.
If they are chosen in such a way thatK2 < K3, the flux rate through
the receptor reaches a maximum for concentration values between
the values of the two constants and vanishes for higher cytosolic
Ca2+ concentrations (see Fig. 6), creating a complex on–off beha-
viour of the InsP3 receptor in dependence of the Ca2+ concentra-
tion. In case of nonessential activation or leaky inhibition, a process
can still proceed at a basal rate νbas in absence of the activator or at
high concentrations of the inhibitor (Fig. 7). This can be accounted
for by using the relative basal rate, b ¼ vbas

vmax
.

v ¼ vmaxðb þ ð1� bÞγð½X�ÞÞ
where γ([X]) is the function describing the relative activity in
dependence of the concentration of the regulating agent X, that is
�Y or 1� �Y mentioned in Eqs. 5 and 6. Note that if there is no
reaction in the absence of a modulator, the basal rate is 0, b ¼ 0,
and the equation is equivalent to Eqs. 7 and 8. One can therefore
further generalise Eq. 9 as:

v ¼ vmax �
Yn
i¼1

bi þ ð1� biÞ � ½Xi�hi
Khi

Xi þ ½Xi�hi

 !

Fig. 6 InsP3 receptor opening probability dependent on cytoplasmic Ca2+ after Parthimos et al. [17] as
described in Eq. 10. K2 and K3 indicate the concentrations of half maximal activation and inhibition,
respectively, of the InsP3 receptor. For both activation and inhibition a Hill factor of 4 was assumed
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This equation provides an initial framework to model the
kinetics of almost any regulatory network in the absence of mecha-
nistic knowledge. Although Hill functions have been frequently
used because of their simplicity, other generic frameworks have
been proposed to phenomenologically model kinetics of regulatory
networks, including logoid function [18], Goldbeter-Koshland
switches [19], S-systems [20] etc. Further information can be
found in a quite famous review [21]. As mentioned above, it is
important to realize that such a framework assumes independence
of the modulators. Other more complicated formulae, derived for
enzyme regulation, can then be used if the concentration of a
modulator affects the effect of another one. The reader should
refer to Segel [10] for more details.

5 Further Reading

Biophysical chemistry, James P. Allen. This is a complete and concise
presentation of the physical and chemical basis of life [22].

Computational Cell Biology, Christopher P. Fall, Eric S. Marland,
John M. Wagner, John J. Tyson. Also known as “the yellow book”,
this is an excellent introduction to modeling cellular processes. It
contains chapters dedicated to ion channels, transporter, biochemical
oscillations, molecular motors and more [23].

Enzyme kinetics, Irwin H. Segel and Fundamentals of Enzyme
Kinetics, Athel Cornish-Bowden. Also known as “the black book”
and the “the red book”, these are the two reference books if one
wants to know how to model an enzymatic reaction, regardless of
its complexity.

Fig. 7 Activation (left) and inhibition (right) modeled using Hill functions with a nh ¼ 2. Ligand concentration is
shown in units of the concentration of half maximal activation or inhibition, respectively, Kh on a logarithmic
scale and the velocity ν in percent of the fully activated or uninhibited velocity, νmax. The dashed line shows
cases with a basal rate, νbas, of 25 % of νmax b ¼ vbas

vmax
¼ 0:25

� �
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Solving Ordinary Differential Equations I and II, Ernst Hairer,
Syvert P. Norsett, Gerhard Wanner.Extensive coverage of the
domain of ordinary differential equations, from Newton and Leib-
niz to the most advanced techniques implicit solvers.
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Chapter 9

Simulation of Stochastic Kinetic Models

Andrew Golightly and Colin S. Gillespie

Abstract

A growing realization of the importance of stochasticity in cell and molecular processes has stimulated the
need for statistical models that incorporate intrinsic (and extrinsic) variability. In this chapter we consider
stochastic kinetic models of reaction networks leading to a Markov jump process representation of a system
of interest. Traditionally, the stochastic model is characterized by a chemical master equation. While the
intractability of such models can preclude a direct analysis, simulation can be straightforward and may
present the only practical approach to gaining insight into a system’s dynamics. We review exact simulation
procedures before considering some efficient approximate alternatives.

Key words Stochastic simulation, Markov jump process, Time discretization

1 Introduction

Computational systems biology is typically concerned with devel-
oping dynamic simulation models of biological processes. Such
models can be used to test understanding of systems of interest
and perform in silico experimentation. Statistical methods based
on the macroscopic rate equation (MRE), which describes the
thermodynamic limit of a system via a set of coupled ordinary
differential equations (ODEs), have been widely used [1, 2]. Such
an approach may be appropriate when describing average concen-
trations within a population of cells or when modeling more global
physiology, for example, at a tissue or organ level [3]. Single cell
experiments and studies of noise in regulatory networks have
revealed the importance of stochastic effects in intracellular pro-
cesses and in turn, this has motivated the need for models that
incorporate intrinsic stochasticity [4]. A deterministic modeling
approach fails to capture the stochastic (and discrete) nature of
chemical kinetics at low concentrations. Reaction events are

Maria Victoria Schneider (ed.), In Silico Systems Biology, Methods in Molecular Biology, vol. 1021,
DOI 10.1007/978-1-62703-450-0_9, # Springer Science+Business Media, LLC 2013

The R code used in this chapter can be downloaded from the github repository: https://github.com/csgillespie/
In-silico-Systems-Biology.
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intrinsically stochastic, driven by Brownian motion. When such
events take place, the effect is to change biochemical species num-
bers by an integer amount. Hence, as reactions take place, species
numbers change abruptly and discretely. Such arising random fluc-
tuations are often referred to as intrinsic noise [5]. Other sources of
noise may be termed extrinsic (e.g., due to variations in initial
conditions or environmental conditions).

The aim of this chapter is to provide a concise introduction to
the simulation of stochastic kineticmodels through consideration of
some commonly used simulation algorithms. Approximate strate-
gies based on, for example, time discretization or the dispensation of
the assumption of discrete states are also explored. The remainder of
this chapter is organized as follows. In Subheading 2, we briefly
review stochastic chemical kinetics leading to a stochastic kinetic
model of a system of interest, formulated as a Markov jump process.
We consider exact simulation of the jump process via the Gillespie
algorithm [6] in Subheading 3 before examining some recently
proposed extensions which aim to increase the computational effi-
ciency of the algorithm. Approximate simulation strategies such as
the τ-leap [7], chemical Langevin equation (CLE) [8, 9], and linear
noise approximation (LNA) [10] are considered in Subheading 4.
The chapter concludes with a discussion in Subheading 6.

2 Stochastic Chemical Kinetics

In this section we represent a biological system of interest with a set
of pseudo-biochemical reactions. There are a number of ways in
which a system could be represented, from a qualitative diagram to
a fully quantitative set of equations. A reaction network provides a
flexible representation, allowing the modeler to specify the level of
detail deemed appropriate. Once the assumptions about the under-
lying chemical kinetics have been made, simulation can take place.

2.1 Reaction

Networks

To fix notation, consider a biochemical reaction network involving
u species X1;X2; . . . ;Xu and v reactions R1, R2, . . ., Rv, written
using standard chemical reaction notation as

R1 : p11X1þp12X2þ���þp1uXu ! q11X1þq12X2þ���þq1uXu

R2 : p21X1þp22X2þ���þp2uXu ! q21X1þq22X2þ���þq2uXu

..

. ..
. ..

.

Rv : pv1X1þpv2X2þ���þpvuXu ! qv1X1þqv2X2þ���þqvuXu:

Let Xj,t denote the number of molecules of species X j at time
t, and let Xt be the u-vector Xt ¼ (X1,t, X2,t, . . ., Xu,t)

0.
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Further, let P ¼ (pij) be a v �u matrix of the coefficients pij
with Q ¼ (qij) defined similarly. The u�v stoichiometry matrix S is
defined by

S ¼ ðQ � PÞ0:
The matrices P, Q and S will typically be sparse. On the occur-

rence of a reaction of type i, the system state (Xt) is updated by
adding the ith column of S. Consequently, if ΔR is a v-vector
containing the number of reaction events of each type in a given
time interval, then the system state should be updated byΔX, where

ΔX ¼ S ΔR:

The stoichiometry matrix therefore encodes important struc-
tural information about the reaction network. In particular, vectors
in the left null-space of S correspond to conservation laws in the
network, that is, any u-vector a satisfying a0S ¼ 0 has the property
(clear from the above equation) that a0Xt remains constant for all t.

2.2 Markov

Jump Process

Representation

Let us consider a bimolecular reaction

X1 þ X2 ! X3 :

This reaction will occur when a molecule of X1 collides with a
molecule ofX2 whilemoving around randomly, driven by Brownian
motion. Consider a pair of such molecules in a container of fixed
volume. Under fairly weak assumptions involving the container and
its contents, it is possible to show that the collision hazard (or rate) is
constant in a small time interval [8]. Therefore, for the reaction
above, the probability of a given pair of molecules reacting in a time
interval of length dt is c dt for some constant c. Suppose now that
there are x1 molecules of X1 and x2 molecules of X2. There are x1x2
possible pairs of molecules that could react so the probability of a
reaction of this type occurring in a time interval of length dt is
cx1x2dt. Note that this probability depends only on the current
state of the system—this is theMarkov property. Moreover, changes
to the system state occur at discrete times (say t1, t2, . . .) and there
are finite periods of no change. Taking both of these properties
together gives a Markov jump process, that is, a continuous time,
discrete valued process that satisfies the Markov property.

We now consider the general case. Under the standard assump-
tion of mass-action stochastic kinetics, each reaction Ri is assumed
to have an associated rate constant, ci, and a propensity function,
hi(Xt, ci), which define the overall hazard of a type i reaction occur-
ring. That is, the system is a Markov jump process, and for an infini-
tesimal time increment dt, the probability of a type i reaction
occurring in the time interval (t, t + dt] is hi(Xt, ci)dt. Under mass-
action stochastic kinetics, the hazard function is proportional to a
product of binomial coefficients, with
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hiðXt ; ciÞ ¼ ci
Yu
j¼1

Xj ;t

pij

� �
:

It should be noted that this hazard function differs slightly
from the standard mass action rate laws used in continuous deter-
ministic modeling, but is consistent (up to a constant of propor-
tionality in the rate constant) asymptotically in the high
concentration limit.

2.2.1 Reaction Types Some commonly encountered reaction types are given in Table 1
along with their associated hazards. For notational simplicity we
remove the dependence of the current state on time when stating
the hazards.

The zeroth order reaction may at first seem a little strange, since
it appears that something is created from nothing. However, it can
be useful for modeling a constant rate of production of a chemical
species. First order reactions can be used to capture the spontane-
ous change of a molecule such as decay and dissociation. It is often
desirable to write third or higher order reactions in terms of a series
of reactions of order two or less. For example, the trimerization
reaction in Table 1 can be written as

2X1 �!X2 and X2 þ X1 �!X3:

2.3 Chemical

Master Equation

The chemical master equation (CME) refers to an ODE satisfied by
the transition kernel of the Markov jump process. One such ODE
can be derived as follows.

Let p(x; t) denote the transition kernel of the jump process,
that is, the probability that there will be at time t x ¼ (x1, . . ., xu)

0

molecules of each respective species (assuming a well-stirred spa-
tially homogeneous volumeΩ, and thermal equilibrium). Once this
function is obtained, a fairly complete characterization of the
state of the system at time t is apparent. Now write p(x; t + Δt) as
the sum of the probabilities of the number of ways in which the
network can arrive in state x at time t + Δt. We obtain

Table 1
Example reactions and their associated hazards

Order Reactants Products Hazard Description

0 ; X1 c1 Influx

1 X1 ; c2X1 Degradation

2 X1 þ X2 X3 c3X1X2 Catalysation

2 2X1 X2 c4X1(X1 � 1)=2 Dimerization

3 3X1 X3 c5X1(X1 � 1)(X1 � 2)=6 Trimerization
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pðx; t þ ΔtÞ ¼
Xv
i¼1

hiðx � Si; ciÞPðx � Si; tÞΔt

þ 1�
Xv
i¼1

hiðx; ciÞΔt
( )

pðx; tÞ; (1)

where x is the state of the system at time t and Si denotes the ith
column of the stoichiometry matrix S. Intuitively, the term hi(x �
Si, ci)p(x � Si; t)Δt is the probability that the system is one Ri

reaction removed from state x at time t and then undergoes such
a reaction in (t, t + Δt). The second quantity in Eq. 1 is the proba-
bility that the system undergoes no reactions in (t, t + Δt). We now
observe that Eq. 1 leads to the ODE

d

dt
pðx; tÞ ¼

Xv
i¼1

hiðx � Si; ciÞpðx � Si; tÞ � hiðx; ciÞpðx; tÞ
� �

: (2)

Equation 2 is most commonly referred to as the CME and is sim-
ply Kolmogorov’s forward equation for the MJP. Unfortunately,
the CME is only tractable for a handful of cases. The exactly
solvable cases have been summarized by McQuarrie [11].
Hence, for most systems of interest, an analysis via the CME
will not be possible and then stochastic simulation techniques
such as those described in the next section will present the only
practical approach to gaining insight into a system’s dynamics.
For further details of the master equation formalism in chemical
kinetics, good reviews have been given by van Kampen [10] and
Wilkinson [4].

Algorithm 1. Gillespie’s Direct Method

1. Set t ¼ 0. Initialize the rate constants c1, . . ., cv and the initial
molecule numbers x1, . . ., xu.

2. Calculate hi(x, ci), i ¼ 1, . . ., v based on the current state, x.

3. Calculate the combined hazard h0(x, c) ¼
Pv

i¼1 hiðx; ciÞ.
4. Simulate the time to the next event, t0 � Exp(h0(x, c)) and

put t : ¼ t + t0.

5. Simulate the reaction index, j, as a discrete random quantity
with probabilities hi(x, ci)=h0(x, c), i ¼ 1, . . ., v.

6. Update x according to reaction j. That is, put x : ¼ x + Sj.

7. Output x and t. If t < Tmax, return to step 2.
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3 Exact Simulation Methods

3.1 The Gillespie

Algorithm

Let c ¼ (c1, c2, . . ., cv)
0 and h(Xt, c) ¼ (h1(Xt, c1), h2(Xt, c2), . . .,

hv(Xt, cv))
0. Values for c and the initial system state x0 completely

specify the Markov process. Although the Markov jump process is
rarely analytically tractable for interesting models, it is straightfor-
ward to forward-simulate exact realizations of this Markov process
using a discrete event simulation method. This is due to the fact
that if the current time and state of the system are t and Xt

respectively, then the time to the next event can be shown to have
an exponential distribution with rate parameter

h0ðXt ; cÞ ¼
Xv
i¼1

hiðXt ; ciÞ;

and the event will be a reaction of type Ri with probability
hi(Xt, ci)=h0(Xt, c) independently of the waiting time. Forward
simulation of process realizations in this way is typically referred
to as Gillespie’s direct method in the stochastic kinetics literature,
after [6]. The procedure is summarized in Algorithm 1.

Note that the assumptions of mass-action kinetics as well as
the one-to-one correspondence between reactions and rate con-
stants may both be relaxed. It is also worth mentioning that
there is an equivalent alternative algorithm to Gillespie’s direct
method known as the first reaction method [12], although the
direct method is typically to be preferred as it is more efficient.
In particular, it requires just two random numbers to be simulated
per event as opposed to the first reaction method, which requires v.
That said, the first reaction method can be turned into a far more
efficient method, known as the Gibson–Bruck algorithm [13].
We eschew the method here in favor of further examination of
Gillespie’s direct method, which we can speed up with a few clever
“tricks.”

3.2 Speeding Up

Gillespie’s Direct

Method

Not surprisingly, as the number of reactions and species increase,
the length of time taken to perform a single iteration of the
Gillespie algorithm also increases. We will examine some simple
techniques for speeding up the method.

3.2.1 Hazards Update At each iteration, we update each of the v hazards, hi(x, ci),
i ¼ 1, . . ., v–step 2 of Algorithm 2. This requires v computations
and is therefore O(v). Naturally, after a single reaction has
occurred, a better method is to only update the hazards that
have changed. To this end, it is helpful to construct a dependency
graph whose nodes represent reactions and a (directed) edge from
one node to another indicates that one reaction affects the hazard
of another.

174 Andrew Golightly and Colin S. Gillespie



3.2.2 Combined

Hazard Update

At each iteration, we combine all v hazards to calculate the
combined hazard

h0ðx; cÞ ¼
Xv
i¼1

hiðx; ciÞ :

This is again O(v). If we have used a dependency graph to deter-
mine which reaction hazards have changed after the last reaction
occurrence, then we can calculate the combined hazard by sub-
tracting “old” hazard values (before the single reaction occurrence)
and adding updated “new” hazard values. This is likely to be less
demanding than recalculating h0 from scratch.

3.2.3 Reaction Selection In this step we choose a reaction with probability proportional to its
hazard, that is, we search for the j satisfying

Xj�1

i¼1

hiðx; ciÞ < U � h0ðx; cÞ <
Xj

i¼1

hiðx; ciÞ

where U � U(0, 1). To speed up this step, we can order each hi in
terms of size. One technique is to run a few pre-simulations for a
short period of time t � Tmax [14]. The authors suggest reorder-
ing the hazard vector according to the relative occurrences of each
reaction in the pre-simulations. Plainly, this method is not ideal as it
is not clear how long to run the pre-simulations for, and the pre-
simulations will be time consuming. Another method is to move hi
up one place in the hazard vector for each time reaction i is
executed[15]. This swapping effectively reduces the search depth
for a reaction at the next occurrence of that reaction. Note that the
reordering only requires a swap of two memory addresses.

Algorithm 2. Poisson Leap Method

1. Set t ¼ 0. Initialize the rate constants and the initial molecule
numbers x.

2. Calculate hi(x, ci), for i ¼ 1, . . ., v, and simulate the v-
dimensional reaction vector r, with ith entry a Po(hi(x, ci)Δt)
random quantity.

3. Update the state according to x : ¼ x + Sr.

4. Update t : ¼ t + Δt.
5. Output t and x. If t < Tmax return to step 2.
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4 Approximate Simulation Methods

We have seen how to generate exact simulations from a stochastic
kinetic model via the Gillespie algorithm and how to make the
procedure efficient through the use of a few “tricks.” However,
if we are prepared to sacrifice the exactness of the simulation
method, there is a potential for huge speed-ups.

One method is to divide up the time axis into small discrete
chunks over which we approximate the underlying kinetics to allow
advancement of the state from the start of one chunk to another in
one step. We will work on the assumption that time intervals are
small enough to assume constant reaction hazards over the interval.

4.1 Poisson

and τ Leap
Consider a Markov process with a constant hazard (say α) of events
occurring throughout time, so that the first event follows an expo-
nential Exp(α) distribution. It can then be shown that the number
of events, say X, in the interval (0, t] follows a Poisson Po(αt)
distribution. A Markov process with constant hazard is known as
a (homogeneous) Poisson process.

Given this basic property of the Poisson process, we assume
that the number of reactions (of a given type) occurring in a short
time interval has a Poisson distribution (independently of other
reaction types). We can then simulate Poisson numbers of reaction
events and update the system accordingly (Algorithm 2).

The problem with the above method is that of choosing an
appropriate time step Δt so that the method is fast but reasonably
accurate. Clearly the smallerΔt, themore accurate, and the largerΔt,
the faster. Another problem is that although one particular Δt may
be good enough for one part of a simulation, it may not be appro-
priate for another. This motivates the idea of stepping ahead a
variable amount of time τ, based on c and the current state of the
system, x. This is the idea behind Gillespie’s τ-leap algorithm.

The τ-leap method is an adaptation of the Poisson time step
method to allow stepping ahead in time by a variable amount τ,
where at each time step τ is chosen in an appropriate way in order to
try and ensure a sensible trade-off between accuracy and speed.
This is achieved by making τ as large (and hence fast) as possible
while still satisfying some constraint designed to ensure accuracy.
In this context, the accuracy is determined by the extent to which
the assumption of constant hazard over the interval is appropriate.
Clearly whenever any reaction occurs some of the reaction hazards
change, and so an assessment needs to be made of the magnitude
of change of the hazards hi(x, ci). Essentially, the idea is to choose τ
so that the (proportional) change in all of the hi(x, ci) is small.

A preleap check is typically implemented as follows. We can
calculate the expected new state as x0 ¼ x + SE(r), where the ith
element of E(r) is just hi(x, ci)τ. We can then calculate the change in
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hazard at this “expected” new state and see if this is acceptably
small. It is suggested that the magnitude of acceptable change
should be a fraction of the cumulative hazard h0(x, c), i.e.,

jhiðx 0; ciÞ � hiðx; ciÞj � Eh0ðx; cÞ; 8i:
Gillespie provides an approximate method for calculating the larg-
est τ satisfying this property [7]. Note that if the resulting τ is as
small (or almost as small) as the expected time leap associated with
an exact single reaction update, then it is preferable to do just that.
Since the time to the next event is Exp(h0(x, c)), which has expec-
tation 1=h0(x, c), one should prefer an exact update if the suggested
τ is less than (say) 2=h0(x, c). A number of refinements have been
made to this basic scheme and are summarized in [16].

4.2 Chemical

Langevin Equation

We have considered an approximation to the continuous time,
discrete state space Markov jump process by discretizing time.
It therefore seems natural to consider a continuous state space
approximation, leading to the CLE. The CLE can be constructed
in a number of more or less formal ways. In particular, it can be
derived as a high concentration limit of the Markov jump process,
but we will present here an informal intuitive construction, and
then provide brief references to more rigorous approaches.

Consider an infinitesimal time interval, (t, t + dt]. Over this
time, the reaction hazards will remain constant almost surely. As in
the previous section, we can therefore regard the occurrence of
reaction events as the occurrence of events of a Poisson process
with independent realizations for each reaction type. Therefore,
if we write dRt for the v-vector of the number of reaction events
of each type in the time increment, it is clear that the elements
are independent of one another and that the ith element is a
Po(hi(Xt, ci)dt) random quantity. From this we have that E(dRt) ¼
h(Xt, c)dt and Var(dRt) ¼ diag{h(Xt, c)}dt and so we can write

dRt ¼ hðXt ; cÞdt þ diag
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hðXt ; cÞ

pn o
dWt :

Algorithm 3. CLE Method

1. Set t ¼ 0. Initialize the rate constants and the initial molecule
numbers x.

2. Calculate hi(x, ci) and simulate the v-dimensional increment
ΔWt, with ith entry a N(0, Δt) random quantity.

3. Update the state according to

x :¼ x þ S hðx; cÞΔt þ S diag
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hðXt ; cÞ

pn o
ΔWt

4. Update t : ¼ t + Δt
5. Output t and x. If t < Tmax return to step 2.
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This is the Itô stochastic differential equation (SDE) which has the
same infinitesimal mean and variance as the true Markov jump
process (where dWt is the increment of a v-dimensional Brownian
motion). Now since dXt ¼ S dRt, we can immediately deduce

dXt ¼ S hðXt ; cÞdt þ S diag
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hðXt ; cÞ

pn o
dWt (3)

as a SDE for the time evolution ofXt. As written, this SDE is a little
unconventional, as the driving Brownian motion is of a different
(typically higher) dimension than the state. This is easily remedied
by noting that

VarðdXtÞ ¼ S diagfhðXt ; cÞgS 0 dt ;
which immediately suggests the alternative form

dXt ¼ S hðXt ; cÞdt þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
S diagfhðXt ; cÞgS 0

p
dWt ; (4)

where now Xt and Wt are both u-vectors. Equation 4 is the SDE
most commonly referred to as theCLE and represents the diffusion
process which most closely matches the dynamics of the associated
Markov jump process. In particular, while it relaxes the assumption
of discrete states, it keeps all of the stochasticity associated with the
discreteness of state in its noise term. It also preserves many of
the important structural properties of the Markov jump process.
For example, Eq. 4 has the same conservation laws as the original
stochastic kinetic model.

More formal approaches to the construction of the CLE usually
revolve around the Kolmogorov forward equation for the Markov
process, given by Eq. 2. A second-order Taylor approximation to
this system of differential equations can be constructed and com-
pared to the corresponding forward equation for an SDE model
(known in this context as the Fokker–Planck equation). Matching
the second-order approximation to the Fokker–Planck equation
leads to the CLE (Eq. 4), as presented above; see [8, 9] for further
details and [17] for a recent discussion.

4.2.1 Numerical Solution As for ODEmodels, simulation typically proceeds using an approx-
imate numerical solution, since the SDE in Eq. 4 can rarely be
solved analytically. To understand the simplest such scheme, con-
sider an arbitrary d-dimensional diffusion process satisfying

dXt ¼ μðXtÞdt þ σðXtÞdWt

where μ(�) is a d-vector known as the drift and σ2( �) ¼ σ( �)σ( �)0 is a
d �d matrix known as the diffusion coefficient. For small time steps
Δt, the increments of the process can be well approximated by using
the Euler–Maruyama discretization

XtþΔt �Xt � ΔXt ¼ μðXtÞΔt þ σðXt ÞΔWt ;
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where ΔWt � N(0, IΔt) and I is the d�d identity matrix. A system
at time t can therefore be stepped to t + Δt via

XtþΔt jXt ¼ xð Þ � N x þ μðxÞΔt ; σðxÞσðxÞ0Δt� �
:

Algorithm 3 describes the procedure for numerically integrat-
ing the CLE. Note that for simplicity, we use the form of the CLE
given in Eq. 3.

As for ODEs, higher order numerical methods (such as the
Milstein scheme) can be implemented for SDEs but are less widely
used due to the complexity of the implementation [18].

4.3 Linear Noise

Approximation

The LNA generally possesses a greater degree of numerical and
analytic tractability than the CLE. For example, the LNA solution
involves (numerically) integrating a set of ODEs for which standard
routines, such as the lsoda package [19], exist. Our brief deriva-
tion follows the approach of [20] to which we refer the reader for
further details.

We begin by replacing the hazard function h(Xt, c) in Eq. 4
with the rescaled form Ωf (Xt=Ω, c) where Ω is the volume
of the container in which the reactions are taking place. Note that
the LNA approximates the CLE increasingly well as Ω and Xt

become large, that is, as the system approaches its thermodynamic
limit. The CLE then becomes

dXt ¼ ΩS f ðXt=Ω; cÞdt þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ΩS diagff ðXt=Ω; cÞgS 0

p
dWt : (5)

We then obtain the LNA by writing the solution Xt of the CLE
as a deterministic process plus a residual stochastic process [10],

Xt ¼ Ωzt þ
ffiffiffiffi
Ω

p
Mt : (6)

Algorithm 4. LNA Method 1

1. Set t ¼ 0. Initialize the rate constants and the initial molecule
numbers x. Set z0 ¼ x=Ω, m0 ¼ (x � Ωz0)=

ffiffiffiffi
Ω

p
(i.e., a vector

of zeros) and V0 as the u �u matrix, with all entries equal to
zero.

