
Even the simplest cellular process involves many molec-
ular components, which display non-linear behaviours 
and interact in a non-independent and non-additive 
manner. This complexity hinders any intuitive grasp of 
the behaviours of a system: for example, a cell, an organ 
or an organism. Detailed quantitative characterization 
of each component in isolation is of little help. However, 
concurrent mathematical descriptions of all the relevant 
interactions within a system can help to describe its 
structure, provide understanding of its function and 
predict its behaviour or ‘misbehaviour’. Over the past 
few decades, mathematical models of molecular and gene 
networks have become an important part of the research 
toolkit for the biosciences. Their numerical simulations 
complement experiments aimed at understanding the 
molecular basis of cell function. They form a unique 
tool for predicting emergent properties of complex 
systems. For instance, work on bacterial chemotaxis 
provides a lasting example of a successful collaboration 
between modelling and experimental approaches1,2. 
Models have increased in size and complexity, cul-
minating in recent efforts such as the comprehensive 
reconstruction of human metabolism3, the complete 
model of a microorganism4 and multiscale models of 
whole organs5 and plants6. Genome-wide reconstruc-
tions of gene interactions in various cell types7,8 mean 
that we can now model complete gene regulatory  
networks with increased accuracy.

Mathematical models are constructed and used in a 
cycle that involves building the structure of the model, 
choosing mathematical expressions to characterize the 

relationships between its components, finding parameter 
values and initial conditions, and performing numerical 
simulations and other mathematical analyses that can 
both reproduce observations and lead to predictions 
(BOX 1). The availability of cheap and easy-to-use com-
puters, coupled with the generation of large amounts 
of experimental data in digital form, has triggered the 
development of many methods to model and simulate 
molecular and gene networks9 (FIG. 1). This diversity of 
methods has led to uncertainty as to which approach is 
the most relevant (TABLE 1). Quantitative models, which 
are based, in particular, on the application of systems 
theory to chemical kinetics, have been used to describe 
metabolic networks10–13, signalling pathways1,14 and gene 
regulation15–18. In addition, the advent of experimental 
insights of a qualitative nature, such as gene targeting 
and phenotype screens, has led to the development of 
methods to model gene regulatory networks on the 
basis of logic rules (that is, logic, or logical, models)19,20.

This Review presents some of the approaches available 
and provides guidance on how to choose the most appro-
priate one, a choice that depends on the research question 
and the available data. I focus on dynamic models of bio-
chemical reactions in homogeneous (that is, well-stirred) 
compartments; this Review does not cover the structural 
analysis of networks21 and steady-state analysis22, nor 
does it describe methods to spatially model reaction dif-
fusion, which have been covered elsewhere23,24. Although 
most of the examples are from gene regulatory networks, 
all of the methods described can be used to model a wide 
range of biological processes.
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Mathematical models
Descriptions of a system using 
mathematical concepts and 
language. Models are 
composed of a set of variables 
and a set of equations that 
establish relationships between 
the variables.

Numerical simulations
Reproductions of the 
behaviour of a system, 
obtained by iteratively 
computing the values of 
variables in a mathematical 
model over a certain number  
of time steps.

Parameter values
The temporal evolution of 
model variables (for example, 
protein concentrations) is 
affected by the values of other 
variables and by parameters 
such as dissociation constants, 
kinetic rate constants and 
reaction orders. Parameter 
values affect the dynamic 
behaviour of model variables.

Quantitative and logic modelling  
of molecular and gene networks
Nicolas Le Novère

Abstract | Behaviours of complex biomolecular systems are often irreducible to the 
elementary properties of their individual components. Explanatory and predictive 
mathematical models are therefore useful for fully understanding and precisely 
engineering cellular functions. The development and analyses of these models require 
their adaptation to the problems that need to be solved and the type and amount of 
available genetic or molecular data. Quantitative and logic modelling are among the 
main methods currently used to model molecular and gene networks. Each approach 
comes with inherent advantages and weaknesses. Recent developments show that hybrid 
approaches will become essential for further progress in synthetic biology and in the 
development of virtual organisms. 
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Initial conditions
Values for the model variables 
at the start of numerical 
simulations. These initial 
conditions might affect the 
simulation results — for 
instance, in the case of systems 
with several stable states that 
can be reached from different 
trajectories.

Quantitative models
Mathematical models in which 
the values of the variables are 
determined by numerical 
analysis of the variables and 
parameters in the system.

Four network representations in systems biology
Network representation and analysis sit at the core of 
systems biology, and behind each mathematical model 
of molecular or genetic processes is a network. Many 
network representations have been used, and although 
they might seem to form an unstructured continuum, 
one can classify them into four families (FIG. 2). These 
representations are more than mere illustrations; they 
convey deep semantics about the underlying biological 
process together with the context of the study and the 
hypotheses made. It is important to choose the appropri-
ate representation on the basis of the question asked and 
the data available. The choice of network representation 
must be made early in the modelling process because 
it affects the selection of the modelling and simulation 

methods, as well as the processing of the data used to 
build and validate the models.