2. Numerically integrate the system of ODEs satisfied by zt, mt,
and Vt over (t, t + Δt].

3. Update the state by drawing x from a N(Ωzt + Δt +
ffiffiffiffi
Ω

p
mt + Δt,

ΩVt + Δt) distribution.

4. Update t : ¼ t + Δt. Set mt ¼ (x � Ωzt)=
ffiffiffiffi
Ω

p
and Vt as the

u �u matrix, with all entries equal to zero.

5. Output t and x. If t < Tmax return to step 2.
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Substituting into Eq. 5 gives

dzt þ 1ffiffiffiffi
Ω

p dMt ¼ S f zt þMt=
ffiffiffiffi
Ω

p
; c

	 

dt þ 1ffiffiffiffi

Ω
p

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
S diagff �zt þMt=

ffiffiffiffi
Ω

p
; c
�gS 0q

dWt : (7)

We then Taylor expand the rate function around zt to give

f
�
zt þMt=

ffiffiffiffi
Ω

p
; c
� ¼ f ðzt ; cÞ þ 1ffiffiffiffi

Ω
p FtMt þOðΩ�1Þ (8)

where Ft is the v�u Jacobian matrix with (i, j)th element ∂fi(zt, c)=
∂Zj, t, and we suppress the dependence of Ft on zt and c for
simplicity. Substituting Eq. 8 into Eq. 7 and collecting terms of
O(1) give the MRE

dzt
dt

¼ S f ðzt ; cÞ: (9)

Collecting terms of O(1=
ffiffiffiffi
Ω

p
) gives the SDE satisfied by the resid-

ual process as

dMt ¼ S FtMtdt þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
S diagff ðzt ; cÞgS 0

p
dWt : (10)

Equations 6, 9, and 10 give the LNA of the CLE and therefore of
the Markov jump process model.

4.3.1 Solution

of the LNA

For fixed or Gaussian initial conditions, that is Mt1 � N(mt0, Vt0),
the SDE in Eq. 10 can be solved explicitly to give

Mt jcð Þ � N mt ; Vtð Þ
where mt is the solution to the deterministic ODE

dmt

dt
¼ S Ftmt

Algorithm 5. LNA Method 2

1. Set t ¼ 0. Initialize the rate constants and the initial molecule
numbers x. Set z0 ¼ x=Ω, and V0 as the u �u matrix, with all
entries equal to zero.

2. Numerically integrate the system of ODEs satisfied by zt and
Vt over (t, t + Δt].

3. Update the state by drawing x from a N(Ωzt + Δt , ΩVt + Δt)
distribution.

4. Update t : ¼ t + Δt. Set zt ¼ x=Ω and Vt as the u �u matrix,
with all entries equal to zero.

5. Output t and x. If t < Tmax return to step 2.
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and similarly

dVt

dt
¼ VtF

0
t S

0 þ S diagfhðztÞgS 0 þ S FtVt :

Note that we have dropped the dependence of both mt and Vt

on zt and c to simplify the notation. Hence, the solution of the SDE
in Eq. 10 requires the solution of a system of coupled ODEs; in the
absence of an analytic solution to these equations, a numerical
solver such as that described in [19] can be used. The approximat-
ing distribution of Xt can then be found as

Xt � N Ωzt þ
ffiffiffiffi
Ω

p
mt ; ΩVt

	 

:

A realization of Xt can then be obtained at discrete times via
Algorithm 4. With this approach, the ODE satisfied by zt is essen-
tially numerically integrated over the entire time horizon of inter-
est. Hence, the accuracy of the LNA applied in this way (relative to
the MJP) can become quite poor due to the difference between zt
and the true stochastic solution. An approach advocated by Fearn-
head et al. [21] to alleviate this problem is to restart zt at each
simulation time using the value of xt. Hence, the system of ODEs
satisfied by zt and Vt are (numerically) solved over each interval
[t, t + Δt] with zt ¼ xt and Vt as a u �u matrix, with all entries
equal to zero. Note that mt is zero for all t and therefore the ODE
satisfied by mt need not be solved. Full details can be found in
Algorithm 5. Further discussion of the LNA including details of the
LNA solution can be found in [10, 20, 22, 23].

4.4 Hybrid

Simulation Strategies

While the CLE and LNA approaches represent a computationally
efficient alternative to exact simulation approaches such as the
Gillespie algorithm, biochemical reactions describing processes
such as gene regulation can involve very low concentrations of
reactants [24] and ignoring the inherent discreteness in low copy
number data traces is clearly unsatisfactory. The aim of a hybrid
simulation strategy is to exploit the computational efficiency of
methods such as the CLE and LNA while accurately describing
the dynamics of low copy number species, thereby bridging the gap
between exact and approximate algorithms. Hybrid simulation
strategies for discrete-continuous stochastic kinetic models are rea-
sonably well developed and involve partitioning reactions as fast or
slow based on the likely number of occurrences of each reaction
over a given time interval and the effect of each reaction on the
number of reactants and products. Fast reaction events are then
modeled as continuous (using for example the CLE), and the
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remaining slow reaction events are updated with an exact
procedure. A generic hybrid procedure is given in Algorithm 6.

Algorithm 6. Generic hybrid algorithm

1. Set t ¼ 0. Initialize the rate constants and the initial molecule
numbers x.

2. Classify reactions as fast or slow based on x.

3. Update fast reaction dynamics over (t, t + Δt].
4. Based on the fast reaction events over (t, t + Δt], determine if

a slow reaction has occurred.

5. If no slow reactions have occurred, update x based on the fast
reactions only. Set t : ¼ t + Δt and go to step 7.

6. If (at least) one slow reaction has occurred, identify the time τ
and type of the first slow reaction and update the state x to
time τ. Set t : ¼ τ.

7. Output t and x. If t < Tmax return to step 2.

The CLE is used by Salis and Kaznessis [25] to model fast
reaction dynamics while modeling slow reaction events with a
Markov jump process. Since the slow reaction hazards will neces-
sarily be time-dependent, the time-dependent probability density
of the “next reaction” algorithm is used to compute the times of
the slow reaction events. Discrete/CLE simulation strategies in the
context of a simple gene regulatory system have been considered by
Higham et al. [26], while Kiehl et al. [27] and Alfonsi et al. [28]
consider discrete/ODE approaches.

5 Example: Lotka–Volterra

As an example, we consider a Lotka–Volterra model of predator and
prey interaction consisting of three reactions and two species,
developed by Lotka [29] and Volterra [30]. The reaction list is
given in Table 2.

Table 2
Reaction list and hazards for the Lotka–Volterra system

Label Reaction Hazard Description

R1 X1 �!c1 2X1
c1X1 Prey reproduction

R2 X1 þ X2 �!c2 2X2
c2X1X2 Prey death, predator reproduction

R3 X2 �!c3 ; c3X2 Predator death
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Although strictly speaking X1 and X2 represent animal species,
they could equally well be chemical species. In addition, the system
is sufficiently complex to explore the autoregulatory behavior that
is typical of many biochemical network models.

We aim to investigate the system dynamics through stochastic
simulation. We therefore require key ingredients such as the stoi-
chiometry matrix, which is

S ¼ 1 �1 0
0 1 �1

� �

and the vector of hazards, given by

hðXt ; cÞ ¼ c1X1;t ; c2X1;tX2;t ; c3X2;t

� �0
:

The CLE is characterized by the drift and diffusion functions of
the SDE in Eq. 4. We obtain

S hðXt ; cÞ ¼ c1X1;t � c2X1;tX2;t

c2X1;tX2;t � c3X2;t

� �

and

S diagfhðXt ; cÞgS 0 ¼ c1X1;t þ c2X1;tX2;t �c2X1;tX2;t

�c2X1;tX2;t c2X1;tX2;t þ c3X2;t

� �
:

To compute the LNA, we require f(zt, c) and the Jacobian
matrix Ft. For simplicity, we take a fixed volume of Ω ¼ 1 (and
note that for Ω 6¼1, the hazard of R2 should be c2Ω �1X1X2 to
scale appropriately with volume). We therefore obtain f(zt, c) ¼ h
(zt, c) and

Ft ¼
c1 0

c2z2;t c2z1;t
0 c3

0
@

1
A:

All simulations used initial conditions of x0 ¼ (100, 100)0 and
rate constants c ¼ (0.5, 0.0025, 0.3)0 as used in [31].

Figure 1 shows a single stochastic realization of the
Lotka–Volterra system generated by Gillespie’s direct method.
For comparison, the deterministic MRE solution is shown. Note
that with the stochastic solution, predator levels will eventually
reach zero and the predator population will become extinct. The
MRE solution, on the other hand, is a perfectly repeating oscilla-
tion, carrying on indefinitely. It should be clear that for this system,
the stochastic mean and the deterministic solution do not coincide.

Figure 2 shows the median, inter quartile range, upper and
lower 2.5 percentiles for the prey population, using Gillespie’s
direct method, the CLE and both LNA approaches. The difference
between the two LNA approaches is clear. Application of the LNA
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Fig. 2Median (solid), inter-quartile range (inner shaded region), upper and lower 2.5 percentiles (outer shaded
region) based on 104 stochastic realizations of the Lotka–Volterra system using (a) Gillespie’s direct method,
(b) the CLE with Δt ¼ 0.01, (c) the LNA (Algorithm 4), and (d) the LNA (Algorithm 5)
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Fig. 1 A single stochastic realization of the Lotka–Volterra system using Gillespie’s direct method and the
deterministic solution
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driven by a deterministic solution over the whole time-course of
interest leads to a mismatch between the LNA solution and MJP
solution. Restarting the deterministic solution at each simulation
time, at the simulated value, alleviates this problem.

6 Discussion

Stochastic chemical kinetic theory provides a framework for model
building that leads to a Markov jump process model from a simple
list of biochemical reactions. Gillespie’s direct method provides a
straightforward way of simulating such processes on a computer.
The algorithm can potentially be computationally intensive and
therefore techniques that aim to reduce this cost (such as those
considered in Subheading 3.2) can be of benefit. For systems
involving many reaction channels and species, the computational
cost of an efficient implementation of the Gillespie algorithm may
still preclude statistical analysis. The importance of approximate
algorithms such as the CLE and LNA is then clear.

The stochastic simulation methods examined here are by no
means exhaustive, and indeed there is a vast literature in this area.
For example, we can derive moment equations from the CME to
obtain fast approximations to the stochastic mean and variance of
the system [32–34]. Alternatively, we can take advantage of multi-
core processors; models can be partitioned into smaller subsystems
and simulated independently [35].

Computing Details

All simulations were performed on a machine with 4 GB of RAM
and with an Intel quad-core CPU. The simulation code for the
Lotka–Volterra model was written in R [36]. The graphics were
created using the ggplot2 R package [37]. The R code used in this
chapter can be downloaded from the github repository:

https://github.com/csgillespie/In-silico-Systems-Biology

It was worth noting that using R is useful when developing algo-
rithms that have relatively simple behavior; for larger models, this
method does not scale well. Instead, simulators written in compiled
languages such as C/C++ or Java are preferred; particularly if they
can input/export SBML.
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Chapter 10

BioModels Database: A Repository of Mathematical
Models of Biological Processes

Vijayalakshmi Chelliah, Camille Laibe, and Nicolas Le Novère

Abstract

BioModels Database is a public online resource that allows storing and sharing of published, peer-reviewed
quantitative, dynamic models of biological processes. The model components and behaviour are thor-
oughly checked to correspond the original publication and manually curated to ensure reliability. Further-
more, the model elements are annotated with terms from controlled vocabularies as well as linked to
relevant external data resources. This greatly helps in model interpretation and reuse. Models are stored in
SBML format, accepted in SBML and CellML formats, and are available for download in various other
common formats such as BioPAX, Octave, SciLab, VCML, XPP and PDF, in addition to SBML. The
reaction network diagram of the models is also available in several formats. BioModels Database features a
search engine, which provides simple and more advanced searches. Features such as online simulation and
creation of smaller models (submodels) from the selected model elements of a larger one are provided.
BioModels Database can be accessed both via a web interface and programmatically via web services. New
models are available in BioModels Database at regular releases, about every 4 months.

Key words Controlled vocabularies, model interpretation, SBML, CellML, Reaction network
diagram

1 Introduction

Mathematical modelling has been used for decades to help scien-
tists understand the mechanisms and dynamics behind the complex
biological processes. As models come from different modelers with
different perspectives and are encoded in different formats, their
reuse is not always straightforward. Reimplementation of models
from scientific publications depends on how well the models are
documented. Certain missing details can prevent the models from
being reused, which consequently lead to a complete loss of the
knowledge provided by the papers. The aim of BioModels Database
(see Note 1) [1, 2] is to overcome these limitations by the follow-
ing: (1) encoding and simulating the models in standard formats,
(2) providing semantic annotation by linking the model elements
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to controlled vocabularies and external data resources, and (3)
providing a free, centralized, publicly accessible repository for stor-
ing, searching, and retrieving curated and annotated computational
models. BioModels Database is part of the BioModels.net initiative
(see Note 2) [3]. The following sections elaborate on its significant
features, the structure, and use of the resource.

2 General Information About the Resource

BioModels Database offers a wide range of features and serves as an
efficient model sharing platform. The increase in both the number
and the complexity of the models since its origin in 2005 (see Fig. 1)
demonstrates its recognition in the field of computational systems
biology.

2.1 Models

Provenance

Some models are implemented from articles published in peer-
reviewed scientific journals by a team of curators. However, an
increasing number of models are directly submitted by the mode-
lers themselves. In the past, some models also came from collabo-
ration with other repositories, such as the former SBML model
repository (Caltech, USA), JWS Online (see Note 3) [4] the Data-
base of Quantitative Cellular Signaling (DOQCS) (seeNote 4), and
the CellML repository (see Note 5) [5].

Fig. 1 Growth of BioModels Database: the total number of literature based models
(cyan) and the total number of relationships (yellow) within these models are plotted
here. The number of relationships includes SBML “reactions”, “rate rules”, “assign-
ment rules”, “algebraic rules” and “events”. There has been approximately a
20-fold increase in the number of models, since the launch of the resource in
2005, with an average increase in complexity of the models (measured by the
number of mathematical relationships) being increased 5 times in the same period.
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More than 300 scientific journals recommend submission of
models to BioModels Database in their instructions for authors.
These include journals from Nature Publishing Group (NPG), the
Public Library of Science (PLoS), the Royal Society of Chemistry
(RSC), and BioMed Central (BMC). Authors can quote the model
identifier (obtained on submitting their model to BioModels Data-
base) in their paper. This allows readers to access the model online
and download it once the paper is published.

2.2 Diversity

of Models Hosted

BioModels Database covers a wide range of models from several
biological categories. It hosts models of simple biochemical reac-
tion systems, larger and complex kinetic models, metabolic net-
work models, and steady-state models. Figure 2 represents the
categorization of models in the curated branch using the Gene
Ontology (GO) [6] terms present in the model annotation.

2.3 Model Curation

Pipeline

Models are not directly visible and retrievable by the public when
they are submitted to BioModels Database. From submission to
their public release, all models undergo various automated and
manually performed curation and annotation procedures to ensure
a consistent level of quality and accuracy. This succession of pro-
cesses is depicted in Fig. 3.

2.4 Model

Submission

Submission of models to BioModels Database is free and is open to
everyone. Models can be submitted via an online interface and are
accepted in two formats, Systems Biology Markup Language

Fig. 2 Type of models: categorization of models in the curated branch of BioModels Database based on the GO
terms present in the annotation of the models. This chart was generated by enumerating models in
the database, whose annotations refer either to the GO terms listed here or to the children of the GO terms
listed here

BioModels Database: A Repository of Mathematical Models of Biological Processes 191



(SBML) (see Note 6) [7] and CellML [5]. The reference of
the publication describing the model can be provided (either as a
PubMed Identifier (see Note 7) or a Digital Object Identifier
(see Note 8) or an URL) if available at submission time.

While BioModels Database only distributes models that have
been described in the peer-reviewed scientific literature, models can
be submitted prior to the publication of their associated paper.
However, these models are made publicly available only after the
publication of the corresponding paper. At the time of submission,
each model is assigned a unique and perennial identifier which
allows users to access and retrieve it. This identifier can be used by
authors as a reference in their publications.

2.5 Curation The models that are submitted are queued into the curation pipe-
line and pass through several steps to get published. BioModels
Database is composed of two branches: a curated and a non-curated
one. Models in both branches are fully SBML compliant. Depend-
ing on their curation status, models are moved to one of the two
branches.

Models that satisfy the Minimum Information Required in
the Annotation of Models (MIRIAM) guidelines [8] progress to
the curated branch. These models are thoroughly checked and

Fig. 3 BioModels Database pipeline: the figure shows the pipeline that handles each model, from its
submission to its public release. This illustrates the sequence of steps involved in processing the models
and encompasses both public branches of the database (curated and non-curated) as well as the possibility of
curating and annotating models already published in the non-curated branch
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corrected for accuracy as they must match and reproduce the results
published in the reference publication. A representative figure or
table reproduced by the model (which is present in the reference
publication) together with a description of how it was obtained is
available for each model. To run the simulation experiments under
the conditions described in the reference publication, a tool that is
different from the one that is used by the authors is used. This is to
check and demonstrate that the model is far from software-specific
behaviors and to avoid hidden dependencies. The tools most com-
monly used are COPASI [9, 10], the SBML ODE Solver [11], or
the facilities provided by the Systems Biology Workbench [12].
This ensures that the encoded form of the model that is provided
corresponds to what was described in the paper.

There are several reasons for models to be in the non-curated
branch. These are models that either do not satisfy the full require-
ments forMIRIAM compliance or have not been curated yet due to
limited time and resources. Many of these models are pathway
maps, network models, or steady-state models (such as Flux Bal-
ance Analysis models [13]), without sufficient quantitative results
provided for validation. Others are only the subsets of the whole
model described in the chapter, as some parts cannot yet be
encoded in SBML. And finally, a small number of models could
not be made to reproduce the published results due to untraceable
errors in the implementation or typos in the publication (often even
after contacting the authors of the article).

3 Annotation

All model elements in the curated branch are furthermore thor-
oughly annotated with cross-references to other database records
and ontology terms. The annotations are included in the models
using MIRIAM URIs [14]. As model elements are not always
named precisely to relate directly to the corresponding biological
processes or physical entity, annotations are necessary to enhance
interpretability by both users and software tools. To date, model
elements in BioModels Database are annotated using around 40
different external resources. Some of the predominantly used exter-
nal resources for model annotations are Gene Ontology, ChEBI
Ontology, Brenda Tissue Ontology, Systems Biology Ontology,
Taxonomy, Reactome, KEGG, and UniProt. A collection of
resources and their URIs can be obtained from MIRIAM Registry
(see Note 9) [15].

3.1 Model

Publication

Following the curation and annotation phases, the final stage in the
model processing pipeline is the publication of model. Once
the curation and annotations are completed, the model is tagged

BioModels Database: A Repository of Mathematical Models of Biological Processes 193



as ready for publication and becomes available online during the
next release of BioModels Database. New releases happen 2–4
times a year.

4 BioModels Database Web Interface

The resource provides several features to allow users to quickly
search and locate their models of interest, analyze them, simulate
them, extract submodels, or download them in various formats.
These facilities are available via a web browser or can be accessed
from other tools by using the accompanying web services.

4.1 Model Browsing,

Searching, and

Retrieval

Several features are available through the web interface to facilitate
efficient usage of the models. Models can be browsed, indepen-
dently in the two branches. They can also be located using a pruned
Gene Ontology (GO) browser based on the model annotations.

BioModels Database incorporates a powerful search engine
that allows users to retrieve models of interest. The search can
either be a simple keyword search or a more advanced one. The
search engine performs a sequential search by querying metadata,
publication information, annotations, SBML file content and sup-
plementary information from external data resources. The system
also performs some post-processing of search results in order to
deliver the most relevant results.

For example, a search with a taxonomic term traces the whole
hierarchy in order to find related models. A search for the term
“mammalia” returns models that are not only annotated with
Mammalia but also with the children and parent taxonomic
ranks. Indeed a biological process that happens in Homo sapiens,
or of Rattus norvegicus, occurs in Mammalia as well. Similarly, a
biological process that happens in Metazoa also occurs in Mamma-
lia (Fig. 4).

4.2 Model Display Each model is presented in a tabbed form, providing access to all
the information stored by the database about the model. The
model elements are hyperlinked between different tabs and
the annotations are hyperlinked to their original resource page.
The detailed description about the model is separated into six
categories, namely, Model, Overview, Math, Physical entities, Para-
meters, and Curation, which are all accessible via dedicated tabs.
This section is highlighted as area “A” in Fig. 5.

l The Model tab displays general information about the model
such as its reference publication and general annotation to
external resources. It also provides access to the submitted
(original) version of the model file, as well as information
about the encoders, and date and time of the model creation
and last modification.
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l The Overview tab provides access to all model components,
namely, the mathematical expressions, physical entities, para-
meters, rules and other elements that constitute the model.
Each model element is provided with a hyperlink, which leads
to further details displayed on a different tab. Smaller models
(submodels) can also be created by selecting a few model ele-
ments and followed by using the “Create a submodel with
selected elements” command. This generates a valid SBML
model by extracting all the selected elements and the additional
elements required to have a valid model. The resulting model is

Fig. 4 Taxonomic search: the search engine considers the entire taxonomic tree,
when the search is based on a taxonomic term. For example, a search based on
the taxonomic term “Mammalia” returns models that are annotated with the
term Mammalia and related ones, such as Metazoa, Homo sapiens, or Rattus
norvegicus (represented as red in this figure)

Fig. 5 Model display: this screen image shows the display of an example model in order to illustrate how the
model information is displayed on the web interface
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displayed in the new submodel tab and can be downloaded
in SBML.

l The Math tab lists all the mathematical constructs, which
include reactions, rules and events. Each mathematical expres-
sion is associated with a rendering of the mathematical equation
and hyperlinked annotations.

l The Physical entity tab lists all the entity pools and compart-
ments included in the model, along with their initial quantities
and annotations.

l The Parameter tab lists all the parameter used in the mathe-
matical expressions. Parameters whose values are determined by
mathematical expressions are linked to the associated model
element of the Math tab.

l The Curation tab displays a representative curation result (in
the form of graphical plots or tables), that matches with that of
the reference publication, and which was reproduced by simu-
lating the model.

4.3 Model Exports This section is highlighted as area “B” in Fig. 5. The menu Down-
load SBML allows users to download the model in various versions
of SBML [7]. The version of the model that was checked by the
curators and used to produce the curation figures is indicated as
“curated.” The other SBML versions are automatically generated
and provided for convenience, as certain tools support only some
specific levels or versions of SBML.

The menu Other formats (auto-generated) provides access to
other model representation formats, such as BioPAX (see Note 10)
(level 2 and level 3) [16] and the Virtual Cell Markup Language
(VCML) [17]. BioModels Database also provides downloadable
configuration files for open tools such as XPPAUT [18], SciLab (see
Note 11), and Octave (m-file) (see Note 12). In addition, a
human-readable summary of the models in the Portable Document
Format (PDF), generated using SBML2LaTeX tool [19], is also
available from this menu.

ThemenuActions grants access to the graphical representations
of the model’s reaction networks, following the Systems Biology
Graphical Notation (SBGN) [20] and available in PNG (Portable
Network Graphics (see Note 13)) and SVG (Scalable Vector Gra-
phics (see Note 14)) formats. The reaction networks are also
provided in a dynamic way via an interactive Java applet.

The menu Actions also provide access to the online simulation
tools. BioModels Database embeds SOSlib [11] to provide a basic
online simulation tool. The simulation results are returned both
in graphical and textual form. For many models, an additional and
more flexible simulation tool is available using JWS Online [4].
Some models have an additional feature called Model of the Month
(see Note 15) which is a brief article that discusses the biologi-
cal background, significance, structure and results of the model.
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The Models of the Month are also accessible through BMC Systems
Biology Gateway (see Note 16).

4.4 Web Services BioModels Database features programmatic access via web services
[21] (see Note 17). They allow, for example, direct retrieval of
complex searches for models and the creation of submodels. The
available services are described in a Web Services Description
Language (WSDL) (see Note 18) file that enables software to
understand available functions and their usage. The web services
use the Simple Object Access Protocol (SOAP) (see Note 19) to
encode requests and responses. The complete list of available meth-
ods, as well as a Java library and the associated documentation, is
provided on the BioModels Database website.

BioModels Database is developed under the GNU General
Public License, and the software is freely available from its Source-
Forge repository (see Note 20).

4.5 Conclusions BioModels Database has significantly grown both in size and
number of the models, since its origin in 2005 and serves as an
efficient model sharing platform. The submission of models by
modelers/authors themselves is increasing rapidly, and this demon-
strates the popularity and recognition of BioModels Database in
the community. The resource helps modelers to reuse already exist-
ing models or model components, to modify them by implement-
ing their own theory, to publish articles describing newmodels, and
to submit those new models to BioModels Database. For example,
BIOMD0000000176 and BIOMD0000000177 are derived
from BIOMD0000000172 which in turn is derived from
BIOMD00000000064. BioModels Database is also used as a
source of trusted models for benchmarking model simulation soft-
ware packages.

BioModels Database has the potential to serve as a comprehen-
sive repository for computational systems biology models, similar
to the functionality of GenBank and Protein Data Bank (PDB), the
data resources for genes and protein 3D structures.

5 Notes

1. http://www.ebi.ac.uk/biomodels

2. http://biomodels.net

3. http://jjj.biochem.sun.ac.za/

4. http://doqcs.ncbs.res.in/

5. http://models.cellml.org/cellml

6. http://sbml.org/

7. http://www.pubmed.gov/
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8. http://www.doi.org

9. http://www.ebi.ac.uk/miriam/

10. http://www.biopax.org/

11. http://www.scilab.org/

12. http://www.gnu.org/software/octave/

13. http://tools.ietf.org/html/rfc2083

14. http://www.w3.org/Graphics/SVG/

15. http://www.ebi.ac.uk/biomodels-main/modelmonth

16. http://www.biomedcentral.com/gateways/systemsbiology

17. http://www.ebi.ac.uk/biomodels-main/webservices

18. http://www.w3.org/TR/wsdl/

19. http://www.w3.org/TR/soap/

20. http://sourceforge.net/projects/biomodels/
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Chapter 11

Supporting SBML as a Model Exchange Format
in Software Applications

Sarah M. Keating and Nicolas Le Novère

Abstract

This chapter describes the Systems Biology Markup Language (SBML) from its origins. It describes the
rationale behind and importance of having a common language when it comes to representing models. This
chapter mentions the development of SBML and outlines the structure of an SBML model. It provides a
section on libSBML, a useful application programming interface (API) library for reading, writing, manip-
ulating and validating content expressed in the SBML format. Finally the chapter also provides a description
of the SBML Toolbox which provides a means of facilitating the import and export of SBML from both
MATLAB and Octave (http://www.gnu.org/software/octave/) environments.

Key words SBML, Systems biology standards, Reproducibility, Exchange format, Language

1 Introduction

Systems Biology projects take into account the interactions
between a very large number of physical entities and the analysis
of many parameters. As seen in the previous chapters, the quantita-
tive relationships between entities and their interactions are often
described using mathematical models and there exists a variety of
software applications that can be used for different types of analysis.
Early modellers and software developers in systems biology quickly
realised that if their efforts were to be of benefit to the wider
community it must be possible to share and reuse the models.
The best way to facilitate this, and to enable concurrent use of
multiple software packages with different capabilities, was to agree
a common format for describing the models.

There are many ways to describe models in a standardised
manner. One can use natural languages, graphical languages, sets
of equations, logical relationships between elements, etc. The need
for a language to exchangemodels becamemanifest at the end of the
last century, with efforts starting in the field of metabolic networks
[1] and physiology modelling [2]. A similar need was expressed
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during the first Workshop on Software Platforms for Systems
Biology held at the California Institute of Technology in early 2000.

The resultwas the SystemsBiologyMarkupLanguage (SBML) [3];
a machine-readable model definition language based on XML,
the eXtensible Markup Language [4].

2 SBML

An SBML document contains all the information pertaining to
the structure of a model, including the list of symbols, variables
and constants, the list of mathematical relationships linking them,
and all the numbers needed to instantiate simulations. SBML was
originally viewed as being aimed towards models of molecular
pathways [5]. However, its versatility means that SBML can be,
and today is being, used in a variety of modelling contexts. For
instance, BioModels Database [6] contains SBML representations
of models including cell signalling [7], metabolism [8], gene regu-
lation [9] but also nonmolecular representations of cellular pro-
cesses [10], models of neurons [11], treatment of tumours [12] or
even of zombie invasions [13]. In general, SBML enables the
encoding of any mathematical model based on pools of entities
and processes that modify them. This versatility is currently expand-
ing towards rule-based modelling, reaction–diffusion, logical mod-
elling etc. Since its creation in 2000, SBML has continued to evolve
as an international community effort, and has grown in terms of the
levels of acceptance to the point where, at the time of this writing, it
is used by over 200 software packages worldwide and required as a
format for model encoding by many journals.

2.1 SBML

Development

SBML has been, and continues to be, developed in stages, with
specifications released at the end of each development stage. This
approach, which effectively freezes SBML development at incre-
mental points, allows users to work with stable standards and gain
experience with the standard before further development. Future
development can then benefit from the practical experiences of
users and developers.

Major editions of SBML are termed levels and represent
substantial changes to the composition and structure of the
language. The latest level being developed is Level 3 [14] repre-
senting a major evolution of the language through Level 2 [15]
from the introduction of Level 1 in the year 2001 [3, 16]. SBML
Level 3 is being developed as a modular language, with a central
core comprising a self-sufficient model definition language, and
extension packages layered on top of this core to provide additional,
optional sets of features.

The separate levels of SBML are intended to coexist. All of the
constructs of Level 1, i.e., the elements and attributes of the SBML
representation can be mapped to Level 2; likewise, the majority
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of the constructs from Level 2 can be mapped to Level 3 Core.
In addition, a subset of Level 3 constructs can be mapped to Level
2 and a subset of Level 2 constructs can be mapped to Level 1.
However, the levels remain distinct; a valid SBML Level 1 docu-
ment is not a valid SBML Level 2 document and so on.

Minor revisions of SBML are termed versions, and constitute
changes within a Level to correct, adjust and refine language features.

2.2 Structure of

SBML Level 3 Core

SBML is a structured language with a strict syntax and very precise
semantics. A serious understanding of the language can only be
achieved through the SBML specification document [14]. In this
section we will present a basic overview of the common constructs
of SBML. The later sections look at code designed to intuitively
work with the SBML constructs and attributes and will provide
more insight into the SBML language itself.

This text restricts itself to SBMLLevel 3Core anddoes not go into
anydetail relating to theL3packages that arebeingdevelopedtoextend
the core both in terms of SBML development and also the develop-
ment of the software discussed in the later sections of the chapter.

2.2.1 The SBML Element An SBML document is essentially an XML document containing an
sbml element which declares the namespace, level and version of
SBML. The sbml element MUST contain a model element which
itself consists of lists of one or more components. This SBML
snippet illustrates an sbml element containing a model element.

<?xml version¼"1.0" encoding¼"UTF-8"?>
<sbml
xmlns¼"http://www.sbml.org/sbml/level3/version1/
core"

level¼"3" version¼"1">
<model/>

</sbml>

2.2.2 The Model Element Some components in SBML (see Table 1) represent items that have
a numerical value that may be constant or may vary throughout a
simulation. The constructs that represent possible variables are
compartment, species and parameter. In all these cases, the id
attribute of the component is used throughout the model to repre-
sent the numerical value of that component at the point in time
specified by any simulation/analysis that is being undertaken.

It is also possible to introduce variable stoichiometry into
reactions using the id of the speciesReference listed as a product
or reactant within a reaction.

Other components representmathematical constructs that define
some level of interaction between the components that can be varied.
These constructs include the reaction, rules and event components.

The remaining constructs: initialAssignment, functionDefini-
tion, constraint and unitDefinition provide methods of adding
further information or mathematical detail to a model.
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2.2.3 Elements Providing

Variables

In Subheading 2.2.2 it was noted that the compartment, species
and parameter components of the model element represent items
that have a numerical value that may be varied in the simulation of a
model. The SBML specification assigns attribute values to these
components that allow the user to specify initial values, units and
whether the particular instance of a component can be varied by
other constructs within the model. Some attributes are required
and others have default values in some SBMLLevels. Full details are
available in the SBML specifications [14].

As a quick illustration consider a model that contains two
species and a parameter. Since species must be located within a
compartment, it will also contain a compartment. The compart-
ment is a constant, 3D container of volume 2.3 L. Within this
compartment are two species. There is also a fixed parameter
with value 3000 per second. It is possible to define this unit in
SBML but that is left as an exercise for the reader.

The species component in SBML does not represent a single
molecule but rather a pool, that is an ensemble of indistinguishable
entities, represented by its concentration or amount in a compart-
ment. The environment is well stirred and thus no concentration
gradients need tobe considered.Thefirst species has an initial amount
of 4.6 mol and the second an initial amount of 1 mol. These are
reacting and therefore the amountswill vary throughout a simulation.

An SBML model specifying these components is shown below.

Table 1
Components of an SBML Level 3 core model element

Component description

Compartment A container of finite size for well-stirred substances

Species A pool of undistinguishable entities

Parameter A quantity of whatever type is appropriate

Reaction A statement describing some transformation, transport or binding process
that can change one or more species

Rule A mathematical expression that is added to the model equations

Event A set of mathematical formulas evaluated at specified moments in the time
evolution of the system

Initial assignment A mathematical formula to assign the initial value of a component

Function definition A named mathematical function that can be used in place of repeated
expressions

Constraint A mathematical formula for stating the assumptions under which the
model is designed to operate

Unit definition A name for a unit used in the expression of quantities in a model
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<model>
<listOfCompartments>

<compartment id¼"cell" spatialDimensions¼"3"
size¼"2.3" units¼"litre"

constant¼"true"/>
</listOfCompartments>
<listOfSpecies>

<species id¼"s1" compartment¼"cell"
initialAmount¼"4.6"
substanceUnits¼"mole"

hasOnlySubstanceUnits¼"false"
boundaryCondition¼"false"

constant¼"false"/>
<species id¼"s2" compartment¼"cell"

initialAmount¼"1"
substanceUnits¼"mole"

hasOnlySubstanceUnits¼"false"
boundaryCondition¼"false"

constant¼"false"/>
<species id¼"s2" compartment¼"cell"

initialAmount¼"1"
substanceUnits¼"mole"

hasOnlySubstanceUnits¼"false"
boundaryCondition¼"false"

constant¼"false"/>
</listOfSpecies>
<listOfParameters>

<parameter id¼"p" value¼"3000"
constant¼"true"/>

<listOfParameters>

</model>

The species specified above have initial amounts specified in
moles. However, the hasOnlySubstanceUnits attribute has a value of
false, indicating that whenever the id of the species appears in the
model it refers to concentration.

Thus for any analysis, it may be necessary to convert between
amount and concentration using

Concentration ¼ Amount

Size

where size refers to the size of the compartment in which the
species is located.

It is possible to create models in SBML without the need to
consider units and thus units have largely been ignored within this
text. However, in the situation where a model uses species that have
been located within a compartment whose size is not unity the issue
of concentration and amount must be considered.
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2.2.4 Elements Providing

Relationships

There are several elements in SBML that allow the user to define
relationships between variables within the model.

We will use a reaction to illustrate this, but there are other
constructs (listed in Table 1) that can also be used.

A reaction in SBML represents any kind of process that can
change the quantity of one of more species. It may be a mass action
reaction, or involve transport, catalysis or any process that changes
the species involved (note that transport changes species because
they are located in compartments). It is necessary to define the
participating reactants and/or products. This is done using a
speciesReference component that identifies the species from the
model’s listOfSpecies and assigns a stoichiometry value to that
species role within the reaction. Species that merely influence a
reaction, such as a catalyst, are listed as objects of type modifier-
SpeciesReference. This construct is similar to speciesReference
without the stoichiometry attribute. Attributes for a reaction object
allow the modeller to specify whether the reaction is reversible or
fast. The mathematics describing the velocity of the reaction can be
encoded in the kineticLaw component. SBML uses a subset of the
MathML 2.0 standard [17] to encode mathematical formula
directly within SBML components. Note that an SBML kinetic-
Law represents the extent of the reaction per unit of time, and not
the rate of the reaction. In other words, the result is not a concen-
tration per time, but a quantity per time. This is why the rate is
multiplied by the volume in the kineticLaw.

The SBML snippet shows the description of the reaction

s1��!k s2

with a rate of

p � s1

where s1 and s2 are two species residing in compartment cell and p is
a parameter.

<model>
. . .

<listOfReactions>

<reaction reversible¼"false"
fast¼"false">

<listOfReactants>

<speciesReference species¼"s1"
stoichiometry¼"1"/>

</listOfReactants>

<listOfProducts>
<speciesReference species¼"s2"

stoichiometry¼"1"/>
</listOfProducts>

<kineticLaw>
<mathxmlns¼"http://www.w3.org/1998/Math/MathML">

<apply>
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<times/>
<ci> p </ci>
<ci> s1 </ci>
<ci> cell </ci>

</apply>
</math>
</kineticLaw>
</reaction>
</listOfReactions>
. . .

</model>

2.2.5 The Mathematical

Model

An SBML document contains all the information pertaining to
the structure of a model. However, it does not directly contain
the system of mathematical equations that describes the behaviour
of the model. It is therefore necessary for software using SBML to
reconstruct the mathematics needed to perform the required anal-
ysis. In some cases, such as assignments, the correct equations can
be extracted fairly directly from the SBML constructs.

The SBML snippet here shows two rules, an assignmentRule
and a rateRule from which the equations can be easily extracted.

y ¼ 2x þ 1

dg

dt
¼ g � 1
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In other cases, the process necessitates more complex proce-
dures for instance extracting the equations from a set of reactions.
As mentioned in Section/refsec:reactions one of the specificities of
SBML is the representation of biological networks as a set of
processes (SBML Reactions that are converting pools of entities
(SBML Species) into others). Each process (SBML Reaction)
is associated with a kineticLaw and lists the entities affected
(SBML SpeciesReferences) characterised by their stoichiometry
for this process. SBML does not contain the ODEs describing
the evolution of the pools. Software must reconstruct them
from the list of all reactions and associated stoichiometries.
This approach, which is in direct contrast to CellML [2] where
the focus is on describing the mathematical model, makes
the maintenance of models easier. Adding or removing a reaction
does not require carefully exploring all the equations. It also
permits the use of a given computational model within different
simulation frameworks, for example both deterministic or stochas-
tic simulations can be constructed from the same set of SBML
Reactions.

3 LibSBML

LibSBML [18] is an application programming interface (API)
library for reading, writing, manipulating and validating content
expressed in the SBML format. It is written in ISO C and C++,
provides language bindings for .NET, Java, Python, Perl, Ruby,
MATLAB and Octave, and includes many features that facilitate
the adoption and use of both SBML and the library. LibSBML is
freely available as source code and binaries for all major operating
systems under the LGPL open source terms.

Developers can embed libSBML in their applications, saving
themselves the work of implementing their own SBML parsing,
manipulation and validation software.

3.1 SBML and

the libSBML API

LibSBML uses objects (classes) that correspond to SBML compo-
nents with member variables that represent the attribute values.
The API is constructed to provide an intuitive way of relating
SBML and the code needed to create or manipulate it. LibSBML
has extensive documentation available both online and as a
separate documentation archive available with each libSBML
release. The C++ documentation is the most extensive but docu-
mentation specifically tailored for many of the other language bind-
ings is available.

Here we provide an outline of key features of the library used in
conjunction with some of the constructs of SBML that should
provide a user with a basic starting point. The code examples use
a combination of sample code and notes to provide further detail
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and should be considered as part of the text. Code snippets use
python but the API is identical for all the major languages sup-
ported. It should be noted that the bindings for MATLAB and
Octave do differ from the general libSBML API and are considered
separately in Subheading 4.

3.2 Reading and

Writing SBML

LibSBML enables reading from and writing to either files or strings.
Once read in libSBML stores the SBML in an SBMLDocument
object which can later be written out. Thus any of functions shown
could be used to read and write SBML from a file or string.

>>> import libsbml

# read a document

>>> doc ¼ libsbml.readSBMLFromFile(filename)

>>> doc ¼ libsbml.readSBMLFromString(string)

# helper function that takes either a string

# or filename as argument

>>> doc ¼ libsbml.readSBML(filename)

>>> doc ¼ libsbml.readSBML(string)

# write a document

>>> libsbml.writeSBMLToFile(doc, filename)

>>> True

>>> libsbml.writeSBMLToString(doc)

>>> 0<?xml version¼"1.0" encoding¼"UTF-8"?>\n

<sbml

xmlns¼"http://www.sbml.org/sbml/level3/version1/
core"

level¼"3" version¼"1">\n

<model/>\n

</sbml>\n0

The doc object produced is an instance of the SBMLDocu-
ment class which represents the sbml element.

The SBMLDocument contains one instance of a Model
object which in turn contains the ListOfXYZ classes representing
the SBML elements contained within the model element (see
Fig. 1). The API allows the user to retrieve sub elements from a
parent. Assuming that the SBML snippet of Subheading 2.2.1 has
been read in, each of these ListOfXYZ objects is an empty list since
the model element is empty.
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Fig. 1 This figure illustrates the structure of the model element. The various components are located within
the relevant “ListOfXYZ” components



3.3 Creating and

Manipulating SBML

The libSBML API allows easy creation of objects and sub objects
representing SBML elements and the sub elements contained
within them.

>>> import libsbml
# create an SBML Level 3 Version 1 document
>>> sbmlns ¼ libsbml.SBMLNamespaces(3,1)
>>> doc ¼ libsbml.SBMLDocument(sbmlns)

#create the model as a sub element of the document
>>> model ¼ doc.createModel()
#create a compartment as a sub element of the model
>>> compartment ¼ model.createCompartment()
# note the compartment is created and
# added to the listOfCompartments within the model
>>> model.getNumCompartments()
1

3.3.1 SBMLNamespaces LibSBML allows you to work with all levels and versions of SBML.
In order to facilitate this there is an SBMLNamespaces object that
records the level, version and appropriate namespaces for each
object. A sub object inherits the SBMLNamespaces from the con-
taining document object. It is however possible to create objects
prior to adding them to a document, in this case libSBML does
check that there is consistency between SBMLNamespaces before
adding objects. It is considered best practice to create a document
and then create the sub elements directly from the document as in
the example above.
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3.3.2 SBML Component

Example: Compartment

The compartment component has attributes that specify its
spatialDimensions, its size and the corresponding units, plus a
constant attribute that determines whether the size can change
or not during a simulation. The SBML snippet 1 represents a
constant, 3D compartment with volume 2.3 L.

The libSBML API provides functions to set and retrieve each
attribute, functions to check whether an attribute has been set and,
in some cases, functions to unset an attribute. For all components
and attributes these functions follow a standard form.

>>> import libsbml

# create an SBML Level 3 Version 1 document
>>> sbmlns ¼ libsbml.SBMLNamespaces(3,1)
>>> doc ¼ libsbml.SBMLDocument(sbmlns)

#create the model as a sub element of the document
>>> model ¼ doc.createModel()

#create a compartment as a sub element of the model
>>> compartment ¼ model.createCompartment()
# set the attributes on the compartment
# note a return value of 0 indicates success
>>> compartment.setId("cell")
0
>>> compartment.setSize(2.3)
0
>>> compartment.setSpatialDimensions(3)
0
>>> compartment.setUnits("litre")
0
>>> compartment.setConstant(True)
0

# get the attribute values
>>> compartment.getId()
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’cell’
>>> compartment.getSpatialDimensions()
3

# examine the status of the attribute
>>> compartment.isSetSize()
True
>>> compartment.getSize()
2.3

#unset an attribute value
>>> compartment.unsetSize()
0
>>> compartment.isSetSize()
False
>>> compartment.getSize()
Nan

3.4 Validation In addition to a strict syntax for the structure of the language
the SBML specifications list a number of Validation Rules that
indicate further requirements for fully valid SBML. The rules
also include optional conditions for applying particular non-
required types of consistency and those things recommended as
best practices.

LibSBML provides a rich API for selecting and applying the
various validation rules. It is possible to disable validators that deal
with concepts that are not of interest to the user. For example,
unit consistency is not a requirement of SBML. Software devel-
opers have differing views on whether they want units to be
consistent and thus the ability to deselect unit validation is partic-
ularly useful. The following illustrates a case where turning unit
validation off removes a warning from the list of validation errors
reported.

>>> import libsbml

>>> reader ¼ libsbml.SBMLReader()

>>> doc ¼ reader.readSBMLFromFile(filename)

# validating the document returns the number of errors

>>> doc.validateSBML()

1

# querying the error log displays the error

>>> doc.getErrorLog().toString()
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"line 9: (99505 [Warning]) In situations where a math-
ematical expression contains literal numbers or para-
meters whose units have not been declared,it is
not possible to verify accurately the consistency of
the units in the expression. The units of the
<assignmentRule> <math> expression ’k * 2’ cannot be
fully checked. Unit consistency reported as either no
errorsorfurtheruniterrorsrelatedtothisobjectmay
not be accurate.\n\n"

# turn the unit consistency checks off

>>> doc.setConsistencyChecks(libsbml.LIBSBML_CAT_
UNITS_CONSISTENCY, False)

# validate the document again with unit checking off

>>> doc.validateSBML()

0

3.5 Working

with Multiple SBML

Levels/Versions

It has been noted in Subheading 2.1 that the levels and versions of
SBML are intended to coexist. LibSBML provides a uniform API
that seamlessly covers all SBML Levels and Versions, making it
significantly easier for software developers to support the different
definitions in their applications. The functions used to set attribute
values will return error codes to indicate that the particular attri-
bute or indeed the given value is not appropriate for the level and
version of SBML being used. The code below provides examples of
some of the error codes that may be returned.

>>> import libsbml

# create a L3 compartment and set spatialDimensions to
4.5

# return code 0 indicates success

>>> compartmentL3 ¼ libsbml.Compartment(3,1)

>>> compartmentL3.setSpatialDimensions(4.5)

0 # libsbml.LIBSBML_OPERATION_SUCCESS

# try the same with an L2 compartment

# return code -4 indicates that the value of 4.5 is not
allowed

>>> compartmentL2 ¼ libsbml.Compartment(2, 4)

>>> compartmentL2.setSpatialDimensions(4.5)

-4 # libsbml.LIBSBML_INVALID_ATTRIBUTE_VALUE
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# with L1

# return code -2 indicates that the spatialDimensions

# attribute does not exist in L1

>>> compartmentL1 ¼ libsbml.Compartment(1,2)

>>> compartmentL1.setSpatialDimensions(4.5)

-2 # libsbml.LIBSBML_UNEXPECTED_ATTRIBUTE

In some cases developers prefer to target their own analysis
software to one particular Level/Version of SBML.

LibSBML provides a method of converting models between
levels and versions thus facilitating this approach.

It should be noted that it is not always possible to convert
constructs from higher levels to lower levels. Events cannot be
described in the Level 1 format. However there are some attributes,
for example sboTerm, that provide semantic information that may
not be crucial to the mathematical understanding of the model and
thus converting to a lower level may remove the attribute, whilst
leaving the mathematical model intact. Other constructs, such as
initialAssignment and functionDefinition, can be converted.
LibSBML will only perform a conversion if the set of mathematical
equations that would be derived from both the source and target
model are identical. The functions report success or failure; and
querying the error log of the document will return any warnings
about the conversion that has been done or errors that indicate why
it could not proceed.
>>> import libsbml

>>> reader ¼ libsbml.SBMLReader()
>>> doc ¼ reader.readSBMLFromFile(filename)

# by default conversion will not happen if the source
model is invalid
# or the resulting model would be invalid
>>> doc.setLevelAndVersion(1,2)
False
>>> doc.getErrorLog().toString()
’line 4: (91003 [Warning]) Conversion of a model with
<constraint>s to
SBML Level 1 may result in loss of information.\n\n
line1:(91014[Warning])SBMLLevel2Version4removed
the requirement
thatall unitsbeconsistent.Thismodelcontainsunits
that produce
inconsistencies and thus conversion to Level 1 would
produce an invalid
model.\n\n’
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# this behaviour can be overridden by changing the
strict flag to false
>>> strict ¼ False
>>> doc.setLevelAndVersion(1,2,strict)
True

3.6 Working

with MIRIAM RDF

Annotation

In addition to the model semantics, that is the variables and their
mathematical relationships, SBML provides a mechanism for add-
ing attribution information and a layer of biological semantics on
top of each component of the model. This is discussed in detail in
another chapter.

LibSBML provides an API for interacting with CVTerms and
ModelHistory elements. The following code would produce the
SBML Snippet 2.

>>> import libsbml

# create the species and set the metaid attribute

>>> s ¼ libsbml.Species(3,1)

>>> s.setMetaId("cacam")

# create a new cvTerm that is the biological qualifier
"hasPart"

>>> cv ¼ libsbml.CVTerm(libsbml.BIOLOGICAL_
QUALIFIER)

>>> cv.setBiologicalQualifierType("hasPart")
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0

# add resources to the cvterm

>>> cv.addResource("http://identifiers.org/uni-
prot/P62158")

0

>>> cv.addResource("http://identifiers.org/obo.
chebi/CHEBI\%3A29108")

0

# add the cvterm to the species

>>> s.addCVTerm(cv)

0

3.7 A Note on JSBML With the exception ofMATLAB andOctave, the language bindings
for libSBML are automatically generated.

Unfortunately this limits the platform independence
brought by the use of Java because the binding is only a wrapper
around the C/C++ core, implemented using the Java Native
Interface (JNI). As a consequence, some software developers
have experienced difficulties deploying portable libSBML-based
Java applications with high concurrent usage. JSBML [19],
a Java library for SBML, addresses this issue by providing an
API that maps all SBML elements to a flexible and extended Java
type hierarchy whilst striving for 100 % compatibility with the
libSBML Java API.

4 SBMLToolbox

Many modellers use a mathematical environments such as
MATLAB (http://www.mathworks.com) as this provides the
computational power they need for the simulation/analysis they
wish to perform. Unfortunately models constructed in such an
environment do not have a proscribed structure and this makes it
difficult, if not impossible, to share and reuse these models.
SBMLToolbox, together with the matlab binding for libSBML, pro-
vides a means of facilitating the import and export of SBML from
both the MATLAB and Octave (http://www.gnu.org/software/
octave/) environments. All the functionality of the libSBML binding
and SBMLToolbox is compatible with Octave.
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SBMLToolbox [20] is not intended to be a fully fledged simu-
lation tool, although some simulation capability is available. It is
primarily intended to demonstrate how structures in the MATLAB
environment can be used to represent models and how these struc-
tures can be compatible with SBML. Here we provide a basic
overview of SBMLToolbox. Full documentation is available online
and with each SBMLToolbox release.

4.1 The MATLAB

SBML Structure

The term MATLAB SBML Structure refers to the in-memory data
structure used by the libSBML bindings and SBMLToolbox to
represent an SBML model in the mathematical environment. A
complete model is shown below. This mimics the elements of
SBML and how they are contained within each other; again see
Fig. 1. In the MATLAB SBML structure the name ‘listOfXYZ’ has
been dropped as the structure contains arrays of the individual
elements but the concept of the Model object remains identical to
that of SBML and the classes used in libSBML.

The structure is a standard MATLAB/Octave structure, with
the fieldnames representing SBML attributes or arrays of SBML
sub elements. These can be easily accessed using the fieldnames and
by indexing into any array.
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In addition to fieldnames corresponding to SBML attributes
the structures may contain additional fieldnames to assist in deter-
mining whether a value has been set or whether a default value is
being used. SBML Levels 1 and 2 have inbuilt default values for
some attributes whilst SBML Level 3 does not. SBMLToolbox
facilitates the use of all SBML Levels and Versions.

>> model.species(1).id

ans ¼
’S1’

>> model.species(1).initialConcentration
ans ¼

0

4.2 Creating SBML The MATLAB SBML Structures directory of SBMLToolbox
contains functions that provide identical functionality to that avail-
able in libSBML. Sub elements can be created and attributes values
set and queried.
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4.3 Import and

Export of SBML

Import and export of SBML to and from theMATLAB SBML
Structure is achieved using the libSBML binding for either
MATLAB or Octave. This binding essentially consists of two func-
tions TranslateSBML and OutputSBML.