Interaction networks. Interaction networks (FIG. 2a) 
are used to represent lists of physical or functional (for 
example, genetic) interactions. Interactions are often 
undirected (that is, if X interacts with Y, Y interacts with 
X), and the graph is non-sequential (that is, one cannot 
start on a node and draw a path through the map via 
successive arcs). A subset of interaction networks have 
directed but ‘unsigned’ arcs: we know that X affects Y, 
but not whether it activates or represses it. Such net-
works can be classified as either interaction networks 
or activity flows (see below). Gene and protein inter-
action networks have been reconstructed to obtain a 

Box 1 | Building mathematical models of biological processes

Far from being a linear activity, the process of building a mathematical model is a cycle of  
multiple iterations in which the appropriate number of variables, the mathematical relationships 
and the parameter values are selected, and in which numerical simulations and other  
mathematical analyses are performed to both reproduce observations and form predictions  
(see the figure, part A). In each cycle, the model is extended to include novel variables that are 
necessary to account for observed behaviours and is also pruned of superfluous complexity. The 
most sophisticated simulation approaches are of little use if the initial model structure contains 
basic flaws.

Model building is a layered procedure, and new biological insights can be obtained at each stage. 
The first layer is to determine, or infer from experimental data sets, the biological entities 
(represented as blue circles) to be represented in the model: that is, which genes or which 
molecular species will be part of the network (see the figure, part Ba). The number of entities to 
include depends on both the question asked and the data available to parameterize and validate 
the model. A model does not necessarily need to include all that is known about a system. 
Biological processes and structures can be described at different levels of granularity (for example, 
different models have been constructed using 1 (REF. 133), 4 (REF. 134) or 32 (REF. 135) states to 
represent calcium–calmodulin). Choosing when to be biochemically accurate and when to be 
approximate is one of the most challenging steps in the model-building process. Selecting too 
many molecular species might lead to difficulties when building the mathematical model.

The next step constitutes searching for possible interactions between the components  
(see the figure, part Bb), which can be added, for instance, from functional genomics experiments.  
The analysis of such a network can already provide information at the level of the system21.  
A deeper description includes the directionality of the relationships, transforming the network  
into a pathway, and permits the description of the flux of information in the network (see the figure, 
part Bc). Finally, the relationships can be characterized and quantified (see the figure, part Bd;  
(line thickness represents the strength of influences). 

A mathematical model of a system is made of three structures. First, the variables correspond to 
biological entities, the activity or quantity of which we know or want to determine. Variables can 
represent physical constituents (such as pools of molecules) or parameters (such as kinetic and 
equilibrium constants or characteristic dimensions) that are either constant or varying during the 
simulation. Second, the mathematical relationships link the variables together and represent what 
we already know or what we want to test. Mathematical relationships come in many guises: for 
instance, assignments, rates of change, sampling and logic rules. Third, the constraints represent 
the context of the analysis or represent processes that we choose to ignore in the project. 
Examples of simple constraints are concentrations that cannot be negative and conservation laws. 
An important set of constraints is the initial conditions: for example, the values taken by all 
variables at the beginning of a simulation.

All steps of the model building and simulation procedures must be carefully documented to 
enable verification and reproduction. The computational systems biology community has 
developed sets of guidelines that list all information that must be shared together with the model 
— namely, Minimal Information Required for the Annotation of Models (MIRIAM)136 and Minimal 
Information about a Simulation Experiment (MIASE)137. The required information can be encoded in 
standard formats: for instance, Systems Biology Markup Language (SBML)51 for the models and 
Simulation Experiment Description Markup Language (SED-ML)138 for the simulations and analyses. 
These open standards have had an important impact on the field of modelling in systems biology, 
opening the door to model sharing and reuse, as well as automated model building and analyses60.
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Chemical kinetics
The study of rates of chemical 
processes and how they affect 
the evolution of chemical 
compounds in a system.

Open standards
Standards that are publicly 
available and that can be 
implemented without 
restriction by licensing terms. 
In computational biology, open 
standards are additionally 
developed by the community, 
and implementations are not 
subjected to fees.

Systems Biology Graphical 
Notation
(SBGN). A set of standardized 
symbols to represent  
the entities included in a 
biochemical network and  
their relationships. The 
notation is formed of three 
complementary languages to 
represent activity flows, entity 
relationships and process 
descriptions.

comprehensive view of genome regulation8,25–27 or to 
understand specific processes (for instance, the regula-
tion of pluripotency)28–31. Although interaction networks 
are useful for analysing the structure of systems or the 
results of their perturbation21, their lack of mechanistic 
insights and their static nature make them unsuitable for 
representing dynamic models.