4.3.1 TranslateSBML This function takes a filename (or where the environment allows
will browse for a file if no argument is given) and returns the
MATLAB SBML structure representing the model. It will option-
ally perform a full validation of the model, that is, validation with all
available validators enabled as described in Subheading 3.4. Any
errors reported can be saved to a separate structure.
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4.3.2 OutputSBML The function OutputSBML is the converse of TranslateSBML: it
writes the MATLAB SBML structure to an XMLfile. The structure
is checked to ensure it has the all the fieldnames it expects to find.
Optionally the function can be configured to restrict this check to
ensuring ONLY the expected fields are present. This facilitates the
use of other fields by a user
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5 Conclusion

The Systems Biology Markup Language has become the de facto
standard for exchanging models in the Systems Biology arena.
Supporting SBML in software applications is facilitated by both
libSBML and SBMLToolbox enabling developers to concentrate
on the functionality of their software and avoid the need to consider
parsing, creation, manipulation and validation of the SBML lan-
guage itself. The variety of language bindings available reduces the
need for the developer to move away from their preferred program-
ming language and thus, whether it is for a two line script or a full
blown software application, the use of SBML should be accessible
to a wide variety of users from many backgrounds.
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Chapter 12

Controlled Annotations for Systems Biology

Nick Juty, Camille Laibe, and Nicolas Le Novère

Abstract

The aim of this chapter is to provide sufficient information to enable a reader, new to the subject of Systems
Biology, to create and use effectively controlled annotations, using resolvable Identifiers.org Uniform
Resource Identifiers (URIs). The text details the underlying requirements that have led to the development
of such an identification scheme and infrastructure, the principles that underpin its syntax and the benefits
derived through its use. It also places into context the relationship with other standardization efforts, how it
differs from other pre-existing identification schemes, recent improvements to the system, as well as those
that are planned in the future. Throughout, the reader is provided with explicit examples of use and directed
to supplementary information where necessary.

1 Introduction on MIRIAM Guidelines

Typically models generated in the latter part of the twentieth
century were created in isolation, usually by small groups or by
individuals. They were frequently encoded in custom formats or
were directly written in a programming languages, contained non-
standard terminologies to describe model components, and were
often simulated or processed with proprietary software applica-
tions. Together, these factors resulted in a largely unusable body
of work; since models could not be shared with other groups
(custom formats), it was not clear what was being modeled
(nonstandard nomenclature with insufficient metadata), or the
simulation results could not be repeated (software specificity or
unavailability).

Over the past decade, a number of standardization efforts have
risen to address these deficiencies. There are now a number of
description formats, largely based on XML (eXtensible Markup
Language) see Note 1, which are suitable for the representation of
models. These include, for instance, Systems Biology Markup Lan-
guage (SBML) see Note 2, [1]. In addition, many other formats
can be converted into a standardized representation, such as SBML,
through the use of community-developed software.

Maria Victoria Schneider (ed.), In Silico Systems Biology, Methods in Molecular Biology, vol. 1021,
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To facilitate the harmonization of terminologies used in
mathematical modeling, there now exists a cornucopia of onto-
logies, which themselves are developed according to shared com-
munity guidelines (OpenBiomedicalOntologies Foundry (seeNote
3, ref. [2])). These ontologies can be used, for example, to define
the roles of various model components and the mathematical equa-
tions that describe their behaviors (see Systems Biology Ontology
(seeNote 4, ref. [3])), or to describe the algorithms that are needed
to reproduce previously demonstrated simulation results (see KiSAO,
Kinetic Simulation Algorithm Ontology (seeNote 5, ref. [3])).

Various communities across the biological sciences also define
their own Minimum Information checklists (MIs), specifying the
key information that should be included with their (experimental)
data to aid in their reuse (MIBBI, Minimum Information for
Biological and Biomedical Investigations) (see Note 6, ref. [4])).
In the field of Systems Biology, this yielded the Minimum Informa-
tion Required in the Annotation ofModels (MIRIAM; see ref. [5])).

The MIRIAMGuidelines are a community-developed effort to
define a minimal set of information that should be provided within
a model. This information should be sufficient to enable a model to
be reused in the manner intended by its creator and is formalized as
a set of guidelines to which a model must adhere to be deemed
MIRIAM-compliant.

The MIRIAM Guidelines are composed of three sections, each
dealing with a different aspect of a model and the manner in which
it is encoded: reference correspondence, attribution annotation, and
external resource annotation. Briefly, the reference correspondence
section details information relating to the file format of the
model, the accuracy with which it reflects the (biological) process
under consideration, and its instantiability in a simulation. The
attribution annotation section deals with information pertaining
to the model creation process, its modification, and the terms under
which it can be (re)distributed. The interested reader should con-
sult the original publication for further details regarding these
components of the Guidelines [5].

External resource annotation, the final section of the MIRIAM
Guidelines, describes how to formalize the relationships between
model components, and information about those components that
is held externally, for instance on the World Wide Web. The objec-
tive of this final section of the Guidelines is to ensure that this
information, or metadata, is constructed in such a manner as to
prolong its longevity and accuracy. The following section details the
considerations that were made in addressing this final part of the
Guidelines, providing information on “metadata” and the concepts
and existing frameworks that were leveraged to address the high-
lighted issues. The detailed requirements to comply with this sec-
tion of the Guidelines, together with examples of use, follow in the
section entitled “External resource annotation.”
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2 Metadata and Annotation

Metadata is often, and vaguely, defined as “data about data” and
may refer to some information held elsewhere, perhaps in a reposi-
tory or database, that relates to or sheds light on the present
subject. Annotation is the process by which, in some shorthand
notation, one can provide the “reader” with or direct him to this
additional information. Annotations can be thought of as supple-
mentary information which can be used to assist in clarification or
definition of data components, but are not themselves required in
the processing of that data. For example, in the context of model-
ing, the annotations provided within a model are not necessary to
run a simulation.

Annotations can take many forms, many of which are not
suitable for formal use. Referred to as “uncontrolled” annotations,
they may be expressed as raw text, directly copy/pasted from the
information source or web page address, or simply cite an identifier
from a database, presented without context. These contribute to
many downstream issues such as their unsuitability for computa-
tional processing, their unreliability due to fragility and changeabil-
ity of web pages, and their ambiguities, respectively.

Identifiers assigned to data sets by their providers are almost
exclusively composed from a limited pool of characters (alphanu-
meric). It is therefore often the case that an identifier from one data
set is also a legitimate and valid identifier for a completely unrelated
piece of information from a different data provider. For instance,
the identifier “9606” describes Homo sapiens in the NCBI Taxon-
omy (see Note 7), a species of bird (Bombycilla cedrorum) in the
BOLD taxonomy (see Note 8), and a German article in PubMed
(see Note 9).

Even when care is taken to identify data using stable and
established sources, there are some rare instances, in which an
identifier scheme can be superseded. Table 1 illustrates the changes
implemented in, what was at the time known as “EMBL bank,”
but is now known as the European Nucleotide Archive (ENA)
(see Note 10).

Table 1
The history of protein identification syntax by release of the European
Nucleotide archive

EMBL bank release (month/year) Protein identification

43 (06/1995) /note¼“pid:g2285”

45 (12/1995) /db_xref¼“PID:g2285”

58 (03/1999) /protein_id¼“CAA03857.1”
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In some cases, the change in the syntax used by data providers can
be subtle, as highlighted by the change in letter-case of “pid”between
release 43 and 45 (Table 1), in ENA. Though not frequent, an entire
identifier scheme can itself be deprecated in favor of, or subsumed
into, an alternative scheme. Such a transition is shown in release
58 above (PID). In such circumstances, data providers should pro-
vide a mapping service to such entries, lest they be lost.

Databases are often accessed through a query-able interface.
The resultant web address displayed is usually linkable in that it can
be copied and pasted as text. However, web addresses often specify
intrinsically an adopted architecture, specify a retrieval system, or
direct one to a specific resolving location. Hence, with data being
mirrored in various geographical locations, the copying of simple
web addresses restricts one to a specific resource. If the specified
resource is “down” at the time of query, relevant information
cannot be accessed. In addition, over time, some URLs may also
become obsolete. Some examples of different web addresses that
provide exactly the same information are shown in Table 2.

An additional complication arises from database nomenclature
itself. Identifiers provided by the Universal Protein Resource (Uni-
Prot (see Note 11)) have previously been known as “SWISS-
PROT,” “UniProt/Swiss-Prot,” “UniProtKB/Swiss-Prot,” and
“UNP” identifiers. While self-evident to the reader, particularly
one grounded in the biological sciences, the computational proces-
sing of such names, together with the diversity of associated web
addresses, can be problematic and error-prone.

Clearly the use of “raw” text or any one of a plethora of web
addresses, as the basis of an annotation, makes them short-lived,
fragile, and difficult to process. Consequently, since the incorpora-
tion of annotations within a model has numerous benefits,
a “controlled” metadata provision methodology is required.

2.1 Controlled

Annotations

Controlled annotations are those which follow a defined structure
and syntax. These need to address the major issues highlighted
above, namely a way to handle the nomenclature used to identify

Table 2
The web addresses listed all provide alternative means to access exactly
the same information from the Enzyme Nomenclature (http://www.chem.
qmul.ac.uk/iubmb/enzyme/)

http://www.enzyme-database.org/query.php?ec¼1.1.1.1

http://www.genome.jp/dbget-bin/www_bget?ec:1.1.1.1

htttp://www.ebi.ac.uk/intenz/query?cmd¼SearchEC&ec¼1.1.1.1

http://enzyme.expasy.org/EC/1.1.1.1
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a set of data (SWISS-PROT vs. UniProtKB/Swiss-Prot), and a way
to refer to a piece of data regardless of the architecture through
which it is resolved, or of its geographical location (databases query
mechanisms and remotely mirrored data). In the field of computer
science, such mechanisms already exist: Uniform Resource Identi-
fiers (URIs).

2.2 Uniform

Resource Identifiers

and Namespaces

A Uniform Resource Identifier (URI) (see Note 12) is a string of
characters that is used to identify a resource and comes in two
forms: Uniform Resource Name (URN) (see Note 13) and
Uniform Resource Location (URL). Most people will be familiar
with URLs; however, there is a key difference between the two
which lies in the fact that a URN specifies only a name for a
resource, while a URL specifies a name as well as a resolving
location.

A namespace is a set of reserved strings of characters that are
used to uniquely and unambiguously identify a pool of information.
For example, the set of data available from the “Transport Classifi-
cation Database” (seeNote 14) is assigned the namespace tcdb.

By combining the use of a namespace with identifiers supplied
by data providers in a URI, it is possible to build unique, robust,
and perennial identifiers. To enable such identifiers to be used
within any given community, and to ensure that they are used
consistently, it is necessary to design a common syntax for encoding
identifiers (URIs) and to share a list of legitimate namespaces. In
our case, this list of namespaces is the MIRIAM Registry and is
central in the creation of resolvable Identifiers.org URIs.

3 MIRIAM Registry

The MIRIAM Registry (see Note 15) is a product of the MIRIAM
Guidelines. Having identified the need for adding metadata to
model files, it was necessary to create a suitable repository of
approved namespaces: MIRIAM Registry. Importantly, the way in
which information is structured in this registry takes into consider-
ation the way information is presented and distributed in the scien-
tific domain (Fig. 1).

For the purposes of simplifying data access and information
storage within the Registry, an abstraction is made of a “pool” or
“set of data” of interest and is referred to as a “data collection.”
Each data collection is assigned a namespace, which is human-
readable (“taxonomy,” Fig. 1). This data collection contains a
finite number of data records, each of which exists in this name-
space regardless of where the data itself is located. Hence, neither
data collection nor individual records are restricted by geo-
location or database architecture and are thought to exist as
abstract concepts. Each record is of course assigned an identifier
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by the data providers themselves. For each data collection, there
may be one or more “resources” that serve the pertaining infor-
mation. These “resources,” then, are the physical locations where
the data itself may actually be accessed, if required. In the example
shown (Fig. 1), both the “UniProt” and “NCBI” resources
provide access to instances of records from the “Taxonomy” data
collection.

This simple separation of the data (record) from the locations
where the information can be accessed (resources) allows the build-
ing of a robust, unambiguous, and perennial identification and
cross-referencing system.

The namespace information stored in the Registry can then be
used to construct URIs of either URN or URL forms. This
requires, besides the namespace assigned and stored in the Registry,
a unique collection-specific identifier (generated by the data pro-
vider). Since the same namespace is used in both URN and URL
forms, and the identifier for a particular record is fixed, it is appar-
ent that both forms are highly related, and indeed it is possible to
convert from one form to the other. A typical Registry entry is
provided (Enzyme Nomenclature, Fig. 2). It should be stated that
the Identifiers.org URLs (cf. below) are the preferred form of
identifiers, and that the URN form is becoming largely deprecated,
given all the advantages the URL form presents.

Fig. 1 Structure and nomenclature of information stored in the MIRIAM Registry
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A brief description of the variety of information captured for
each data collection in the Registry, and its significance, is given in
Table 3.

3.1 Registry

Accessibility Features

and Facilities

A variety of user-centric features have been provided alongside the
Registry to facilitate both its efficient use and to encourage its rapid
adoption. These include Web Services to allow programmatic
access to the Registry [6,7], for example to validate, resolve, or
create MIRIAM URIs.

Other useful features:

Collection “tags”: A few tags, taken from a defined set of keywords,
are associated with each data collection. They describe either the
type of information recorded by the collection (“sequence,” “phe-
notype”), the subject of that collection (“gene,” “drug”), the
domain area to which it relates (“disease,” “neuroscience”), or
the taxonomic relation of the data (“mammalian,” “human”).
This allows users to identify collections of interest. The refinements
planned for the system are discussed elsewhere [8].

Fig. 2 MIRIAM Registry entry for the enzyme nomenclature data collection
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Resource health: A “health status” has been implemented at the level
of the individual resources listed in the Registry, whereby a daily
health check is automatically performed for each resource. This is
summarized on the data collection listing for each resource, where
it is depicted by color coding of the “Resource identifier” panel.
A calendar view of the uptime and further details are also available.
This system is also used by the Registry curators to identify issues
with resources.

Registry download: The entire contents of the Registry can be
downloaded in XML format, through the “Export” link on the
left panel of any MIRIAM Registry page. This is often preferred by
users who would otherwise need to perform numerous queries
through Web Services.

Submission of new data collections: The Registry aims to provide its
services to any domain of the biological sciences. Any users wishing to
submit a collection for inclusion can use the “Submit new” feature. In
addition, anyone can provide suggestions for modifications/
improvements to the presented information. As a community-driven
project, we welcome and encourage all such submissions.

Table 3
Description of the main information components stored for data collections in the MIRIAM Registry

Information field Description Significance/comment

Collection name A human-readable name to refer to
the collection

Usually assigned based upon the most
commonly associated resource for the
collection

Collection
identifier

A unique identifier for the
collection within the Registry

Not intended for human readability

Collection
synonyms

Other names by which the
collection may identified

This field is searchable through the web
interface, and query-able through web
services

Collection
identifier
pattern

A regular expression pattern that
matches all valid identifiers
within the collection

Can be used through web services to validate
potential identifiers

Collection
namespace

The namespace assigned to the
data collection

Can be used to construct URIs, and is usually an
acronym based upon the collection name, or
based upon the most commonly associated
resource(s)

Access URLs
(resources)

The physical location URL which
can be used to access to a given
record from the associated
collection

URLs can be modified if needed by Registry
curators, allowing its seamless use to the
community

Each URL is attached to a resource (which is also
uniquely identified)

References Reference information for the data
collection

Directs to citation information, or user guides
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Search facility: It is possible to search the information stored in the
Registry using the provided search functionality. This search func-
tions against all textual information stored, such as the collection
name, synonyms, and collection description.

Flag system: Over the course of time, the Registry has evolved from
collating only “free-to-use” collections and resources, to now
accommodating those which may not be free, or have other
restrictions. Of course it is useful to present information on
such restrictions to the users, since it can affect their choice of
collection or resource to use. This is achieved through the use of
a “flag” system. Current flags include, for example, “License
restriction” (which may preclude access or use for commercial
purposes), and “Access restriction” (e.g., requiring registration).
Data collections with restrictions are clearly labeled.

3.2 MIRIAM URIs As stated, the namespace stored in the MIRIAM Registry can be
used to construct both URN and URL forms of identifiers. While
initially URNs were recommended for use in annotation, an
increasing number of users expressed the desire to process these
annotations in situ. For instance, given an identifier for a chemical
compound in the ChEBI (see Note 16) data collection, it may be
desirable to know if this model component is identical to a compo-
nent in another model that was annotated with a PubChem
(see Note 17) collection-based annotation. Using the URN form
one would need to, for example, perform queries via web services to
retrieve resolving locations (resources) for that URN, then to
examine any common cross-references and descriptions contained
on each target page (one for each CheBI and PubChem record).
The provision of URL-based identifiers removes one step in this
process, and depending on how such an information was retrieved,
provides additional information in various formats (such as
RDF/XML).

MIRIAM URIs are composed of four parts partitioned by a
separator, “/” for URLs and “:” for URNs. The stem of the
construct is constant and is composed of the definition of URI
form, e.g., http:/, and the definition of the URI type, e.g., identi-
fiers.org. The next part specifies the data collection to be identified,
using the namespace recorded in the MIRIAM Registry, for exam-
ple pubmed. Finally, the record identifier, which is unique and
assigned by the data provider, for example 16333295, is appended
to construct the full identifiers.org URL, http://identifiers.org/
pubmed/16333295.

3.3 Identifiers.org

URLs

Identifiers.org (http://identifiers.org, see ref. ([8]) is a resolving
layer built upon the information stored in the MIRIAM Registry
and provides resolvable identifiers. Each collection in the Registry
has an associated namespace and dictates the syntactic stem that
is to be used to construct both URN and URL forms of identifiers.
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A collection record can then be specified using the collection-specific
identifier assigned by the data provider. For comparison, both URN
(top) and URL (bottom) forms identifying the MIRIAM publica-
tion in the PubMed data collection are shown:

urn:miriam:pubmed:16333295

http://identifiers.org/pubmed/16333295

Since the URL above specifies a record, it may be associated
with any number of resolving locations (resources). Hence, since it
is preferable to provide all of them rather than preselecting a single
one, the URL instead resolves to an intermediate page, where all
such locations are presented to the user for selection. This behavior
is depicted in the illustration below (Fig. 3).

The Identifiers.org URL form also allows various levels of
customization in resolving behavior, for example allowing one to
request the resolved information to be returned in a specified
format, such as RDF.

3.4 Identifiers.org

Granularity

Identifiers.org URLs can be used directly to access the information
available in the MIRIAM Registry. The following examples illus-
trate how to build URLs at an appropriate level of granularity.

Identification of a data collection.

The URL below resolves to the entry for the “PubMed” col-
lection in the MIRIAM Registry. http://identifiers.org/pubmed/:
Since MIRIAM itself is a collection (of namespaces) and is listed
in the MIRIAM Registry, it is also possible to reference the
“PubMed” collection using the identifier for “PubMed” in the
MIRIAM Registry (MIR:00000015), allowing retrieval of the same
entry in the database with the synonymous URL: http://identifiers.
org/miriam.collection/MIR:00000015

Fig. 3 Illustration of the relationship between the intermediate resolving location
and physical locations associated with a specific data collection
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Identification of a record within the PubMed data collection.

The URL below resolves to an intermediate page which lists all
available resolving locations listed for this collection, in the MIR-
IAM Registry.
http://identifiers.org/pubmed/16333295: The intermediate page
corresponding to this example is shown (Fig. 4).

For convenience, listed alongside each associated resource is its
name, geographical location, and its “uptime,” summarized from
the health check status.

Of course, a user will likely have, or develop over time, a
preference for one resource over another, for whatever reason. In
such instances, they may wish to directly and repeatedly resolve to
that specific resource location. This can be accomplished using the
resource identifier associated with each collection resource.

http://identifiers.org/pubmed/16333295?resource¼MIR:0010
0023: In this case, the page corresponds to http://www.ncbi.nlm.
nih.gov/pubmed/16333295, which is the NCBI resource loca-
tion associated with the PubMed data collection (Fig. 5).

Of course, it is not convenient or likely that users will commit
individual resource identifiers to memory. This issue necessitated
the creation of the “profile” parameter.

3.5 Profiles Profiles allow one to customize the behavior of the resolving system
through pre-selection of the resources to be used in dereferencing
Identifiers.org URLs. This means that one can define a set of

Fig. 4 Illustration of an example intermediate page which is displayed when accessing a “PubMed” data
record
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resolving locations for, potentially, every data collection stored
in the Registry. Currently the number of available profiles is limited
to those created by the Registry curators. Work is under way to
extend this facility and allow users to create and share their own
profiles. Profiles will be allowed to be “private,” while an interface is
being implemented to allow public profiles to be searched. For
example, the predefined profile “most_reliable” (below) always
returns the instance of a record through the resource with the
highest uptime. The “most_reliable” profile is based on the health
check history of the resource. http://identifiers.org/pubmed/
16333295?profile¼ most_reliable

The use of the URL form, combined with judicious “para-
meters,” simplifies access to a wealth of information, largely obviat-
ing the need for directly querying the Registry through web
services. However, it should be noted that the use of the URL
form for identification purposes should not incorporate the use of
any parameter. Hence, in the unambiguous and perennial identifi-
cation of data, the identifier should be considered as being the
minimal string that specifies a record. From a practical perspective,
those users who have in the past used identifiers of the URN form
can convert them into identifiers.org URLs if they choose, or
indeed vice versa.

3.6 BioModels.net

Qualifiers

The purpose of “Qualifiers” is to refine the relationship between,
for example, a model component and the resolved target of a cross-
reference associated with that component. In the absence of a
qualifier, the relationship assumed is an “is” relationship. For
instance, given a model component labeled as “Glu” containing

Fig. 5 Accessing data through a specified resource, using an Identifiers.org URI
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an unqualified annotation (http://identifiers.org/obo.chebi/
CHEBI:17234, which resolves to a page with information about
“Glucose”), it should be assumed that the model component
(written as “Glu”) “is” “Glucose” (the external resource record
representing the real-life glucose molecule).

The “is” or “identity” relationship is straightforward to under-
stand, but other qualifiers exist to express more complex relations
between model component and an external resource. It should be
noted that there are two types of qualifiers, biological (in the “bqbiol”
namespace) and modeling (in the “bqmodel” namespace), which
relate either biological/physical objects (genes, proteins, enzymes)
or modeling objects/concepts (model files, databases, literature), to
model components. Figure 6 illustrates the relationship between
model component in a file (model element), the “real-life” entity it
seeks to represent (biological entity A), the external resource annota-
tion provided with it (annotation), and the “real-life” target of that
external resource annotation (biological entity B).

For example, expanding on the example above, a model of
glycolysis may contain a model component labeled “PFK” (model
element), representing the “real-life” enzyme phosphofructokinase
(biological entity A). The external resource annotation presented
alongside it (annotation), when resolved, can be used to represent a
database record for the real-life activity of the phosphofructokinase
enzyme (biological entity B), which is important with respect to its
function in the model, namely its catalysis of a specific reaction. In
this case, an appropriate qualifier would be “hasProperty.” The
qualifier is, in essence, a reflection of the relationship between two
representations, one being held in a model, and the other in an
external resource. This is necessary since it is not possible to actually
attach a PFK molecule to an electronic file, whether it is a model
file, or a database record.

Some of the biological relationships that can be represented are
shown below, with reference to the figure above. It should be noted
that each qualifier is presented in two forms, noun and verb, to
allow users to select whichever they are most comfortable with.
Both can be used synonymously. The full list of qualifiers is available

Fig. 6 Schematic representation between model component in a file
(model element), the “real-life” entity it seeks to represent (biological entity A),
the external resource annotation provided with it (annotation), and the “real-life”
target of that external resource annotation (biological entity B)
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from the BioModels.net website (see Note 18) and can be
expanded and refined upon community request and feedback
(Table 4).

3.7 Incorporating

Qualifier Relationships

The simplest way to understand qualifiers is to consider them as
being the “predicate” in a “subject, object, predicate” sentence,
where the subject is the model component, the object is the target
of the external resource annotation, and the predicate is the quali-
fier relationship between them.

Qualifiers are commonly used within metadata in model encod-
ing formats, such as SBML:

1. <rdf:RDF xmlns:rdf¼“http://www.w3.org/1999/02/22-rdf-
syntax-ns#”

2. xmlns:bqbiol¼“http://biomodels.net/biology-qualifiers/”>

3. <rdf:Description rdf:about¼“#MyModelElement”>

4. <bqbiol:hasPart>

5. <rdf:Bag>

Table 4
Examples of the biological qualifiers available to refine the relationships between model component
and external resource

Qualifier Description

bqbiol:hasPart
bqbiol:part

The biological entity represented by the model element includes the subject of
the referenced resource (biological entity B), either physically or logically. This
relation might be used to link complex to the description of its components

bqbiol:isDescribedBy
bqbiol:description

The biological entity represented by the model element is described by the
subject of the referenced resource (biological entity B). This relation should be
used, for instance, to link a species or a parameter to the literature that
describes the concentration of that species or the value of that parameter

bqbiol:isEncodedBy
bqbiol:encoder

The biological entity represented by the model element is encoded, directly, or
transitivity, by the subject of the referenced resource (biological entity B).
This relation may be used to express, for example, that a protein is encoded by
a specific DNA sequence

bqbiol:isHomologTo
bqbiol:homolog

The biological entity represented by the model element is homologous to the
subject of the referenced resource (biological entity B). This relation can be
used to represent biological entities that share a common ancestor

bqbiol:occrsIn
bqbiol:container

The biological entity represented by the model element is physically limited to a
location, which is the subject of the referenced resource (biological entity B).
This relation may be used to ascribe a compartmental location, within which
a reaction takes place

bqbiol:isVersionOf
bqbiol:hypernym

The biological entity represented by the model element is a version or an instance
of the subject of the referenced resource (biological entity B). This relation
may be used to represent, for example, the “superclass” or “parent” form of
a particular biological entity
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6. <rdf:li rdf:resource¼“http://identifiers.org/uniprot/P04
551”/>

7. <rdf:li rdf:resource¼“http://identifiers.org/uniprot/P10
815”/>

8. </rdf:Bag>

9. </bqbiol:hasPart>

10. </rdf:Description>

11. </rdf:RDF>

The use of Identifiers.org URLs does not in itself require any
particular format or syntax. It can therefore be incorporated into
any structured format relatively easily. However, many structured
formats do themselves have a syntactic procedure through
which such annotations are to be expressed. For example, within
SBML, such annotations are encoded in RDF (seeNote 19) blocks.

A detailed line-by-line description of the example above:

1. The <rdf element open tag and definition of XML namespace
declaration for RDF use.

2. Definition of the biology-qualifiers namespace.

3. RDF Description block opened, with the subject being
MyModelElement

4. The qualifier for the block is hasPart from the bqbiol name-
space.

5. The rdf:Bag construct allows the inclusion of multiple URIs in
an annotation.

6. The li line element where a resource is specified.

7. The li line element where a resource is specified.

8. Close tag to end the Bag block.

9. Close tag to end the hasPart block.

10. Close tag to end the Description block.

11. Close tag to end the RDF block.

This annotation block should be interpreted to mean that
“MyModelElement” represents a biological object that “has
parts” described by the records in the UniProt data collection
specified by the identifiers P04551and P10815. In this example,
the UniProt specified entries refer to Cyclin-dependent kinase and
G2/mitotic-specific cyclin cdc13, which are both involved in the
control of the cell cycle at the G2/M (mitosis) transition.

3.8 Alternative

Identification Schemes

The Identifiers.org identification scheme offers distinct advantages
over some other well-known systems, some of which are described
briefly below.
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Persistent Uniform Resource Locations (PURLs) (see Note 20)
are subtly different in intent from Identifiers.org URLs. Since this is
an open system, in the sense that once registered any individual may
create a PURL, there can potentially be a plethora of different
PURLs that all identify the same record (have a common end-
point). This is an hindrance to data integration. In addition, the
focus of PURLs is to permanently identify a record resolved
through a specified resource, thus effectively tying a record identi-
fier to a specific instance, within a single URL. This should be
contrasted with a record identifier using Identifiers.org URLs,
which can be used to resolve information through any number of
associated resources.

Digital object identifiers (DOIs) (see Note 21) are generally
associated with online authored publications, and hence may not be
as well suited to the referencing of biological entities. In addition, it
is a fee-based assignment service, and the identifier designated by
DOI does not reuse the identifier assigned by the data provider.
Finally, like PURLs, a DOI resolves to a single instance of a record.

Life Science Record Names (LSRN) (see Note 22) are the
closest relative of the MIRIAM identification scheme, in that they
use a central database with assigned namespaces and store informa-
tion on the associated resolving locations. The key differences lie in
the extensive curation of the MIRIAM Registry, its broader cover-
age, and the supporting facilities it offers, including web services,
programmatic access to the database, health check, XML download
availability, together with an extensive and highly active community
of users.

A more complete comparison of these, and other, identification
schemes is espoused on the Registry website (see Note 23). There
follows a summary of the key advantages proffered by theMIRIAM
system:

l Open submission—Anyone can make a submission to the
Registry.

l Curated—The content of the Registry is heavily curated and
maintained for accuracy by a dedicated curation team.

l Resolution system—The scheme adopted allows the mapping
of records to multiple resolving locations.

l Health check—Daily monitoring of all resources, with curator
intervention when necessary.

l Extensive support—A growing community of users to provide
software and tools in support of the system (see below).

l Accessibility—A variety of access methods is provided, includ-
ing web services.

l Export—The entire content of the can be exported as XML,
allowing noninteractive processing of Registry content.
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l Free—There is no restriction on the use of information in the
Registry, and no registration requirement.

l Standardization—MIRIAM is itself a partner in a number of
standardization efforts.

3.9 The Registry

User Community

There are a number of perspectives that can be taken on the
knowledge captured in the MIRIAM Registry. It can be viewed as
part of a standardization effort, thus having associated compliant
file formats, and supporting software and tools; it can be regarded
as a way to identify both data records and a means to standardize
namespaces and associated resources; it can also be considered
within the landscape of other, sometimes competing, identification
schemes. Each of these perspectives is briefly addressed below.

Since many structured formats conform to the MIRIAM
Guidelines, they by default should use annotations based on the
MIRIAM Registry. Since SBML is one such structured format, all
tools that read, write, or manipulate this format will intrinsically
handle Identifiers.org URIs. This covers a broad spectrum of activ-
ities ranging from the annotation of models, through processing of
those models to do novel research, to creating human or machine-
readable representations of those models.

Identifiers based on information stored in the Registry are
already widely used, most notably within BioModels Database (see
Note 24, ref. [9]). The latest release of the database (22nd release,
May 2012) contains over 142,900 models, with over 444,130,000
annotations. These model files are available freely and can be down-
loaded with either URN or URL annotations, with the latter being
the default annotation style.

Since the Registry also assigns and stores namespace
information for data collections, as well as associated synonyms,
this knowledge itself can also be used to harmonies or standardize
resource nomenclature. For example, both the PSI-MI (Proteomics
Standards Initiative—Molecular Interactions; see ref [10]) and Bio-
PAX (Biological Pathway Exchange; [11]) working groups use this
information to assign standard database names in their controlled
vocabularies, using the stored synonym information.

As a standardization effort, support for Identifiers.org URIs,
and particularly the use of resolvable identifiers, is growing;
LSRN, has announced that it will be transitioning its information
into the Registry and will cease further support and development of
its own identification scheme. This process is already well
under way.

Further information on the formats, tools, and software that
utilizeMIRIAMRegistry information is available from the Registry’s
documentation (see Note 25).
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3.10 Future

Perspectives

The MIRIAM Registry is a stable resource which provides an
identifier scheme, a perennial URI generation service, and a resolv-
ing system. While its foundations lie in Computational Systems
Biology, it is by no means restricted to that domain, and indeed
data collections from more diverse fields are continually being
incorporated. This potential for its use as a universal cross-
referencing system, which was noted during the inception of the
system, is now being realized. There should be no impediment in its
use in any domain.

The user interface and access options are being continually
improved, permitting not only the creation of perennial and unam-
biguous identifiers, but also facilitating the customization of
the way the underlying data is addressed. The ability to create
“Profiles,” for example, will allow the creation of entire sets of
resolving preferences, which can potentially be shared at an institu-
tional, community, or group level.

There previously existed various restrictions governing the
suitability for inclusion of data collections into the Registry. These
have recently been removed in recognition of the referencing needs
of the user community at large. For instance, some proprietary data
collections were deemed unsuitable since they required either reg-
istration or were subject to fee-based access. The provision of the
“flag” system discussed above has enabled the incorporation of
such historically non-compliant data sources.

When deliberating upon the future of data access on the web,
onemust also consider the importance of efforts such as the Seman-
tic Web (seeNote 26) and the Linking Open Data (LOD) (seeNote
27) initiative. In providing resolvable URIs the Identifiers.org
addresses some of the demands of this growing community.

The MIRIAM efforts (Guidelines, Registry, and Identifiers.
org) are all partners in larger community level standardization
efforts, such as MIBBI and BioDBCore [12], as well as members
of the modeling community, particularly through their involve-
ment in SBML, but also within the COMBINE (see Note 28)
community.

4 Notes

1. http://www.w3.org/TR/REC-xml/
2. http://sbml.org/Documents/Specifications
3. http://obofoundry.org/
4. http://www.ebi.ac.uk/sbo/
5. http://biomodels.net/kisao/
6. http://mibbi.org/
7. http://www.ncbi.nlm.nih.gov/taxonomy
8. http://www.boldsystems.org/views/taxbrowser_root.php
9. http://www.ncbi.nlm.nih.gov/pubmed
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10. http://www.ebi.ac.uk/ena
11. http://www.uniprot.org/
12. http://tools.ietf.org/html/rfc3986
13. http://en.wikipedia.org/wiki/Uniform_Resource_Name
14. http://www.tcdb.org/
15. http://www.ebi.ac.uk/miriam/
16. http://www.ebi.ac.uk/chebi/
17. http://www.ncbi.nlm.nih.gov/pccompound
18. http://biomodels.net/qualifiers/
19. http://www.w3.org/TR/REC-rdf-syntax/
20. http://www.purl.org/
21. http://www.doi.org/
22. http://lsrn.org/
23. http://www.ebi.ac.uk/miriam/main/mdb?section¼uris
24. http://www.ebi.ac.uk/biomodels/
25. http://www.ebi.ac.uk/miriam/main/mdb?section¼use
26. http://www.w3.org/2001/sw/
27. http://linkeddata.org/
28. http://co.mbine.org/
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Chapter 13

Bayesian Approaches for Mechanistic Ion Channel
Modeling

Ben Calderhead, Michael Epstein, Lucia Sivilotti, and Mark Girolami

Abstract

We consider the Bayesian analysis of mechanistic models describing the dynamic behavior of ligand-gated
ion channels. The opening of the transmembrane pore in an ion channel is brought about by conforma-
tional changes in the protein, which results in a flow of ions through the pore. Remarkably, given the
diameter of the pore, the flow of ions from a small number of channels or indeed from a single ion channel
molecule can be recorded experimentally. This produces a large time-series of high-resolution experimental
data, which can be used to investigate the gating process of these channels. We give a brief overview of the
achievements and limitations of alternative maximum-likelihood approaches to this type of modeling,
before investigating the statistical issues associated with analyzing stochastic model reaction mechanisms
from a Bayesian perspective. Finally, we compare a number of Markov chain Monte Carlo algorithms that
may be used to tackle this challenging inference problem.

Key words Ion channels, Mechanistic models, Bayesian inference, Markov chain Monte Carlo

1 Introduction

Cells and subcellular organelles are delimited by membranes that
are made of phospholipids, arranged in a bilayer. The lipidic nature
of membranes means that they cannot be crossed by hydrophilic
compounds, including many that are essential for the cell metabo-
lism and survival. This problem is solved by providing specific active
or passive transport mechanisms mediated by appropriate proteins.
In the case of ions, their movement in and out of the cell is achieved
by the expression of proteins, which either chaperone the ion or
form a hydrophilic pore through the membrane. The former are
known as ion transporters (and can work against the electrochemi-
cal gradient by coupling transport of an ion to hydrolysis of ATP or
to countertransport of other ions), and the latter are known as ion
channels. The role of these proteins is to allow the selective move-
ment of ions into and between regions of the cell. Ion channels are
essential in many biological processes, including cell excitability and
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fast cell-to-cell communication in the nervous system, and they are
the focus of this chapter.

The opening of the transmembrane pore in an ion channel is
brought about by conformational changes in the protein, which
results in a flow of ions through the pore. Remarkably, given the
diameter of the pore, the flow of ions from a small number of
channels or indeed from a single ion channel molecule can be
recorded experimentally. This produces a large time-series of
high-resolution experimental data, which can be used to investigate
the gating process of these channels.

Ion channels can be classified into two groups. The first group
comprises ligand-gated ion channels, which undergo conforma-
tional changes in response to the binding of a chemical, such as a
neurotransmitter, to a site on the protein. The energetic perturba-
tion associated with the agonist binding leads to the opening of the
pore. The second group consists of voltage-gated channels, in
which pore opening is induced in response to local environmental
changes in the potential difference between the cell and its extra-
cellular domain. This chapter is concerned with discerning the link
between the structure and function of ligand-gated ion channels.
Ligand-gated ion channels are essential in synaptic transmission in
the nervous system and understanding how they work is conse-
quently of considerable biological and pharmacological interest.

Ligand-gated ion channels can be classified into three different
protein superfamilies. For example, the Cys-loop superfamily
includes GABAA, glycine, acetylcholine, and serotonin receptors.
Subunits that make these receptors all exhibit a characteristic Cys-
loop formed by a disulphide bond in the N-terminal extracellular
domain and are arranged in a quasi-symmetrical pentamer around a
central pore. The most studied receptor in this group is the muscle
nicotinic acetylcholine receptor, mainly found in the vertebrate
neuromuscular junction, which is responsible for transmitting
the signal between the nervous system and muscle.

A second receptor superfamily is the ionotropic Glutamate
family, members of which are tetramers of homologous subunits.
Glutamate receptors have three broad classes based on their selec-
tive agonists—NMDA, kainate, and AMPA. The Glutamate super-
family is believed to be capable of molecular coincidence detection
and is therefore hypothesized to play a crucial role in synaptic
plasticity and the formation of memory.

The third superfamily is the ATP-gated cationic channels,
known as purinergic nucleotide receptors. Their function is not
well understood but they may contribute to peripheral signaling
in the autonomic nervous system.

Experimental evidence of the gating process of single channels
is available at fine time resolution, thanks to patch-clamp techni-
ques. Despite the tiny diameter of ligand-gated channels, long
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recordings of the currents generated by single channels as they
open and close are experimentally achievable.

Electrophysiological recordings alone only tell us when the
channel is open or closed and do not provide information of the
conformational changes of the channel as it opens and closes.
However, the analysis methods we describe here for physical mod-
eling of kinetic states allow us to map the energy landscape for the
conformational changes of these proteins, and this in turn can
provide a bridge between ion channel structure and function. The
use of models combined with high resolution data can therefore
serve a number of purposes in studying ion channel gating. Namely
they can:

1. Provide a structured way of thinking about the sequence of
conformational changes that need to occur in proteins to allow
pore formation.

2. Help explain new experimental data observed in lieu of direct
structural information for example describing the action of
novel agonists on channel gating.

3. Suggest testable hypotheses regarding aspects of the gating
process, which may be subsequently verified by novel experi-
mental design.

The analysis of ion channel behavior in this fashion starts with
the postulation of model reaction mechanisms that describe the
sequence of changes that occur as a single channel opens and closes
in a stochastic manner. The use of explicit reaction mechanisms
describing the ion channel gating process has a long history dating
back to the 1950s, when del-Castillo and Katz [1] sought to explain
why some agonists (e.g., partial agonists) were less efficacious than
others at opening channels. Their supposition of the existence of
both a binding step and a gating step allowed the first explanation
of this phenomenon. Although different agonists may bind with
the same affinity, i.e., bind with the same “strength” to the recep-
tor, once bound they differ considerably in their ability to produce
the conformational change necessary to actually open the receptor.

This mechanistic way of thinking applied to the analysis of
single-channel data can also help explain, with appropriate experi-
mental data, the impact of mutations or of novel agonists on
receptors, by assessing their impact on the rates of movement
between different conformational steps in the reaction mechanism.
On the whole, this cannot be achieved using macroscopic cell
recordings, as the time course of these responses reflects all the
steps in the reaction mechanism.

We therefore see how the modeling of ion channel gating as
reaction mechanisms can help our understanding of the structural
processes that occur during gating. The benefits of this knowledge
that feed back into the biological domain are many. These include
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the ability to explain the effects of deleterious channel mutations,
see for example [2, 3] and the future potential to investigate and
assess the impact of novel agonists. Indeed, a fuller understanding
of a novel agonist’s actions on experimentally distinguishable com-
ponents of the gating process would have great ramifications for the
ultimate aim of rational drug design.

2 Single Channel Experimental Data

Single channel recordings are the most important source of data for
evaluating reaction mechanisms. The approach involves observing
single ion channels as they open and close by recording the quan-
tum change in current through the channel as ions flow through
the pore.

Experimentally, this is achieved through the production of a
borosilicate glass pipette with an extremely small diameter, fire-
polished to a high resistance. The pipette, in the cell attached
configuration, is placed near a target cell which expresses the
desired receptor. Suction is then applied in order to seal the pipette
against the cell with a high resistance. The current from a small
number of ion channels is then recorded as it flows across the tip of
the pipette.

The signal recorded from the ion channels is subsequently low-
pass filtered to remove high frequency noise generated from the
recording equipment, such as the noise resulting from the amplifi-
cation of the current and the imperfect resistance of the seal made
by the pipette against the cell membrane. The signal is then sam-
pled at a high frequency to give an estimate of the conductance of
the channel through time.

Although very fast single ion channel gating can be recorded
with these techniques, the requirement for filtering and other
experimental considerations, such as expression levels of the protein
on the surface of the cell, result in a number of well-known infer-
ential complications for statistical modeling. These include:

l Limited time resolution: The requirement to filter and sample
data restricts the time resolution at which the sample can be
recorded. Typical patch-clamp recordings have a best resolu-
tion of about 10–20 μs, although this depends greatly on signal
size and idealization techniques. This results in a phenomenon
known as “missed events,” which significantly complicates the
modeling and inferential process. See [4–7] for an in-depth
discussion.

l Unknown number of channels in the patch: Experimental factors
such as the level and heterogeneity of channel expression on
the surface of the cell mean that openings and closings recorded
in the patch can originate from more than one channel.
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While statistically we want to consider the gating of one chan-
nel, the probability of having more than one channel in the
patch in experimental recordings needs to be accounted for in
order to obtain accurate assessment of reaction mechanisms.

3 Modeling Ion Channel kinetics

3.1 Observable Data The key summary statistics of biological interest generated from the
experimental record are:

l The univariate open and closed dwell time distributions of the
channel.

l Bivariate distributions of adjacent open and closed sojourns,
which can exhibit correlations for mechanisms with multiple
gateway states.

l The dose–response of the receptor across multiple concentra-
tions, typically summarized as the fraction of the total time that
the channel is open across an experimental record with a given
concentration of agonist.

The modeling challenge is to present a parameterized reaction
mechanism that can account for these observations and through
which parameters of interest, such as reaction rate constants
between the conformational changes, are inferable. Evaluating
competing mechanisms is also of great importance, see e.g. [8].
This involves postulating different mechanisms which incorporate
varying numbers and connectivity of binding and gating steps to
describe the opening trajectory of the channel. The next step is
deducing from the data which suggested mechanism is the most
plausible.

3.2 The Stochastic

Framework and

Derivation of the Model

Likelihood

For modeling such biological systems we require a mathematical
framework within which to specify a reaction mechanism from
single recordings. It has been noted that the observable open and
closed sojourns typically follow a semi-Markov or renewal frame-
work [6, 7]. This implies that adjacent sojourns are independent
and can incorporate a variety of stochastic models.

The most common stochastic models within this generalization
are based on discrete time or continuous time Markov processes.
Markov models neatly fit the conceptual single-channel biological
process. For example, the hypothesis of hidden conformational
states, which represent approximate energy minima, translate well
into a discrete but countable state space in a Markov model. The
gating process of a single channel can reasonably be assumed to be a
memoryless stochastic process whose key properties are invariant
through time. Deriving likelihoods and statistical inferences is a
reasonably tractable process, particularly in the case of perfect
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time resolution, given the independence of non-overlapping
observable sojourns.

Let us formulate a stochastic model for single ion channel
kinetics as follows. Consider a continuous time Markov process
S(t), t � 0 which is parameterized by a generator matrix Q. The
Q matrix defines the reaction mechanism by representing the sys-
tem as a graph linking different states, and its parameters govern
the rate at which transitions between states occur. It is assumed to
be homogenous, i.e., invariant through time, and has some initial
state distribution π. Each state in the Markov model represents
discrete conformational states that the protein can occupy as it
moves through the gating process.

Note that the number of states within the model does not
necessarily correspond to the number of conductance levels seen
in the observable data. If we consider two conductance levels,
open and closed, then there may be many Markov states within
the open conductance class and within the closed conductance
class. These aggregations of states represent the different features
of the gating mechanism that are observable experimentally. Mod-
els of this type have hidden states within a conductance level, and it
is therefore unknown precisely which state the process is in given
the observed conductance level. These models are therefore defined
as aggregated Markov models.

Given this model structure, there are twomain goals of interest.
First, can we infer from our data the parameters of theQmatrix and
the initial distribution that governs our model process? From this,
we can judge how well our model explains our observable data.
Second, if we have competing plausible model hypotheses, can we
use the observed data to choose which model structure is most
likely to describe the true underlying biological mechanism?

In order to infer the parameters in our models effectively, we
need to develop an expression for a likelihood. This quantity tells us
the probability of the recorded data being observed for a particular
set of parameters and given model. The observed data of interest
shows the transitions between the aggregation of closed states and
the aggregation of open states. Thus we aim to derive a probability
density for the open and closed sojourns, given our parameters in
theQmatrix and the equilibrium distribution of the process. In this
instance we assume, naively for now, both perfect time resolution
and that there is only one channel in the patch.

Using the approach described in [9, 10], we derive the sojourn
density functions as follows. Consider the transition matrix P(t) of
the continuous time process S(t), t � 0 considered above. A stan-
dard result for solving for P(t) is by obtaining the solution to the
differential equation dpðtÞ

dt ¼ PðtÞQ; which gives:

PðtÞ ¼ eQt
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However, we only observe sojourns in conductance levels,
which are represented by aggregations of states. Consider two
aggregations, open and closed, where set A represents the open
states and set B represents the closed states, such that A [ B ¼ S.
We can subpartition our P(t) andQmatrices accordingly, such that
QAA represents the transition rates from open states to other open
states, QAB from open states to closed states, and so forth.

For the derivation of the observed sojourn times in the open
conductance level, we consider the probability of remaining within
the open states for a time t before transitioning to one of the closed
states in an infinitesimally small time step. We can denote these as a
matrix of probabilities, GAB(t), which is analogous to P(t) but
describes only transitions from open states to closed states. By
considering the closed states to be absorbing, such that QBA ¼
QBB ¼ 0, the resulting solution for these probabilities follows as,

GABðtÞ ¼ PAAðtÞQAB ¼ eQAAtQAB (1)

The density for closed states GBA(t) can be derived by exchang-
ing the partitioning indices. Given that the process is Markov,
non-overlapping time interval events are assumed to be indepen-
dent. Given that the observed data is a series of closed and open
sojourns, then the likelihood of n such sojourns is given by,

ϕAGABðt1ÞGBAðt2ÞGABðt3Þ . . .GBAðtnÞuA (2)

where ϕA is the equilibrium probability of starting in each of the
open states, and uA is a unit vector which sums up the likelihood
over the final sojourn entry into the different open states.

The likelihood in Eq. 2 can be maximized to obtain the
maximum likelihood estimate for the parameters of the Q matrix.
The maximum likelihood represents the most likely set of rate
constants that explain the observed data. Theoretical open and
sojourn time distributions, bivariate correlations, and Popen curves
can then be produced from the parameterized Q matrix and com-
pared with the experimental distributions to assess the fit of the
model. In practice, the fitting is made across a range of agonist
concentrations to increase the amount of information that can be
extracted for the receptor. Empirical measures such as the burst
distribution length and concentration jumps can also provide addi-
tional useful information to discriminate between models.

It should be reemphasized that the model describes the hypo-
thetical underlying conformational changes of the channel and not
necessarily the observed conductance levels of the channel as it
opens and closes. This increases the inferential challenges associated
with estimating parameters for theMarkov process. The aggregated
nature of the model process raises issues of parameter identifiability
[11, 12], which translates in biological terms as the ability to
demarcate transitions between discrete conformational states.
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It also raises concerns about model identifiability—the potential
to distinguish between different plausible model structures that
produce approximately the same observable phenomena, see for
example [13].

The method of maximizing the likelihood of an entire sequence
of single channel measurements of open and shut times offers many
advantages over previously suggested approaches, which involve
fitting the model to separate distributions describing summary
statistics of the mechanism, such as average open and shut times,
see for example [9, 14]. For example, the identification of expo-
nential mixtures in dwell time distributions can be ambiguous, and
exact missed event correction impossible without a specified mech-
anism. The construction of a likelihood based on the entire
sequence encapsulates all such underlying properties of the mecha-
nism, including any correlation structures that might arise from the
open and shut time intervals.

As highlighted in [15, 16], a likelihood-based approach allows
a mechanism’s rate constants to be inferred directly from the data
and removes any need to subjectively decide which summary statis-
tics to base inference on. Perhaps most importantly it automatically
takes into account the cross correlation behavior that may arise in
the data, such as when short shut times are often observed to follow
long open times; this type of information is missed in the summary
statistics and may subsequently impact the inferences made. This is
particularly true in the case of mechanisms with more than one
gateway path between open and closed states.

The first maximum likelihood approaches for fitting idealized
data to continuous time mechanisms were outlined in [17] with
subsequent approaches increasing in their generality and correction
for missed events in the likelihood calculations [15, 18, 19].

3.3 Fitting

Mechanisms

in Practice

Experimental data may be interpreted as noisy discrete observations
of some continuous underlying process. The true signal must be
estimated despite the experimental noise and signal distortion
caused by the requirement to filter the raw signal. In addition, the
likelihood outlined in Eq. 2 must be corrected for the fact that
sampling the data imposes a given resolution on signal detection.
This means brief openings and closings that are potentially missed
must be corrected for in this record. Also, the fitting procedure
must account for the likelihood of having more than one channel in
the recording patch. There is a requirement to fit stretches of data
where the number of channels in the stretch can be established to
be almost certainly one.

A commonly used computational package to fit kinetic
mechanisms to single ion channel data is HJCFIT (http://www.
ucl.ac.uk/Pharmacology/dcpr95.html). This software, derived
from [5, 15], is designed to fit models given an idealized signal,
for example using time-course fitting, and exactly correcting
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sojourn probability densities for the impact of missed events. The
fitting process can fit a simultaneous series of recordings at different
agonist concentrations to extract the full amount of information
across the dose–response curve.

Experimental data is idealized by time course fitting, by super-
imposing (over the record) a calculated output to a response step
input. The fit is adjusted until the signals overlap and from this the
idealized sojourn can be inversely inferred. This is incorporated in
the SCAN package. The subsequent record can either be fitted to
directly using HJCFIT or analyzed heuristically by fitting exponen-
tial distributions to the dwell times (using EKDIST) to obtain
approximate inference about the number of potential conforma-
tional states and bivariate dwell time correlations.

The fitting procedure maximizes the likelihood of the sequence
sojourn times and utilizes an exact correction for missed events
[4, 5, 20], which calculates the apparent open and closed time
probability density functions from a given rate transition matrix
and kinetic model. The exact solution is based on a piecewise
inversion of a Laplace transform. This transform captures all possi-
ble missed transitions within a given open or closed sojourn. It is,
however, more computationally expensive to calculate than other
approximate corrections such as [21–23] and is numerically stable
only for limited multiples of the resolution time. Therefore, the
asymptotic form of the missed events correction is used to correct
sojourn times that are more than two multiples of the resolution
time, and this has proven to be accurate enough in practice.

The modeler must account for the number of channels in the
patch by fitting channel records broken into stretches that are only
likely to contain one channel using a time interval cutoff. The actual
maximization of the corrected likelihood is achieved using a
derivative-free simplex method [24]. The properties of its estima-
tors, including the impact of fitting the wrong models, have
been thoroughly examined within the maximum likelihood
framework [16].

3.4 Alternative

Maximum-Likelihood

Approaches

There have been several other maximum-likelihood approaches
based on fitting mechanisms both to idealized dwell time distribu-
tions and by direct fitting to the single channel records using
Hidden Markov Models.

For example, another commonly used fitting tool is QuB. The
QuB software package incorporates both an idealization procedure
and a fitting procedure based on maximizing the joint probability
density of dwell times. The idealization procedure [25] is a k-means
segmentation algorithm based on [26] which tries to restore an ion
channel signal given a prior hypothesized mechanism. The discre-
tized idealization is a two step algorithm; first, the most likely
hidden state sequence is obtained using the Viterbi algorithm,
given the model mechanism, conductance levels, and variance.
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In the second step the parameters are re-estimated. These two steps
are iterated until the likelihood is maximized.

The idealized signal is then used as the basis for a dwell time
fitting algorithm [27, 28] akin in spirit to [29, 30], through the use
of forward and backward variables that are used to calculate the
likelihood and its analytical derivatives. The derivatives are utilized
in a variable metric optimization procedure to search for the maxi-
mum likelihood. The procedure employs an approximate first-
order missed events correction first developed in [21].

An explicit HMM approach by Qin et al. [31, 32] also employs
a direct fitting of the Q matrix to the raw data signal. Again, this
utilizes the forward–backward procedure and a maximization tech-
nique based on the analytical derivatives of the likelihood. The
citing procedure allows the specification of rate constraints and
mechanism fitting across different experimental sets. Extensions
such as [31] improve the modeling of the noise process by the
incorporation of correlated noise and the effects of signal filtering.

Additional maximum-likelihood Hidden Markov approaches
to fitting and idealizing single channel data account for correlated
noise [33–35] and conductance dependent noise, although this
increases the computational cost of model fitting. Others have
sought to fit to the dwell times directly using either a pseudo-
likelihood approach [36], or empirically through simulation
[37, 38], particularly for complex models where the number of
states makes fitting with HMM approaches computationally pro-
hibitive, see for example [25].

3.5 Achievements

and Limitations

Full maximum-likelihood approaches have been successfully
employed in a number of investigations into ion channels, for
example [8] used the fitting process of [15, 16] to investigate
competing mechanisms to explain the gating process of hetero-
meric glycine receptors using different agonists. The ability to fit
rate constants as fast as 130, 000 s�1 was a feature of the fitting.
After considering a wide variety of thirty potential mechanisms,
only two mechanisms were considered adequate; specifically, a
mechanism adapted from one previously proposed for GABA
receptors [39] and an additional model that incorporated the
same additional shut states as in [39] in an intermediate closed
“flipped” conformation. Both provided a visually reasonable fit to
the summary statistics of the experimental data.

Upon further inspection, the kinetic model incorporating
flipped conformational states offers a more biologically plausible
explanation of the gating process of the receptor, and has fewer rate
parameters to estimate. This mechanism explains an increase in
binding affinity as more ligand molecules bind to the receptor.
This, at face value, implies an ability of distal ligand binding sites
to interact. The flipped conformational change accounts for the
apparent receptor binding co-operativity by implying that agonist
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binding stabilized the flipped conformation, which is the higher
affinity form of the receptor, rather than the resting conformation.
The actual affinities for progressive binding of agonist within each
of these two conformations are constant, but the flipped confor-
mation has a 65-fold greater affinity for agonist.

Additional research on the pre-opening flipped conformational
change [40, 41] added insights into the mechanics of partial agon-
ism. As described previously in this chapter, the classical view is that
partial agonism occurs as a result of the reduced efficacy of some
agonists to elicit the final open conformational change from the
closed agonist-bound state. However, Lape et al. [40] showed that
for glycine and acetylcholine receptors, partial agonism results from
differences in an earlier step in the gating process. The authors
compared the actions of the full agonist glycine and the partial
agonist taurine on the glycine receptor. Maximum likelihood
fitting of the flipped mechanism for glycine receptor revealed that
kinetically the final conformational step for both agonists was simi-
lar. The difference between the two agonists was their ability to
elicit the flipped conformational change that occurs when the chan-
nel is still shut. Lape et al. [41] investigates the actions of the
agonist choline on acetylcholine receptors. Although choline
behaves like a partial agonist, it was unknown whether choline is
actually a full agonist whose maximal response is limited by channel
blocking, or whether it is a genuine partial agonist. Fitting the flip
mechanism in conjunction with concentration jump experiments
suggests that choline is more likely to be a partial agonist than a full
agonist given its reduced ability to elicit the flipped conformation of
the receptor.

However, the current maximum-likelihood approaches are
reaching their limits, both in terms of parameter identification
and model discrimination. For example [42] investigated a
mutation in the glycine receptor that slows down the speed of
channel gating. This enabled the authors to investigate further
the nature of closed intermediate states in order to explain the
experimental data produced by mutant receptors. A mechanism
was proposed incorporating “primed” intermediate states in
which independent subunits of the glycine channel can flip inde-
pendently. This however required the estimation of a large number
of rate parameters, not all of which were identifiable, suggesting
that the fully primed model is overparameterized. This required the
ideal model to be pruned in order to remove rarely visited states
to improve kinetic rate identifiability, although a different subset
of the fully primed model was then needed to fit the wild-type
control data.

In addition, the existence of modalities in the likelihood sur-
faces of more complicated models, particularly with the problem of
time interval omission, will require more sophisticated techniques
to explore fully the likelihood surface. The hope is that the
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adoption of a Bayesian approach to parameter estimation and
systematic model selection may allow informative inferences to be
made despite the identifiability issues highlighted above.

4 The Bayesian Approach

Employing a Bayesian approach offers us a consistent way of
reasoning about uncertainty, both in the rate parameters and in
the mechanism structure. We do so using the language of probabil-
ity theory. We wish to evaluate the posterior probability distribu-
tion, which fully describes the global sensitivities of the rate
parameters of a hypothesized ion channel mechanism given some
experimental data. The posterior distribution is calculated using
Bayes’ theorem, which is simply derived from the standard laws
for the conditional probability of the model parameters θ given
some observed data Y,

pðθjYÞ ¼ pðYjθÞpðθÞ
pðYÞ (3)

We may interpret this as combining the likelihood p(Yjθ) with a
prior probability distribution p(θ) that characterizes our prior
beliefs about the range of values each rate parameter is likely to
assume. We note that in a maximum-likelihood approach, we also
have to decide on the range of values within which we employ some
optimization scheme to search for a solution; a uniform prior plays
a similar role, setting the upper and lower bounds on the search
space, and ensures we are explicit and clear about any such assump-
tions that we make. The posterior distribution results from a prod-
uct of two probability distributions, the likelihood and the prior,
and is therefore itself a valid probability distribution. The marginal
likelihood p(Y) acts as the normalizing constant, ensuring that the
posterior density has unit mass, i.e., the posterior integrates to 1, as
is required of a valid normalized probability distribution. In addi-
tion this quantity provides us with a method of comparing model
hypotheses, which implicitly takes into account the number of
parameters each mechanism has. We can see this more clearly by
realizing that the posterior distribution is also implicitly
conditioned on the model M itself,

pðθjY;M Þ ¼ pðYjθ;M ÞpðθjM Þ
pðYjM Þ (4)

The marginal likelihood, p(YjM), is therefore the probability of
the data given a particular model, and this plays an important role
as it allows us to compare different models that may have different
numbers of parameters. For each model the marginal likelihood is
computed by integrating over all possible parameter values,
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pðYjM Þ ¼
Z

pðY; θjM Þdθ ¼
Z

pðYjθ;M ÞpðθjM Þdθ (5)

The Bayes factor B1,2 gives the strength of evidence in favor of
model 1 compared to model 2. Given the marginal likelihood for
competing hypothesized structures we may then calculate Bayes
factors in order to rank the models based on the evidence of the
data as follows,

B1;2 ¼ pðYjM1Þ
pðYjM2Þ (6)

Bayes factors may be usefully interpreted using the scale in Table 1,
as proposed in [2]. These numbers allow us to compare model
hypotheses in a quantitative and systematic manner, in comparison
to the commonly used subjective approach of visually inspecting
the model fit of ion channel models. Bayes factors also automati-
cally take into account the model complexity, since they are defined
as an integral (or weighted average) over all model parameters and
will naturally pick the least complex model that is still complex
enough to describe the data [2].

5 Previous Bayesian Approaches in Ion-Channel Modeling

Subsequent to the maximum-likelihood approaches described ear-
lier in this chapter, there have been a number of Bayesian
approaches for modeling ion channels. Compared to the maximum
likelihood approach, the use of Bayesian methodology has so far
been limited in the field. However, some Bayesian techniques have
been implemented to perform signal reconstruction of noisy exper-
imental data, obtain inferences over the rate parameters in specified
models, and perform model selection between competing kinetic
mechanisms for physiologically different ion channels.

One of the key initial inferential challenges is to recreate
idealized signals from noisy data with limited time resolution.

Table 1
Bayes factors may be interpreted using the following scale

B1, 2 Evidence in favor of model M1

1–3 Not worth more than a bare mention

3–10 Substantial

10–100 Strong

>100 Decisive
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There have been a number of Bayesian approaches to reconstruct a
continuous signal from noisy data.

An initial attempt to use HMMs in a Bayesian context to
provide a local and global signal restoration is given in [43].
An attempt to reconstruct a simulated dataset by fitting an alter-
nating renewal process to the signal where open and closed sojourn
times are gamma distributed is given in [44], in which the noise of
the signal is modeled as an autoregressive process. The main tech-
nique used for drawing samples of appropriate sojourn times has
been the reversible jump algorithm of [45], which proposes
changes in the number and placement of observed sojourn times
in the record. The authors noted however that their method is
inefficient for large numbers of points and therefore is ill-suited
for long ion channel recordings in practice.

An alternative restoration procedure was proposed in [46].
Their approach proceeds by sampling the hidden states at the sam-
pling intervals given the noisy signal and the model parameters
using a stochastic version of the Baum forward–backward algorithm
proposed by Carter and Kohn [3] and a Gibbs sampling scheme.
The restored signal is then obtained from the aggregation of state
sequences along with the noise parameters for the observed record-
ing, which is assumed to be a white noise process. The advantage of
this approach is the low computational cost, with the method out-
performing thresholding after low-band pass filtering.

Bayesian methods have also been employed in parameter esti-
mation and model selection. Early work by Ball et al. [47] approxi-
mated the continuous time process using discrete sampling
intervals and constructed Gibbs and Metropolis–Hastings samplers
to extract a transition rate matrix for the hidden states across the
given sampling interval. The Q matrix could then be inferred from
the transition matrix. Subsequent extensions for modeling the
gating process in continuous time followed [48, 49] using revers-
ible jump techniques for sampling sojourn intervals of the observed
process. This method also performs signal reconstruction as well as
estimating transition rates and means and variances of the conduc-
tance states from the raw noisy data.

Modeling the noise process is considered crucial if a model is
being fit directly to the experimental data without an idealization
step. An early attempt to provide a complete noise model within a
Bayesian framework is illustrated by de Gunst et al. [50]. This
approach models the underlying signal as a discrete HMM where
the signal is corrupted by the conductance level of the state, noise
correlation from the recording equipment, and the smoothing
effects of low-pass filtering on the raw signal. This noise modeling
approach is computationally more expensive but its benefits were
seen in the subsequent analysis of the K + outward rectifier channel
in Barley Leaf [51]. The particular physiology of this receptor
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exhibits “flickering” behavior—rapid closings in long open
intervals which can be missed if the filter effects are not taken into
account and which makes accurate signal idealization difficult. This
subsequent study also used reversible jump techniques for model
selection. The flat posterior distribution across the analyzed models
highlighted the requirements for large stretches of data to distin-
guish between models, increasing the computational burden of
the long sampling times given the required full noise model.

Other discrete time approximations include [52] which also
incorporates a noise model accounting for correlated noise and
low-pass filtering. The Markov chain Monte Carlo (MCMC)
approach samples a hidden realization of the unobservable Markov
model using stochastic methods introduced by Carter and Kohn
[3], which was extended to incorporate the required features of
the noise model. This framework was applied to Ryanodine recep-
tors, which play a significant role in intracellular calcium dynamics
in the heart. This Bayesian approach was used to parameterize and
evaluate 16 competing models of Ryanodine ion channel behavior.

Further recent approaches adopt fitting a continuous time
Markov model directly to the noisy signal, akin to [49]. Such an
approach was adopted in [53] to fit models directly to single ion
channel data from IP3 receptors, which control intracellular cal-
cium dynamics in the endoplasmic reticulum. This approach
assumes that the signal is corrupted by Gaussian white noise and
adopts the approximate effective rate constant correction for
missed events described in [22]. The approach reveals that the
main effect of Ca2 + is to modulate the probability that the
receptor is in a state that is able to open directly, rather than to
modulate the open probability directly. This sampling approach is
extended in [54] to build a “Metropolised-Gibbs” sampler for the
Q matrix with a generalized number of aggregated states. The
sampler is used to perform Bayesian inference for model discrimi-
nation for the IP3 receptor.

The brief review above highlights the still nascent use of Bayes-
ian methods for tackling the various challenges of signal detection,
model parameterization, and model selection. As is usual with
Bayesian methods, there is a trade off between model complexity
and computational cost. However, the key balance is perhaps to be
found in adapting the Bayesian approach to the physiology at hand,
as investigations of different ion channels present different model-
ing challenges. For example, given the rapid openings of the glycine
channel detected in previous investigations, the most useful Bayes-
ian approaches should prioritize missed event correction and signal
restoration. In addition, any approach must be scalable enough for
performing inference over the large state spaces of the Markov
models that are now commonplace.
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6 MCMC for Ion Channel Modeling

It is advantageous to move from a point estimate using maximum
likelihood to one characterized by a probability distribution that
fully describes the identifiability and sensitivities of the model para-
meters. MCMC methods offer us a way of drawing samples from
arbitrary probability distributions, and advances in this area have
fueled the rise of Bayesian approaches to statistical inference over
the last 20 years.

The idea is to simulate a Markov chain such that its stationary
distribution is the density of interest; in the case of Bayesian
statistics this is the posterior distribution. The position of a
Markov chain corresponds to a set of model parameter values θ,
and the next position of the Markov chain, θ∗, depends only
on the values at the previous position, as demonstrated in
Algorithm 1.

Algorithm 1. Standard Metropolis–Hastings Algorithm

1. Given current position θ, draw proposed position θ∗ from
the proposal distribution q(θ∗ jθ)

2. Calculate the acceptance ratio Rðθ�jθÞ ¼ min 1;
pðθ�Þqðθjθ�Þ
pðθÞqðθ�jθÞ

� �
3. Draw U � Uniform[0, 1]

4. Let θ ¼ θ� if U < Rðθ�jθÞ
θ otherwise

(

At each iteration, a new position is proposed conditional on the
current position of the chain. This is then accepted with some
probability, such that as the number of moves becomes large, the
collected points constitute correlated samples from the desired
probability distribution. This property is ensured by the balance
condition,

pðθ�Þ ¼
Z

pðθÞAðθ�jθÞdθ (7)

which states that the average probability of moving from any
point to the current point is equal to the probability of the current
point itself. The term A(θ∗jθ) defines the total probability of
firstly a proposed point in the parameter space being sampled
from the proposal distribution q(θ∗jθ), and secondly this
proposed point actually being accepted with probability R(θ∗jθ),
such that

Aðθ�jθÞ ¼ qðθ�jθÞRðθ�jθÞ (8)
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If a Markov chain is reversible, then the probability of moving
from θ to θ∗ is the same as the probability of the reverse move,
such that,

pðθÞAðθ�jθÞ ¼ pðθ�ÞAðθjθ�Þ (9)

This is known as the detailed balance condition and it provides an
easy way of satisfying the balance condition in Eq. 7. Finally, it has
been shown that employing the following acceptance probability
results in a reversible Markov chain that satisfies detailed balance,
and therefore converges to the correct target distribution,

Rðθ�jθÞ ¼ min 1;
pðθ�Þqðθjθ�Þ
pðθÞqðθ�jθÞ

� �
(10)

In practice it sometimes only requires a few thousand samples
to obtain information about the structure of the target distribution,
although this depends on the dimensionality of the problem and
the level of correlation in the samples. Initially, the Markov chain is
likely to be in a region of negligible probability and there will be a
transient “burn-in” period during which the chain must converge
to the stationary distribution and find regions of high probability
mass. After the burn-in period, the samples of the Markov chain are
assumed to be truly representative of the target distribution.

Given these samples we may calculate summary statistics, such
as means and covariances, and plot the posterior samples to see the
global correlation structure. The algorithm proceeds by sampling
new points from the proposal distribution q(θ∗jθ), and the choice
of this density can drastically affect the performance and efficiency
of the MCMC algorithm. Often, geometric information may be
employed to propose better moves; for example the MALA sampler
[55] utilizes gradient information to move the mean of the propo-
sals to points of higher probability. However such geometric infor-
mation is not always available, and even when it is it may be
computationally costly to obtain. In this chapter we shall compare
standard Metropolis–Hastings, as described above, with Adaptive
MCMC, another MCMC variant that also requires only the point-
wise evaluation of the likelihood and is designed to offer improved
sampling from strongly correlated probability distributions.

We employ the Adaptive MCMC algorithm described in
[56, 57], whereby the mean and covariance of the proposal distri-
bution at the ith iteration are given by μi and Σi and are updated
taking into account the next sampled values of the chain θi+1 as
follows,

μiþ1 ¼ μi þ γðθiþ1 � μiÞ (11)

Σiþ1 ¼ Σi þ γððθiþ1 � μiÞðθiþ1 � μiÞT � ΣiÞ (12)
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The parameter γ controls the rate of adaptation and may be set to
γ ¼ 0. 05. For further details and discussion of the properties and
implementation of Adaptive MCMC algorithms see [56, 57].

We note that an alternative method is required for sampling
from multimodal posterior distributions. One approach is to use a
population MCMC method based on parallel tempering. This
proceeds in a similar manner as described in [58] by defining a
collection of tempered distributions, given by p(θjY, βi) /
p(Yjθ)βip(θ), for i ¼ 1 : N. The N points are spaced between
0 and 1 inclusively, such that the first tempered distribution is
proportional to the prior, p(θjY, β1 ¼ 0) / p(θ), and the last
tempered distribution is proportional to the true posterior,
p(θjY, βN ¼ 1) / p(Yjθ)p(θ). The tempered distributions therefore
form a smooth path of probability distributions from the prior to
the posterior. A Markov chain can then be run in each distribution
simultaneously and at each iteration swapping moves between adja-
cent temperatures can be proposed, which satisfy detailed balance
across the overall product distribution [58]. In this manner we may
draw samples from all tempered distributions, which results in
better sampling of a multimodal posterior distribution of interest
as chains caught in local maxima may escape by moving up and
down the temperature ladder via the swapping moves. We note that
the use of such a tempered scheme also allows for efficient estima-
tion of the marginal likelihood, which may be employed for model
comparison [58], as mentioned previously in the chapter. In the
simulations that follow, however, we found that the posterior dis-
tribution was unimodal and we therefore employed the standard
single chain versions of the Metropolis–Hastings and adaptive
MCMC algorithms.

7 Bayesian Analysis of Ion Channel Models

We consider two aggregated Markov models of differing complex-
ity that may be used to describe ion channel dynamics. We begin
with the simplest possible Markov process model that can describe a
ligand-activated ion channel. The following model was suggested
by del-Castillo and Katz [1] and comprises two closed states and an
open state. Each of the closed states corresponds to the ligand
being unbound and bound; Fig. 1 depicts this simple model struc-
ture. For the purpose of investigating Bayesian inference over such
mechanisms, we generate synthetic data from the model, such that
we know the true parameter values to determine the quality of
inferences we may obtain given different quantities of data. We
assume perfect resolution with no missed events, although the
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methodology is straightforwardly applied in the case of missed
events by employing the appropriate likelihood function.

We employ the parameters α ¼ 1,000, β ¼ 1,000, k�1 ¼ 100
and k+1XA ¼ 100, and generate [0.5, 1, 3, 5] seconds of data,
corresponding to [370, 719, 1,992, 3,402] observations respec-
tively. We infer the parameters with the standard
Metropolis–Hastings algorithm using wide uniform priors and
observe that the Markov chain converges to the same region of
posterior probability mass from a wide variety of starting positions
(Fig. 2). We employed 2,000 “burn-in” iterations to allow the
chains to converge, after which 10,000 samples were collected
to estimate summary statistics for the stationary posterior
distribution. As we increase the length of the recording, and
hence the number of observations, we observe that the uncertainty
in the estimated parameter values decreases, as detailed in
Table 2. For this relatively simple example, all four parameters
are identifiable and the posterior is unimodal, from which a
standard Metropolis–Hastings algorithm is able to draw samples
efficiently.

Let us now consider a more realistic and complex model with
five hidden states and nine rate parameters to be inferred from the

Fig. 1 Diagram showing the del-Castillo Katz model with two closed states
(represented by circles) and one open state (represented by a square)

Fig. 2 Trace plots of a Markov chain using standard Metropolis–Hastings to explore the posterior distributions
induced by using [0.5 s, 1 s, 3 s, 5 s] of data (from left to right). The first 2,000 samples are regarded as burn-
in and the final 10,000 samples are considered correlated samples from the true posterior distribution
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data, shown in Fig. 3. This model represents the simplest possible
mechanism that may describe a (muscle-type) nicotinic acetylcho-
line receptor, yet we will see that the induced posterior distribution
exhibits a much more complicated structure.

This time we assume a fixed agonist concentrationXA ¼ 1e � 7,
and employ parameter values k+1 ¼ 5e7, k�1 ¼ 2,000, k+2 ¼ 5e8,
k�2 ¼ 2,000, k+2

∗ ¼ 15, k�2
∗ ¼ 3,000, β1 ¼ 15,000, α1 ¼ 500,

β2 ¼ 5e8, to generate 2 s of data, resulting in 4,419 observations.
Parameter α2 was then calculated automatically based on the other
parameter values by assuming detailed balance. From this dataset,
we generate 2 shorter datasets of 1,130 and 2,946 observations.
In each case, starting the chain from multiple initial values
results in convergence to the same region of the posterior,
suggesting that the induced posterior distribution is unimodal,
although there appears to be a very strong correlation structure

A2R* AR*

A2R AR R

2k∗
−2

α2

k ∗
+2 xA

α1

2k−2

β2

k+2xA

k−1

β1

2k+1xA

Fig. 3 A five state model with three closed states (represented by circles) and
two open states (represented by squares)

Table 2
Comparison of summary statistics of log posterior distributions inferred for the del Castillo–Katz
model based on 5 runs of 10,000 samples with varying lengths of simulated recordings

Length of recording (s)
Mean
(α, β, k�1, k+1XA)

Standard deviation
(α, β, k�1, k+1XA)

0.5 (1.99, 1.86, 3.03, 2.97) (0.149, 0.166, 0.036, 0.032)

1 (2.06, 2.10, 3.06, 3.03) (0.091, 0.111, 0.030, 0.023)

3 (1.99, 2.01, 3.01, 2.99) (0.056, 0.065, 0.017, 0.014)

5 (1.98, 1.94, 2.99, 2.99) (0.045, 0.052, 0.013, 0.011)
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between the parameters, which results in poor sampling when
using the standard Metropolis–Hastings algorithm. We there-
fore require a more advanced MCMC sampler to help ensure
we fully explore all areas of high probability mass. We employ
an Adaptive MCMC algorithm [56], in which the proposal
distribution is chosen dependent on the previously sampled
values of the chain via an adaptation procedure that attempts
to estimate the covariance structure of the target distribution.

Figure 4 shows the overlaid scatter plots of the samples
obtained using each of the three datasets, and Fig. 5 shows the
overlaid kernel density estimates of the marginal posterior distribu-
tions, both using Adaptive MCMC. Adaptive MCMC offers far
better sampling than standard Metropolis–Hastings, as it allows
the underlying correlations to be taken into account when propos-
ing moves through the parameter space. This is clear from Fig. 6,
which compares the trace plots using the two methods. The stan-
dard Metropolis–Hastings algorithm would therefore need to be

Fig. 4 Scatter plots comparing the posterior samples drawn with the five state model using Adaptive MCMC
and the short, medium, and long datasets. Parameter 4 is plotted against each of the other eight parameters to
display the marginal pairwise correlation structure that is present. All parameters are plotted in log space.
Adaptive MCMC is able to sample from all regions of high density in the parameter space, despite the long
tails, strong correlation structure, and unidentifiability of parameter K+2

∗
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run for a much larger number of iterations to obtain same number
of effectively independent samples as the Adaptive MCMC algo-
rithm produces.

8 Conclusions

The maximum likelihood methods introduced at the start of this
chapter attempt to optimize the probability of the data given the
parameters of a particular model; however this approach may pose
problems. As we observed from the simulation study, there may be
multiple sets of parameters that have similar likelihoods and ideally
we wish to characterize them all. We have shown that using a
Bayesian approach allows the full uncertainty in the parameters to
be quantified, including any unidentifiable and strongly correlated
structures that might be present.

Such a Bayesian approach however requires careful application
of MCMC algorithms to obtain estimates of the posterior distribu-
tion. We have compared two approaches and discovered that for
models with a relatively simple structure, consisting of five hidden
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states, Adaptive MCMC was necessary to sample efficiently from
the entire posterior distribution, and thus fully characterize the
uncertainty in the parameter estimates.

One of the challenges of employing a Bayesian approach is the
computational effort required; the current simulations took
15 min on a laptop; however larger models with more hidden states
would take considerably longer, particularly if there are multiple
modes necessitating the use of population MCMC. The implemen-
tation of such algorithms in a low level language such as C instead
of Matlab should improve performance, although more realistically
we require highly parallelized code on a computer cluster for
performing inference on more complex models within a reasonable
amount of time.

In future work we shall investigate the use of an appropriate
likelihood to account for missed events in the data, and also tackle
the problem of estimating marginal likelihoods. This kind of
approach to modeling ion channels offers us a way of comparing
hypothesized model structures in a systematic and quantitative
manner, which should ultimately help us more rapidly advance
our knowledge of these fundamental biological mechanisms.
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Chapter 14

Building Models Using Reactome Pathways as Templates

David Croft

Abstract

The first steps of building a new model can be very time-consuming, involving consulting many research
papers and then assembling a plausible network of reactions. In this chapter, tools for speeding up this
process will be discussed. Reactome is a database containing extensive coverage of pathways inHomo sapiens
and numerous reference species. It offers researchers wishing to create new models from scratch various
tools for extracting the relevant reactions, complete with layout information. In this chapter, two use cases
will be described, in which a modeller provides certain essential pieces of information and Reactome
automatically constructs the basic models and then dumps them in SBML-ML format.

Key words Reactome, Pathway, Reaction, Model, SBML, Data

1 Introduction

In order to construct a new model, systems biologists often start
out by consulting the literature in the field of interest and pulling
relevant reactions out of the papers they have read. These reactions
then need to be spliced together and laid out, probably using a tool
such as CellDesigner [5], which can then export the model as an
SBML file or run simulations of the model. The user has to live with
the uncertainty of whether they have found all of the relevant
literature and whether it is reliable or not. Copying over the reac-
tions by hand to a pathway editing tool is error-prone and time-
consuming. This chapter will show how Reactome tools can be
used to partially automate this process and increase its reliability.

Reactome is a curated, peer-reviewed pathway database. It
focuses on pathways in Homo sapiens but also infers pathways to
20 other reference species, using gene orthologies. Curators record
pathways, reactions, proteins, small molecules and subcellular com-
partment, as well as literature references backing up all of the
reactions present in a pathway. Comprehensive literature searches
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are made for each pathway, and only the literature deemed most
reliable is actually used. A sophisticated data model allows all of this
information to be stored in a computationally accessible and search-
able form. In addition, diagrams are hand-drawn for all pathways,
and the layout of these diagrams is stored as coordinates for all
reactions and participating molecules.

The scope of Reactome is very broad, encompassing the tradi-
tional metabolic pathways but also extending to a wide range of
signalling pathways, the cell cycle, apoptosis and mechanisms
of bacterial and viral infection, amongst other things. At the time
of writing, Reactome covered 187,219 proteins, taking part in
52,818 distinct reactions, of which 5,568 were from H. sapiens.

Reactome has tools that can accept as input lists of molecule
identifiers, e.g., UniProt IDs, and then determine which reactions
or pathways these molecules take part in. From there, it is possible
to export entire pathways, or sets of individual reactions, as models
in SBML files. If required, layout data can also be incorporated into
these models, based on the hand-drawn diagrams produced by
Reactome curators.

SBML files can be imported by a wide range of simulation and
model editing tools, where they can then be further enriched with
extra information, such as reaction kinetics.

So the general concept of model generation using Reactome
works as follows:

1. The user puts together a list of proteins, genes and possibly
small molecules that they expect to see in their model.

2. The pathways or reactions in which these entities are involved
are determined using Reactome tools.

3. An export to SBML creates the model.

4. The SBML is imported into an external tool for further enrich-
ment and modelling.

2 Materials

2.1 General In order to obtain the best performance fromReactome, a computer
with a processor speed of at least 1.5 GHz and memory of at least
2 GB is recommended. Reactome will work with Windows, MacOS
and Linux. Reactome is a browser-based tool, and a broadband
connection will be needed. It is known to work in Internet Explorer
7 and 8, Chrome, Firefox, Safari and Opera (see Note 1). Firefox
is the browser that is recommended. To start a Reactome session,
the URL http://www.reactome.org should be entered into the
browser. This will open the Reactome home page.

In the following sections, a number of Reactome tools relevant
to model construction will be described in detail.
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2.2 Analyze

Expression Data

From the Reactome home page, the button on the left-hand side,
labelled Analyze Expression Data, should be clicked (see Note 2).
This tool can also be used to analyze simple lists of identifiers, and it
will be used in this way in the Methods section.

Identifiers should be stored in a simple text file, with each
identifier separated by a newline (see Note 3). The following iden-
tifier types are known to Reactome:

l Reactome

l KEGG COMPOUND [6]

l PubChem Substance [7]

l ChEBI [8]

l GO [9]

l UniProt [10]

l RefSeq [11]

l Ensembl [12]

l Affymetrix [13]

l NCBI gene [14]

l IPI [15]

l Illumina [16]

l OMIM [17]

l EC [18]

l MGI [19]

l PDB [20]

l EMBL [21]

l miRBase [22]

Identifiers will be automatically recognized by Reactome in
most cases. If one has purely numerical identifiers, they will by
default be assumed to be NCBI gene, but the user will be provided
with the opportunity to select the identifier type after the analysis is
complete.

Once an identifier list has been constructed, it can be either
copied and pasted or uploaded as a file, as indicated in Fig. 1.

Clicking the Analyze button will, after a short delay, produce a
list of the pathways known to Reactome and, for each one, an
indication of the number of matching proteins from the supplied
identifier list, as seen in Fig. 2 (see also Note 4).

2.3 BioMart BioMart [23, 24] is a querying infrastructure that allows very
general queries to be specified and which delivers the answers in
tabular format. From the Reactome home page, it can be accessed
by mousing over the Tools menu and clicking on BioMart: query,
link [25]. see Fig. 3.
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To start using it, a database, and dataset must be selected.
Clicking on the dropdown labelled CHOOSE DATABASE will
show the available databases. Once a database has been chosen, a
new dropdown will appear, labelled CHOOSE DATASET. Select-
ing one of these datasets then causes the Filters and Attributes to
appear on the left-hand side of the page (see Note 5).

Clicking on Attributes reveals the full range of attributes avail-
able for the given dataset. Clicking in any of the checkboxes causes
the associated attribute to be added as a column to the output table.
Clicking once on an already checked attribute will cause it to be
deselected.

Clicking on Filters shows the filters relevant to the current
dataset; these allow the user to put constraints on the results of
the query (seeNote 6). Only the first of these filters is significant for
this chapter. This contains a text area, which can be used to copy
and paste a newline-separated list of identifiers, plus a dropdown
that allows the type of the identifier to be specified. The following
identifier types are recognized: ChEBI compound, KEGG gene,
NCBI gene, UniProt and Ensembl gene. If gene identifiers are
used, Reactome will find the corresponding translated proteins
and use those. This filter is not able to automatically determine
the identifier type, so it must be explicitly specified.

Clicking the Results button causes the query to be performed.
Results are returned in tabular form. By default, only the first ten

Fig. 1 Launch page for expression analysis, with functionality for uploading identifier lists
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Fig. 2 Results page for expression analysis, showing the overlap with user data on a per-pathway basis

Fig. 3 BioMart start page



rows are shown. To get all of the results, it is recommended to click
the Go button in the Export all results to section. This will allow the
results to be deposited into a file in TSV (tab-separated value)
format.

2.4 SBML Exporter:

URL Version

The URL version of the exporter requires that a URL be typed into
the browser. The URL stem looks like this:

http://www.reactome.org/ReactomeGWT/entrypoint/
sbmlRetrieval?

To this can be added parameters that will determine the
content of the SBML produced. These should be separated by &
symbols. Parameters are specified as a parameter name, followed by
an equals symbol, followed by a comma-separated list of values. The
two parameters that are relevant to this chapter are LAYOUT and
ID, which are used to specify the type of layout to use and pathway
IDs, respectively. For example, if one wished to build a model based
on the two pathways 109607 (Extrinsic Pathway for Apoptosis) and
169911 (Regulation of Apoptosis), with layout information
embedded as SBGN into the SBML, then the following should
be supplied to the browser:

http://www.reactome.org/ReactomeGWT/entrypoint/
sbmlRetrieval?LAYOUT¼SBGN&ID¼109607,169911

2.5 Interactive SBML

Exporter

The interactive SBML generator is used to turn a list of Reactome
reaction IDs into a model in SBML format. To use this tool, the
following URL should be entered into the browser:

http://www.reactome.org/ReactomeGWT/entrypoint.
html#SBMLRetrievalPage

The layout of this page is illustrated in Figs. 4 and 5. The tool
needs to be supplied with a list of newline-separated Reactome
reaction identifiers (see Note 7).

The panel below the data entry area provides extensive possi-
bilities for customizing the exported SBML. It is possible to set the
desired SBML level and version, choose the format of the layout
included with the SBML (if any), and filter according to various
criteria.

Once the user is satisfied with the data format and the selected
customizations, the Generate SBML button should be clicked to
perform the export.

3 Methods

In this section, two use cases will be described, providing step-by-
step instructions that lead users through the process of creating
models based on the combination of user-supplied data and Reac-
tome pathways. In the first use case, the pathways that are richest in
proteins or genes found in the user’s data will be used to generate a
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model. In the second use case, all reactions in Reactome that utilize
proteins, genes or small molecules from the user’s data will be put
together into a model.

3.1 Constructing

a Model Based

on Pathways Enriched

in User Data

1. The user constructs a list of proteins and/or genes that are
relevant to the model. It is not necessary for the list to be
complete, since Reactome will try to fill in any gaps, but the
more complete the list is, the more likely it is that the correct
pathways will be found.

Fig. 4 Top of interactive SBML generator page, showing data entry panel

Fig. 5 Bottom of interactive SBML generator page, showing parameter setting options
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2. The user translates this list into a list of corresponding
identifiers. For example, serum amyloid P-component might
map onto the UniProt ID P02743. Reactome recognizes a
wide variety of identifier types, which gives the user a significant
amount of freedom. If gene identifiers are used, Reactome will
find the corresponding translated proteins and use those. Iden-
tifiers should be separated by newlines.

3. The list of identifiers is submitted to the Reactome Analyze
Expression Data tool.

4. Once the analysis has completed and the results table has been
loaded, the user clicks on the top of the % in data column. The
rows in the table will be reordered according to the percentage
of the proteins in the Reactome pathway that are also found in
the user’s data, with those having the highest coverage appear-
ing at the top of the table. Assuming that the dataset was
designed to model a fairly specific area of biology, it is likely
that one or two pathways will show a high coverage, the
remainder a very low coverage.

5. For each of the pathways with high coverage, the user clicks on
the View button. A new tab opens when this button is clicked.
The user examines the URL and makes a note of the very last
number in the URL. This is the Reactome internal identifier for
the pathway. These numbers should be noted.

6. The URL version of the SBML exporter is used with the
pathway identifiers found in the previous step to generate a
model for the pathways. This model will contain all of the
reactions in all of the chosen pathways.

7. The model can now be imported into a model editor. It is likely
that a significant amount of pruning will be required, since the
pathways used will probably contain reactions that are not of
interest to the user.

3.2 Constructing

a Model Based on

Reactions Operating

on Molecules in User

Data

1. The user constructs a list of proteins, genes or small molecules
that are relevant to the model.

2. The user translates this list into a list of corresponding identi-
fiers. For example, serum amyloid P-componentmight map onto
the UniProt ID P02743. Identifiers should be separated by
newlines. This list needs to be as complete as possible, since
the only reactions that will be found are those which contain
identifiers in the user’s data.

3. From the BioMart page, the REACTOME database is chosen
and the reaction dataset selected.

4. Under Filters, the user pastes the identifier list into the text field
of Limit to reactions containing these IDs and chooses the
appropriate identifier type.
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5. UnderAttributes, the user must deselectReaction stable ID (see
Note 8).

6. The Results button is clicked.

7. The query results are exported to a file (see Note 9). This file
must be edited and the first line deleted, since this simply
contains the column name.

8. This file is then imported into the interactive SBML generator,
using the Browse button (see Note 10). Clicking on Generate
SBML produces the model.

9. The model can now be imported into a model editor. It is likely
that a significant amount of pruning will be required, since the
pathways used will probably contain reactions that are not of
interest to the user.

4 Notes

1. The Reactome website is fairly robust, and it is likely that it will
also work without problems in other browsers.

2. The name of this tool is a bit misleading in this context.

3. Clicking on the Example button will illustrate the required
format, but note that the example provided also contains
numerical expression values, which are not needed for model
generation. Also, the example shows a table with column
names. These are not mandatory.

4. The column labelled Matching proteins in data in this table
contains, for each pathway, a count of the number of identifiers
from the user’s data that have been found in the pathway. These
numbers are also links, and clicking on one of them provides a
more detailed analysis of the identifiers hitting that particular
pathway.

5. The interactions dataset is a little bit different from the others,
in both the available attributes and filters, but it will not be used
in any of the methods presented in this chapter.

6. Probably the best way to understand filters is as a form of query.
The terms that are supplied to the filter are the ones that will be
queried against.

7. Clicking on the Example button will illustrate the required
format.

8. The idea is to produce an output table with only a single
column for reaction identifiers.

9. The default file name suggested by BioMart may be used, but
the file name and path should be noted.
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10. At this point, the user can also select the desired level and
version for the generated SBML. The defaults are level 2,
version 3. If a layouter was selected, then reaction layout will
also be incorporated into the SBML file. Note that the CellDe-
signer layouter currently does not work. Filters can be used for
doing things like selecting only those reactions that occur
within a given cellular compartment.
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Chapter 15

Uniform Curation Protocol of Metazoan Signaling Pathways
to Predict Novel Signaling Components

Máté Pálfy, Illés J. Farkas, Tibor Vellai, and Tamás Korcsmáros

Abstract

A relatively large number of signaling databases available today have strongly contributed to our
understanding of signaling pathway properties. However, pathway comparisons both within and across
databases are currently severely hampered by the large variety of data sources and the different levels of
detail of their information content (on proteins and interactions). In this chapter, we present a protocol for
a uniform curation method of signaling pathways, which intends to overcome this insufficiency. This
uniformly curated database called SignaLink (http://signalink.org) allows us to systematically transfer
pathway annotations between different species, based on orthology, and thereby to predict novel signaling
pathway components. Thus, this method enables the compilation of a comprehensive signaling map of a
given species and identification of new potential drug targets in humans.
We strongly believe that the strict curation protocol we have established to compile a signaling pathway

database can also be applied for the compilation of other (e.g., metabolic) databases. Similarly, the detailed
guide to the orthology-based prediction of novel signaling components across species may also be utilized
for predicting components of other biological processes.

Key words Literature curation, Signaling database, Signalogs, Orthology-based prediction

1 Introduction

Signal transduction pathways, functional building blocks of intra-
cellular signaling, control various cellular processes, including cell
growth, proliferation, differentiation, and stress response in diver-
gent animal phyla [1]. In humans, defects in intracellular signaling
can cause various diseases, such as cancer, neurodegeneration, mus-
cle atrophy, immune deficiency, or diabetes. Therefore, a better
understanding of the structure, function, and evolution of signal
transduction is important for both basic research and medicine.
This requires the construction of a comprehensive signaling map,
which would (ideally) contain all components of distinct signaling
pathways and their genetic and physical interactions. Genome pro-
grams and high-throughput (HTP) protein–protein interaction

Maria Victoria Schneider (ed.), In Silico Systems Biology, Methods in Molecular Biology, vol. 1021,
DOI 10.1007/978-1-62703-450-0_15, # Springer Science+Business Media, LLC 2013
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analyses have greatly contributed to the construction of signaling
maps in various model organisms, ranging from invertebrates
to mammals. Accordingly, the effort to map novel signaling
components and interactions has largely benefited from network
alignment techniques and other widely used functional genomics
methods, allowing the integration of functional data among and
within species [2, 3].

Most of these methods predict new gene or protein
properties (annotations) on the basis of sequence homology and
similarities between known functions. Similar annotation transfer
approaches have been applied to predict structural properties (e.g.,
domain composition), expression profiles, and physical interactions
of proteins [4–6]. For predicting interactions, several techniques
have been suggested, out of which one of the most widely used is
the method of “interologs”: two proteins are predicted to physi-
cally interact with each other, if their orthologs in another organism
also interact [7]. Interologs, however, are found to be less con-
served than orthologs [8] and also less reliable than interactions
generated by HTP approaches [9].

Despite a great wealth of protein interaction data obtained
from HTP experiments, such as yeast two-hybrid screens, the low
abundance of extracellular, membrane-bound, and nuclear signal-
ing components (e.g., ligands, receptors, and transcription factors)
make these experimental techniques only partially efficient for
identifying signaling interactions [10]. Accordingly, several signal-
ing pathway databases have been generated manually by collecting
relevant data from the literature [11]. However, so far most of them
lack those key features (e.g., uniform pathway curation across more
than one species) that would be necessary for transferring signaling
pathway membership information between species [10]. Reliable
and detailed signaling pathway databases are crucial for predicting
novel signaling components because they are needed (1) as sources
of known pathway information from which prediction can be per-
formed (i.e., seed data) and (2) as reference data sets against which
the novelty of predictions can be tested (i.e., those predicted sig-
naling pathway member proteins that are already known pathway
members should be removed from the list of predictions, while
others can be regarded as predicted components).

A comprehensive pathway resource, SignaLink, developed in
our lab, applies uniform curation rules to keep the levels of detail
identical in all examined pathways for Caenorhabditis elegans,
Drosophila melanogaster, and humans [12]. Compared to three
widely used pathway databases (KEGG, Reactome and NetPath),
SignaLink contains the (1) highest numbers of signaling proteins
and interactions; (2) highest numbers of signaling cross-talks and
multi-pathway proteins; (3) and above the average number of
publications used per pathway [12]. Moreover, the uniform cura-
tion protocol and data structure of the SignaLink database allow
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systematic transfer of pathway annotation between two species on
the basis of sequence orthology.

The topology of signaling pathways is crucial for selecting
possible novel drug target candidates [13]. As an example, drugs
used for inhibiting a specific signaling protein in order to affect
proliferation may actually activate the corresponding pathway by
triggering an unknown negative feedback loop [14]. Transferring
signaling pathway annotations across species may alleviate such
difficulties and can provide a more comprehensive signaling net-
work. Identification of novel signaling components may help to
discover novel drug targets as (1) these signaling components can
increase the applicability of model organisms for testing drugs and
drug target candidates, (2) in humans, they can serve as potential
novel drug targets, and (3) in the case of already used target
proteins they can help to uncover possible side effects.

2 Materials

1. The data serving as a basis for building the SignaLink database
were obtained from both review papers and primary research
articles (see Table 1).

2. These were complemented with data derived from species-
specific databases for Drosophila and C. elegans (Flybase and
Wormbase, respectively) that contain information from differ-
ent sources—ranging from large-scale experiments to primary
research articles (see Table 1).

3. We collected Ensembl IDs for human proteins from the
genome browser Ensembl and ORFs for worms and flies
from species-specific databases (Flybase and Wormbase),
while UniProt IDs were collected from UniProt for all three
species (see Table 1).

Table 1
Sources of the manually curated SignaLink database

Source Protein Signaling interaction Link Reference

170 Review papers ✓ ✓

771 Research articles ✓ ✓

Wormbase ✓ ✓ http://www.wormbase.org/ [37]

Flybase ✓ ✓ http://flybase.org/ [32]

UniProt ✓ http://www.uniprot.org/ [29]

Ensembl ✓ http://www.ensembl.org/ [24]
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4. We searched directly for suggested interactions between two
selected proteins with iHOP andChiliBot [15, 16] (seeTable 2).
iHOP uses genes and proteins as hyperlinks between sentences
and abstracts, meaning that information of a single protein and
its interaction is given as a sentence retrieved from source
abstracts [16].

5. We also used the synonym identification tool of iHOP for
collecting protein synonyms.

3 Methods

In this section, we describe a unified curation protocol for assigning
signaling proteins to signaling pathways and for compiling signal-
ing interactions within a pathway. This standardized curation pro-
tocol in three different organisms is a prerequisite for enabling
systematic transfer of pathway annotations between different spe-
cies to predict new signaling components based on orthology.

3.1 Creating a

Signaling Database

(SignaLink) by a

Uniform Manual

Curation Protocol

The following section describes our workflow for the construction
of a signaling database, which contains eight pathways in three
species (see Fig. 1). The main steps involve listing signaling proteins
of the given pathways, collecting information on the proteins,
assigning each protein to the region/section of a given pathway,
and collecting protein interaction information of the proteins,
thereby also compiling additional proteins to the pathway.

3.1.1 Collecting Pathway

Information for Signaling

Proteins

All pathways examined from three species (C. elegans,D.melanogaster,
and Homo sapiens) were compiled (i.e., manually curated) separately.
For the challenges and importance of pathway definitions, seeNote 1.
For each pathway, three main steps were performed:

1. A search for pathway-specific review articles and databases
using PubMed, Google Scholar, and Google.

2. The assignment of signaling proteins to signaling pathways
based on the full text of reviews.

Table 2
Search engines used for the compilation of SignaLink

Search
engines Protein

Signaling
interaction Link Reference

iHOP ✓ ✓ http://www.ihop-net.org/ (18)

Chilibot ✓ ✓ http://www.chilibot.net/ (15)

PubMed ✓ http://www.ncbi.nlm.nih.gov/pubmed/

InParanoid ✓ http://inparanoid.sbc.su.se/ (17)
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Fig. 1 Manual curation process of SignaLink. To compile the SignaLink pathway resource [12] (http://signalink.org),
signaling interactions were collected from pathway reviews, species-specific databases, and UniProt. Only inter-
actionswith referenceswere included aftermanual checks via PubMed. The iHOP and ChiliBot search engineswere
used for finding references for suggested interactions lacking a reference in the reviews, and these search results
were also manually checked. Synonyms for the interacting proteins were obtained with the help of the synonym
finder tool of iHop. Finally, curated signaling proteins were assigned to pathway regions and pathway sections
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3. An extended search for additional pathway proteins using
iHOP and ChiliBot [15, 16].

4. When inserting a protein into SignaLink we assigned it to one
pathway and—within this pathway—to one pathway region.
Later, further pathways and pathway regions were added for
this protein, if necessary. We marked a protein as a “core”
component of a pathway, if it is essential for transmitting the
signal of its pathway and has at least one of the pathway’s
biochemical characteristics, e.g., “Ser/Tyr-kinase activity”.
A “non-core” (or “peripheral”) component modulates the
pathway’s core proteins, but it does not participate directly in
the transduction of the signaling flow.

5. Additionally, the pathway section(s) of each protein was deter-
mined separately and a maximum of two sections per protein
were allowed. The pathway position ligand indicates that the
given protein initiates the signal of its pathway. A receptor is
the direct receiver of this signal. A mediator is a member of the
pathway that transduces the signal from the receptor towards
downstream transcription factors. A co-factor modulates the
function of any other protein from the pathway. Notably, co-
factors often reside in the peripheral (non-core) region of their
pathways. A transcription factor (1) activates another transcrip-
tion factor (TF) after receiving the signal from its pathway, or
(2) forms a complex with other TF proteins, or (3) binds to a
specific promoter region (i.e., a specific binding site) on the
DNA. Non-signaling proteins with roles in cellular motion,
transport, and membrane anchoring were marked as other.
When information on the position of a signaling protein in its
pathway was lacking, the protein was marked unknown.

3.1.2 Collecting

Signaling Protein

Information

After listing pathway proteins from review and research papers,
information on the signaling proteins were collected from different
databases (see Table 1). For each protein, we also listed its ortho-
logs in the other two species with the help of the ortholog clusters
of the InParanoid database [17]. During collecting UniProt IDs,
if more than one UniProt ID were available for the same protein,
then the ID(s) of the protein(s) with the longest amino acid
sequence was (were) used. To make the database more comprehen-
sive, we assigned all known synonyms of the proteins. These were
listed from review papers, and the “synonym” field of the iHOP
database [18]. For the conversion of protein IDs, the Protein
Identifier Cross-Reference Service (PICR) [19] and Synergizer [20]
were used.

3.1.3 Collecting

Signaling Interaction

Information

A key feature of a signal transduction network is that the direction
of an interaction is well distinguishable (e.g., protein A activates or
negatively regulates protein B). Accordingly, all interactions
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inserted into SignaLink had to be directed. Each interaction had
to be documented with the PubMed ID of the publication report-
ing the verifying experiment(s). Signaling interactions of a protein
were collected from primary research articles, listed in review
papers, species-specific databases (FlyBase, WormBase), and Uni-
Prot, iHOP, ChiliBot, and PubMed search results (see Tables 1
and 2). All research articles were manually examined, and in terms
of biochemical experimental evidence, we marked every protein
interaction as either direct or indirect. Direct experimental evidence
indicates that there is a published biochemical evidence for sig-
naling interaction between two given proteins, whereas indirect
experimental evidence indicates that there is no direct biochemical
evidence for interaction, but published experimental results suggest
that interaction is very likely possible. Evidence types accepted here
involve (1) changes in mRNA/protein levels, enzyme activities,
concentrations of the products of catalyzed reactions, and (2) dock-
ing domain structures.

Importantly, not only the direction, but also the effect of an
interaction is highly relevant to a signaling database. All interactions
can be characterized as activating or inhibitory.

For interactions with indirect evidence, we marked activating
interactions as ++ and ��, while inhibitory interactions were
marked +� and �+. A unidirectional interaction (A and B interact
as either A!B or B!A) has only one type of effect, but for the few
bidirectional interactions (A!B and B!A are both present) more
than one type of effects are possible between the two proteins. Two
signaling interactions between the same two proteins in opposing
directions are listed separately in SignaLink. For the challenges and
limitations of manual curation, see Note 2.

3.1.4 Curation Process

Example: The Notch

Signaling Pathway and

the NOTCH1 Protein

As an example, we present here the human Notch pathway and one
of its components, the human NOTCH1 receptor protein. We
describe the process of (1) obtaining information for the
protein NOTCH1 and (2) obtaining protein interaction informa-
tion for NOTCH1.

According to pathway-based reviews [21], there are 4 members
of Notch receptor family proteins in humans: NOTCH1,
NOTCH2, NOTCH3, and NOTCH4. Notch proteins have a
specific role in transmitting signals [22] between ligands and tran-
scription factors, as well as several additional proteins which influ-
ence the function of Notch proteins [23].

Alternative splicing can generate functionally different pro-
teins from the same coding region; however, in the majority of
proteins functional significance of different splice variants remains
unknown. Despite their potentially different roles, databases and
review papers do not differentiate between splice variants. For the
human NOTCH1 protein, Ensembl [24] contains two splice var-
iants: ENSP00000277541 and ENSP00000360765. From these
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two, the InParanoid database [17] contains only the first,
ENSP00000277541. Therefore, we inserted only this splice variant
into SignaLink. For proteins that have more than one splice variant,
but none of them is present in the InParanoid database, we inserted
into SignaLink the splice variant that has a primary UniProt acces-
sion (AC), as listed by Ensembl version 49.

From Ensembl, we included into SignaLink the UniProt
accession(s) of a protein, and from UniProt we used the following
data fields of the protein: description, reference—if it contained
interaction data,—and cellular component. In addition, data from
protein description and interaction fields were manually tested in
primary publications for further information.

Regarding the region/section, NOTCH1 is a core protein of
its pathway and functions as a receptor, mediator, or transcription
factor, according to ref. [25]. However, within the Notch pathway,
NOTCH1 functions either as a receptor or a transcription factor.
Thus, we included only these two pathway sections for NOTCH1-
into SignaLink.

To make SignaLink as complete as possible, we searched for
orthologs of the human NOTCH1 protein. Orthologs without
known signaling interactions became predicted pathway proteins
in SignaLink. From the InParanoid database we identified the
C. elegans and D. melanogaster orthologs of human NOTCH1
(ENSP00000277541). (In several cases we searched by both the
UniProt and Ensembl protein IDs in InParanoid to find the pro-
tein.) Interestingly, the human NOTCH1 has two worm orthologs
(LIN-12 and GLP-1), but only one fly ortholog (the protein N).
We inserted all three orthologs into SignaLink. We listed species-
specific protein IDs and UniProt ACs of the orthologs from
WormBase and FlyBase. For ligands and transcription factors inter-
acting with NOTCH1, we followed the same steps.

Next, we listed articles describing signaling interactions
between NOTCH1 and other proteins by browsing through the
references of the above mentioned review papers and by using
the search engines iHOP [18] and ChiliBot [15]. iHOP allows
users to search for all abstracts with interactions containing
NOTCH1. With ChiliBot the interaction between two selected
proteins can be directly searched for. As an example, interaction
between NOTCH1 and TACE/ADAM17 has been described in an
experimental article [26]. After reading the article, we found that it
describes (1) a putative cleavage site for TACE on NOTCH1 and
(2) a correlation between the in vitro enzymatic activity of TACE
and the activity of NOTCH1. Thus, this article provides evidence
for the activation of NOTCH1 by TACE. In addition, we directly
searched for interactions between the orthologs of TACE and
NOTCH1 in the other two species.
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3.2 Signalog

Prediction Based on

Orthologous Signaling

Components

Despite the conservation of many biological processes (e.g., devel-
opmental signaling pathways) throughout evolution, there is a poor
overlap in protein–protein interactions between species in different
databases [27]. Furthermore, the catalogue of proteins annotated
with signaling function is incomplete even in highly studied model
organisms. Therefore, the prediction of new potential signaling
interactions and also new signaling proteins based on orthology is
an important task.

3.2.1 Prediction

of Signalogs

We started with creating a list from the three species examined in
SignaLink (C. elegans, D. melanogaster, and H. sapiens) by collect-
ing those proteins that have no known signaling interactions, but
have at least one signaling pathway member ortholog in the other
two species. Similarly to the concept of functional orthology [28],
for each of these proteins we assumed that their pathway annota-
tions (i.e., signaling role) can be transferred between species. Thus,
we predicted that a protein is a member of the same signaling
pathway(s) in which its ortholog(s) belong(s) (see Fig. 2). These
proteins were termed as signalog proteins (signalogs). Because in
SignaLink a protein can belong to more than one pathway [12], a
signalog can also be annotated to more than one pathway. Using
this approach we were able to predict 88, 92, and 73 novel signaling
proteins in worms, flies, and humans, respectively [10]. For the
limitations of orthology-based pathway annotation transfer,
see Note 3.

Creating the Signalog confidence score

3 species

Ortholog proteins with 
known interactions

Ortholog proteins 
without known 

interactions

Pathway 
annotation 

transfer

Signalog of pathway A 
in species 2

Pathway membership examination of the
neighbor(s) of the protein

whose ortholog is a signalog
(e.g., pathway membership examination of Protein Z)

Pathway membership examination of the
ortholog(s) of the neighbor(s) of the protein

whose ortholog is a signalog
(e.g., pathway membership examination of Protein Z’)

Signalog confidence score:
Based on the Spearman rank correlation of the 

pathway membership similarity (vectors) 
between the pathways of the neighbor(s) of 

the original protein (Protein Z) and the  
pathways of its (their) ortholog (Protein Z’).

0
1
2
3
4
5
6
7
8

0

2

4

6

0
1
2
3
4
5
6
7
8

Sum of pathway 
memberships of all proteins 

in position like Protein Z’

Sum of pathway 
memberships of all proteins 

in position like Protein Z

Creating the Signalog confidence scorePredicting Signalogs from SignaLinkPredicting Signalogs from SignaLink

Fig. 2 Prediction of signalogs and calculation of the signalog confidence score. Based on the SignaLink
resource [12] orthology assignment was performed between each pair of the three species. Proteins were
predicted to be members of the same signaling pathway(s) where their orthologs belong. An interaction with a
signaling protein Z0 was predicted for a protein, if the ortholog of the protein interacted with Z (the ortholog of
Z0) in the same pathway A in a different species. A confidence score was calculated based on the pathway
membership similarity between the neighbors of Z and its ortholog Z0. See main text for details
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3.2.2 Defining the

Novelty of Signaling Protein

Predictions Based on

Orthology

To verify the novelty of the predicted signaling roles which have not
been featured in other resources yet, we searched the literature with
semiautomated methods for already known annotations. Next, we
compared the list of signalogs and their predicted pathway mem-
berships to pathway annotations found in pathway databases, as
well as the list of ortholog predictions to previously published
interolog predictions. To assess the novelty of signalogs and
quantify the confidence level of each prediction, we performed
semiautomated searches using PubMed, UniProt, GO, Wormbase,
FlyBase, iHOP, and Chilibot web services [15, 18, 29–32]. During
this process, direct manual curation and Python scripts checking
multiple proteins in one webservice were used. In each of the three
species examined, we classified the predicted signalogs into five
groups on the basis of their known properties in the literature: (1)
no orthology information and/or no biochemical function is avail-
able; (2) there are known orthologs with unknown biochemical
function; (3) only biochemical function is available, but orthology
information is lacking; (4) data on orthology as well as biochemical
function(s) exist; (5) orthologs, biochemical function(s), and path-
way annotation(s) are all known. Categories 1–5 denote a decreas-
ing level of novelty. However, even category (5) contains signalogs
for which at least one novel signaling pathway membership is
predicted. Additionally, to check the novelty of the predicted sig-
naling pathway memberships, we compared the list of signalogs and
their predicted pathway memberships to known pathway member-
ship annotations from Reactome and KEGG [33, 34]. We next
applied interologs to verify the novelty of our ortholog predictions
(an interolog is a pair of proteins predicted to interact based on the
interaction of the two proteins’ orthologs in at least one other
organism) [7]. To reveal the presence of signalogs in current
orthology-based prediction databases, we compared already iden-
tified interologs in worms, flies, and humans using three species-
specific datasets (WI8, DroID, and HomoMINT) [8, 35, 36] with
interologs generated from SignaLink data. Since neither SignaLink
[12] nor the current signalog identification approach identify inter-
ologs directly, we used an indirect method by first deducing
interologs from SignaLink data: we linked two proteins in an
organism, if their orthologs interacted in at least one of the other
three organisms. After generating all possible interologs from Sig-
naLink, we examined only those (predicted interactions) in which
at least one of the interactors is a signalog protein (predicted
signaling pathway member).

3.2.3 Creating

a Confidence Score

for Signalogs

To assess the reliability of a signalog, a confidence score was calcu-
lated in each case (see Fig. 2). For the signalog Z0 that was predicted
to be a component of Pathway A0 (PA0) in Species 2, we examined
pathway membership of each neighbors (protein interactors) of Z0
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in Species 2 and the known signaling component, Z in Species 1.
For each Z and Z0 proteins, we summed pathway memberships as
2 pathway vectors (Vector_Z and Vector_Z0). Vectors have compo-
nents indexed with the name of their signaling pathways. Finally, we
computed the Spearman rank correlation of vectors computed for
Z and Z0, and based on this correlation we defined the Signalog
confidence score: [(Spearman_corr + 1)/2] * 100. This confidence
score quantifies similarity between the signaling pathway member-
ship profile of the possible interactors of a signalog protein and
the original signaling protein (i.e., the orthologs of the signalog
protein). Predictions above 50% can be considered as confident
predictions.

4 Notes

1. Pathway definition is a critical task when compiling a pathway
database. Pathway databases tend to use different pathway
definitions, such as:

l Canonical (e.g., MAPK)

l Functional (e.g., inflammation)

l Inferred (e.g., from gene expression data)

l Cellular process regulating (e.g., autophagy induction)

l Organ-related (e.g., vulva development)

l Disease-related (e.g., list of connected proteins affected
by mutations in breast cancer; Alzheimer’s disease)

l Drug-related (e.g., pharmacologically affected list of
connected proteins)

To develop a database for comparative purposes or systems-
level examinations, pathway definitions must be the same in the
whole database. For SignaLink, we applied a biochemically
based, well-documented, and clear pathway definition. For
example, the EGF/MAPK pathway in SignaLink contains
(with evolutionary and biochemical reasoning) the pathway
from the EGF ligand to the terminal MAPK kinases. In several
other databases this pathway is scattered across many separate
(sub)pathways (e.g., EGFR, RAS, p38, JNK, ERK, ASK).
An important consequence of precise pathway definitions is
the reduced number of examined pathways. An appropriate
and precise grouping can be important to avoid artificial path-
way constructs [12].

2. Despite recent advances in the technology of manual pathway
curation, this technology still does have several limitations.
First, curation highly depends on the knowledge and back-
ground of the curator as well as on the quality of the protocol
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used for the curation [9]. Second, all data are based on the
actual knowledge from the literature. Therefore, these data-
bases have to be updated regularly (e.g., annually or bi-anually).

3. According to our current knowledge, the limitations of
systematical pathway annotation transfer between species are
the following. Interactions of membrane-bound and nuclear
proteins are still underrepresented in most databases, thus pre-
dictions involving these proteins are less reliable. Furthermore,
interactions between signaling proteins have been shown to be
generally more unique to their species than PPIs in most
biological processes [7].

Acknowledgement

Authors were supported by the European Union and the European
Social Fund [TAMOP-4.2.1/B-09/1/KMR-2010-0003], the
Hungarian Scientific Research Fund [OTKA K75334, NK78012],
and a János Bolyai Scholarship to TK and TV.

References

1. Pires-daSilva A, Sommer RJ (2003) The
evolution of signalling pathways in animal
development. Nat Rev Genet 4:39–49

2. Gabaldon T, HuynenMA (2004) Prediction of
protein function and pathways in the genome
era. Cell Mol Life Sci 61:930–944

3. Kuzniar A, van Ham RC, Pongor S et al (2008)
The quest for orthologs: finding the
corresponding gene across genomes. Trends
Genet 24:539–551

4. Yellaboina S, Dudekula DB, Ko MS (2008)
Prediction of evolutionarily conserved intero-
logs in Mus musculus. BMC Genomics 9:465

5. Storm CE, Sonnhammer EL (2003) Compre-
hensive analysis of orthologous protein
domains using the HOPS database. Genome
Res 13:2353–2362

6. Salgado D, Gimenez G, Coulier F et al (2008)
COMPARE, a multi-organism system for
cross-species data comparison and transfer of
information. Bioinformatics 24:447–449

7. Yu H, Luscombe NM, Lu HX et al (2004)
Annotation transfer between genomes:
protein-protein interologs and protein-DNA
regulogs. Genome Res 14:1107–1118

8. Persico M, Ceol A, Gavrila C et al (2005)
HomoMINT: an inferred human network
based on orthology mapping of protein inter-

actions discovered in model organisms. BMC
Bioinformatics 6(Suppl 4):S21

9. Cusick ME, Yu H, Smolyar A et al (2009)
Literature-curated protein interaction datasets.
Nat Methods 6:39–46

10. Korcsmaros T, Szalay MS, Rovo P et al (2011)
Signalogs: orthology-based identification of
novel signaling pathway components in three
metazoans. PLoS One 6:e19240

11. Bauer-Mehren A, Furlong LI, Sanz F (2009)
Pathway databases and tools for their exploita-
tion: benefits, current limitations and chal-
lenges. Mol Syst Biol 5:290

12. Korcsmaros T, Farkas IJ, Szalay MS et al
(2010) Uniformly curated signaling pathways
reveal tissue-specific cross-talks and support
drug target discovery. Bioinformatics
26:2042–2050

13. Chaudhuri A, Chant J (2005) Protein-
interaction mapping in search of effective
drug targets. Bioessays 27:958–969

14. Sergina NV, Rausch M, Wang D et al (2007)
Escape from HER-family tyrosine kinase inhib-
itor therapy by the kinase-inactive HER3.
Nature 445:437–441

15. Chen H, Sharp BM (2004) Content-rich
biological network constructed by mining
PubMed abstracts. BMC Bioinformatics 5:147
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Chapter 16

Bioinformatics Workflows and Web Services in Systems
Biology Made Easy for Experimentalists

Rafael C. Jimenez and Manuel Corpas

Abstract

Workflows are useful to perform data analysis and integration in systems biology. Workflow management
systems can help users create workflows without any previous knowledge in programming and web services.
However the computational skills required to build such workflows are usually above the level most
biological experimentalists are comfortable with. In this chapter we introduce workflow management
systems that reuse existing workflows instead of creating them, making it easier for experimentalists to
perform computational tasks.

Key words Workflows, Web services, SBML, BioModels, Gene Ontology, Taverna, Biocatalogue,
myExperiment

1 Introduction

Bioinformatics is perhaps similar to experimental biology in that
many repetitive tasks are performed following standard protocols.
Many of these tasks can be automated creating computational
workflows from existing software components and algorithms.
The traditional approach is to glue components together using
scripts written in a programming language like Perl. This method
is not, however, practical for many wet lab biologists lacking pro-
gramming skills. A more user-friendly approach to create these
pipelines can be established by using workflow management sys-
tems (WMS). A WMS is a type of software aimed to manage and
define a series of computational tasks that produce an outcome.
WMS are thus really useful to facilitate multistep data analysis and
data integration. In bioinformatics, this type of software usually
presents a graphical user interface that allows users to easily create a
concatenation of automated scientific tasks, even without any pre-
vious knowledge of programming.

To date working with workflows has been difficult because for
the average experimentalist, it can be hard to discover the
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appropriate functionality or it may not be intuitive enough to be
easily run. This is particularly the case when the output of a specific
task is not compatible as input to the following task, perhaps due to
different format standards. A way round this problem is to use
those workflows that have already been created to automatically
run standard pipelines. Reutilization of existing workflows is easily
achievable using myExperiment [1], to date the most comprehen-
sive catalogue of workflows in bioinformatics. In what follows we
demonstrate and provide several workflow examples from myEx-
periment that demonstrate the ease of use and capability of reutili-
zation of existing workflows. For that we use the Taverna [2]WMS.
We hope that by the end of this chapter the user becomes familiar
with the concept of reusing and reconfiguring existing workflows.

2 Materials

2.1 Web Services We will focus on workflows that use remote software functions
(web services) for this chapter, as they do not require any installa-
tion and are readily available for public use. A web service could be
equated to a “task” in our workflow and technically is a piece of
software that runs remotely being accessible via the Internet. Web
services can provide access to data or analysis tools. Web services are
designed for programmatic use (not directly by the user). Web
services are independent from programming languages and can be
operated following specific rules. For example, a rule for a web
service can be that a particular web address (URL) is a request.

2.2 Taverna Taverna (see Note 1) is a WMS for the life sciences, an application
that eases the use and integration of software tools and databases.
Taverna is especially suited for web services. Taverna’s functionality
is offered via a desktop application that provides a graphical user
interface for designing and executing workflows. Taverna’s main
advantage is that it hides the technical aspect of web services facil-
itating their use for the nonexpert [2]. At the time of writing,
Taverna offers access to more than 3,500 web services and allows
users to add new ones (see Note 2).

Herein we used Taverna Workbench 2.4. When the application
is executed, it shows by default the “Design” section with three
main panels. On the top left corner is a “service panel” containing a
list of services that can be used to build workflows. On the right, a
“workflow panel” offers a visual representation of steps, inputs,
outputs, and services involved in a workflow. At the bottom left
corner, an “information panel” provides general details about the
workflow and its components (see Fig. 1). Although such panels are
mostly used to create new workflows, we will focus on prebuilt
workflows, skipping the need for understanding how they work
(for more information on their functionality, please see Note 3).
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2.3 myExperiment myExperiment (see Note 4) is an online catalogue of workflows for
public access and sharing (see Fig. 2). It is accessible through
Taverna, which offers a graphical interface to browse and import
workflows (see Fig. 3). myExperiment allows the researcher submis-
sion of workflows and the capability of searching for those relevant
to his/her desired functionality. These can then be reused and
repurposed to the user’s specific requirements, encouraging repro-
ducible research [1]. At the time of this writing (October 2012),
myExperiment contained around 2,000 workflows. Some of them
have been designed to support the analysis of microarray data [3];
others include the integration of gene expression levels with sys-
tems biology [4], the extraction and structuring of knowledge from
text [5], or the identification of genes associated with diseases [6].
“Pathways and Gene annotations for QTL region” is probably the
most accessed workflow (see Note 5) and its purpose is to identify
genes residing in quantitative trait loci (QTL) regions. This work-
flow was initially designed for the identification of genes in mouse
although it has also been successfully used for different species and
QTL regions [7].

Fig. 1 Screenshot for the “Get models from BioModels including the input protein” workflow in Taverna. This
workflow takes as input a protein identifier and then it runs the BioModels service to retrieve model identifiers
from the BioModels database. The model identifiers are used by another service of BioModels to retrieve the
names of the models. This workflow is available at http://www.myexperiment.org/workflows/3112.html
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2.4 Biocatalogue We will also use Biocatalogue (seeNote 6), an interface for register-
ing, browsing, and annotating web services (see Fig. 4). The Bio-
catalogue repository contains web services, regularly monitored to
notify users of service problems and changes. At the time of this
writing, Biocatalogue offers more than 2,300 services from over
170 service providers. Like myExperiment, Biocatalogue is conve-
niently integrated within Taverna, offering a graphical interface to
browse and import web services (see Fig. 5).

Fig. 2 myExperiment website displaying workflows sorted by “Rank.” On the left it shows a search and filter
functionality to narrow down the number of workflows to explore. On the center is a list of workflows, showing
on the top a workflow entry with the title “Pathway and gene annotations for QTL region”
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3 Examples

In this section we present two biological examples that show how
to reuse and reconfigure workflows. The first example explores
the SMAD2 signal transducer and transcriptional modulator.
Expression of SMAD2 has been associated to colorectal carci-
noma [8]. Our aim here is to find all the instances of the SMAD
protein found in the BioModels database [9], which contains
published mathematical models of biological interest. To do so,
we will be querying existing workflows available in myExperiment
through Taverna. The second workflow shows how to retrieve
information available in BioModels searching proteins involved in
the “transforming growth factor beta receptor signaling pathway”
biological process to find the association of proteins involved in
this biological process with SMAD2.

Fig. 3 Graphical user interface included in Taverna to search and import workflows from myExperiment. In this
example a search was performed to find workflows using the query “biomodels.” This screenshot shows two
BioModels-related workflows of six found in myExperiment
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3.1 Querying

BioModels Using

Protein Accessions

In the first example we will use a workflow from myExperiment to
retrieve models from BioModels involving SMAD2.

3.1.1 Searching and

Loading a Workflow

Click on the “myExperiment” button located on the top left corner
below the main menu. This will open a new view. On the “Search”
tab, find a “Search Settings” panel where you canmake a new search
by typing your query in the “Query” field. Then click the “Search”
button. Next, search for “BioModels” to find publicly available
workflows suiting our needs. As a result of this query, the right
panel now displays a list of workflows (see Note 7). Look for the
workflow named “Get models from BioModels including the input
protein” (see Fig. 3). Read the description and click on the “Open”
button to visualize it in Taverna (see Note 8) (see Fig. 1).

Fig. 4 The Biocatalogue website displaying a list of web services after searching for the query “systems
biology.” This screenshot shows four of the thirty-five services found in Biocatalogue
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3.1.2 Running the

Workflow

In the menu, click on “File” and “Run workflow.” A new window is
then opened in Taverna. This window serves input values to the
workflow. The left side shows some general information about
the workflow: workflow diagram, workflow description, and
author. On the top right side, information can be found about
the different input parameters used to run this workflow (e.g.,
“port description” and “example values” (see Note 9)). To set a
value for the “Protein Accession” input parameter, make sure you
are on the “ProteinAccession” tab and click on the “Set value”
button. By default the value will be set using the example value.
Change this value to “Q15796,” the protein accession number for
the example protein “SMAD family member 2” (see Fig. 6). Now
that the input parameter has been defined, run the workflow by
clicking on the “Run workflow” button.

3.1.3 Checking Results

and Saving Them

After running the workflow, Taverna points the user to the
“Results” section. On the top left panel, a history of the workflows
with its results is shown.On the top right panel, the progress and the
state of the workflow are shown. To run the workflow should take
only a few seconds. On the bottom panel, in “Workflow results,”
several header tabs appear. Tabs preceded with a red triangle contain

Fig. 5 Graphical user interface included in Taverna to search and import web services from “Biocatalogue.” In
this example a search was performed to find workflows using the query “biomodels.” This screenshot shows
two related web service of the twenty-six found in myExperiment
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input information. Tabs preceded with a green triangle contain the
results. Clicking on the “BioModelsIds” tab shows four values
corresponding to four BioModel ids (BIOMD0000000163,
BIOMD0000000342, BIOMD0000000173, and BIOMD00000
00112). The values for the “BioModelsUrl” tab provide links to
browse the models in the BioModels database. The values of the
“SBML” tab provide the models in SBML format including detail
information about the model. One can optionally save this informa-
tion by clicking the “Save all values” button or saving one specific
value (seeNote 10).

3.2 Querying

BioModels Using

a List of Proteins

Annotated with

a Gene Ontology Term

Here we retrieve information present in BioModels for human
proteins annotated with the Gene Ontology term for the “trans-
forming growth factor beta receptor signaling pathway” cellular
component: GO:0007179. GO stands for Gene Ontology
(http://www.geneontology.org/).

3.2.1 Search and Load

a Workflow

Click on the “myExperiment” button. On the “Search” tab, search
for “biomodels” to find publicly available workflows. Look for the
workflow named “Get a list of proteins annotated with an Ontol-
ogy term and use these proteins to query BioModels” (see Fig. 3).
Click on the button “Open” to visualize it in Taverna (see Fig. 7).

3.2.2 Running

the Workflow

In the menu, click on “File” and “Run workflow.” Click on the
“GeneOntologyId” tab and set the value to the example:
“GO:0007179.” Now click on the “TaxonomyId” tab and set

Fig. 6 Screenshot of Taverna to configure input parameters before running a workflow. On the left shows the
workflow diagram, the description, and the name of the author. On the right shows the description of the input
including an example and the UniProt accession used as input in this example (Q15796)
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the value to “9606” to limit the results to human proteins (see
Note 11). Now that your input parameters are defined, run the
workflow by clicking on the “Run workflow” button. After the
workflow retrieves and transforms results from QuickGO (24), it
will iterate over the BioModels service, once per protein. Find a
count of the iterations as they are processed (see Note 12).

3.2.3 Checking Results In the “Results” section check the output tabs on the “Workflow
results” panel. Click on the values available in the output tabs to see
the list of results for each protein accession (see Note 13). At the
time of processing this experiment, 217 proteins are found categor-
ized as “transforming growth factor beta receptor signaling path-
way” Gene Ontology term. Fifty two of these proteins were
annotated in models from the BioModels database. The four
most represented models (hit by other 6, 4, 3, and 3 proteins,
respectively) are the models found in the first workflow
(“BIOMD0000000163, BIOMD0000000342, BIOMD00000
00173,” and “BIOMD0000000112”), showing the association
of SMAD2 with proteins involved in the aforementioned biological
process.

Fig. 7 Screenshot of the “Get a list of proteins annotated with an Ontology term and use these proteins to
query BioModels” workflow. This workflow recycles three other workflows. The first workflow gets a list of
proteins for a Gene Ontology term from QuickGO (19744993). The second workflow helps to shape the output
of the QuickGO service to be able to use it as input in the following workflow (see Notes 15 and 16). The third
workflow takes a list of proteins from the preceding workflow and for each protein it looks for models in
BioModels. This workflow is available at http://www.myexperiment.org/workflows/3113.html
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3.3 Adding More

Functionality by

Extending a Workflow

BioModels is not the only type of service that can be used to query
SMAD2. Additional functionality can be extended for previous two
workflows using any of the web services described in Biocatalogue
(see Table 1 for a representative list).

Workflows themselves can be run as services, taking an input
and producing an output; Taverna allows this functionality.

4 Notes

1. http://www.taverna.org.uk

2. Taverna is freely available for Linux, Macintosh, and Windows
and can be downloaded from http://www.taverna.org.uk/
download/.

3. For more information Taverna offers comprehensive documen-
tation including a glossary of terms, a quick start guide, a user
manual, tutorials, videos, and a frequently asked questions
section at http://www.taverna.org.uk/documentation/.

4. http://www.myexperiment.org

5. http://www.myexperiment.org/workflows/16.html

6. http://www.biocatalogue.org/

7. Workflows from “myExperiment” can be browsed in its website
and also from Taverna itself. For this example, we use Taverna

Table 1
Some web services in Biocatalogue that can be used to get additional protein information

Web service Biocatalogue URL Description

KEGG http://www.biocatalogue.org/
services/11

Putting into context your list of protein
with pathway information

WikiPathways http://www.biocatalogue.org/services/
1935

Reactome http://www.biocatalogue.org/
services/2033

UniProt http://www.biocatalogue.org/
services/610

Retrieving protein sequences and
annotations

InterPro http://www.biocatalogue.org/
services/2753

PDB http://www.biocatalogue.org/
services/1766

Finding structures
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to search, retrieve, and execute workflows directly from “myEx-
periment.”

8. The workflow panel has several options for displaying the
workflow diagram: diagram orientation, zooming, service
details, etc.

9. The information provided in “port description” and “example
values” is worth reading since most of the time it includes tips
to define the input required by the workflow.

10. In Taverna save all the results with the “Save all values” buttons
or individual values by clicking on the “Save value” button
available inside of each “Workflow results” tab. Results can be
saved in a file in text, XML, or Microsoft Excel/Open Office
format.

11. Find more information about organisms and their classification
using the UniProt taxonomy website (http://www.uniprot.
org/taxonomy/). You can search there for species or browse
organisms using a hierarchical tree view. The input used in the
workflow is called “Taxon identifier.”

12. Explore intermediate inputs and outputs by clicking on a
service on the graph on the progress table of the “results
perspective.”

13. Checking the results will find some values that do not have
BioModels results (values in red). This is because some proteins
are not found in the BioModels database. The values on the
BioModels tabs are associated to the “Values” on the “protein-
ListFRomGO” tab.

14. In Taverna this is considered to be a “Shim service”: a service
that does not perform a scientific function but acts as an inter-
mediary to transform an output from one service into a suitable
input for the next service.

15. Access the individual workflows used to work with GO annota-
tions from “myExperiment,” which are the “Get a list of pro-
teins from a Gene Ontology (GO) term” workflow at http://
www.myexperiment.org/workflows/2742 and the “Parse
QuickGO proteinList file format” workflow at http://www.
myexperiment.org/workflows/2744.
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