Activity flows. Often, the precise molecular mecha-
nisms underlying the effect of a mutation or a chemical 
perturbation are unknown, with the only information 
being that X is increased or decreased. Activity flows 
(also known as influence diagrams) allow this informa-
tion to be represented in a concise way (FIG. 2b). In other 
words, activity flows are used when the detail of a chemi-
cal reaction is not known or is not considered key to 
understanding the biology. This is often the case in the 
representation of signalling pathways or gene regulatory 
networks. For instance, the non-metabolic parts of the 
Kyoto Encyclopedia of Genes and Genomes pathway 
(KEGG PATHWAY) database and Science Database 
of Cell Signaling use activity flows. Some examples of 
gene networks include maps of sea-urchin development 
from the Davidson laboratory (see Davidson’s maps) and 
transcription networks in stem cells32, neural develop-
ment33 and neurons34. The main nodes are activities, and 
they are linked by arcs representing the direction of the 
influence. Activity flows are therefore suitable for rep-
resenting the transfer of information. They have been 
standardized with the Systems Biology Graphical Notation 
(SBGN) activity flow language. Although these maps are 

directed and sequential, one cannot infer a mechanism 
behind an edge. The statement “X activity stimulates 
Y activity” can refer to a wide variety of mechanisms, 
including activation of Y production, inhibition of  
Y degradation or stabilization of a high-activity state of Y.  
Because of the qualitative nature of the information pro-
vided, activity flows are the natural representations for 
qualitative models and, in particular, for logic models.

Process descriptions. Process descriptions (FIG.  2c) 
are bipartite graphs with two types of nodes: the vari-
ables whose evolution one wants to follow; and the 
processes that decrease or increase (consume or pro-
duce) the values of these variables. The arcs of process 
description maps are directed, and the networks are 
sequential. Process descriptions are suitable for repre-
senting transfer of mass. They have long been used to 
describe biological systems and represent an evolution 
of the chemical reaction network that was present in 
the first metabolic maps35,36. Process descriptions used 
in biochemistry have been standardized with the SBGN 
process description language. The granularity of descrip-
tion allows mechanistic descriptions, making process 
description maps suitable representations of chemical 
kinetic models. Unfortunately, this granularity comes at 
a cost. In contrast to the statements in entity relation-
ship maps (see below), the processes are not independ-
ent and lead to a combinatorial explosion. For instance, 
a promoter that binds to a transcription factor will exist 
in four states: bound, unbound, methylated and unmeth-
ylated. Using it in another reaction — for example, in 
binding to a polymerase — requires four processes. This 
combinatorial explosion also affects the corresponding 
chemical kinetic models. Process descriptions are used 
widely to depict metabolic processes, whether central 
metabolism or metabolic reactions associated with sig-
nalling or gene regulation. Accordingly, the metabolic 
networks in the KEGG pathway database37 are described 
in process descriptions, as are pathways in the Reactome 
pathway database38.

Entity relationships. In entity relationships (FIG. 2d), one 
represents entities (for example, a gene), statements 
about those entities (for example, an interaction or a 
methylation status) and the influence of entities on state-
ments (for example, the stimulation of an interaction). 
Entity relationship maps introduce the directionality 
of influences (that is, “X stimulates Y” is different from 
“Y stimulates X”) and offer a granularity of representa-
tion that is suitable for molecular mechanisms39. Entity 
relationships have been standardized using the SBGN 
entity relationship language40, and such maps have been 
constructed to represent molecular events underlying, 
for instance, the cell cycle41,42 and apoptosis43. The maps 
are built through the accumulation of independent rela-
tionships, each of which describes a fact (for example, a 
site is phosphorylated or phosphorylation is stimulated). 
Entity relationships are thus a perfect graphical repre-
sentation for rule-based models44,45. Although interest 
in rule-based models is growing46 and they represent an 
interesting path for further investigation, they are still 

Figure 1 | Granularity of time representation and variable values for various 
modelling approaches. Variables in a model can take unbounded values (for 
example, concentrations or the number of molecules), multiple although limited values 
(for example, null, low, medium or high) or Boolean values (present or absent, or active 
or inactive). Progression of the variables during simulations can be represented using 
continuous time (mirroring the real world) in a discrete manner (with updates made 
after specified time durations), or using iterations (which do not necessarily represent 
any specific duration). Green methods are updated according to logic rules, whereas 
purple methods compute the new values of variables using quantitative mathematics. 
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Bipartite graphs
Graphs that contain two types 
of nodes, in which nodes of one 
type are only connected to 
nodes of the other type. For 
example, in a metabolic 
network, nodes representing 
biochemical species connect to 
nodes representing reactions.

Systems Biology Markup 
Language
(SBML). A format to encode 
mathematical models that  
is used in systems biology. 
Although initially focused on 
non-spatial, reaction-based 
biochemical models, the 
language now features 
packages covering different 
modelling approaches. SBML  
is supported by software 
libraries in different 
programming languages and 
can be imported or exported 
by hundreds of modelling and 
simulation tools.

not in mainstream use. Furthermore, as their current 
use is mostly centred on signalling pathways, I do not 
describe them further in this Review.

Mining information to build models
As described above, network visualizations such as pro-
cess descriptions and activity flows represent the path-
way counterparts of individual modelling approaches, 
such as chemical kinetics and logic modelling, respec-
tively. It is important to understand that each type of 
representation, and hence its corresponding modelling 
approach, is best suited to different situations and will 
provide different insights (TABLE 1). A key factor in the 
choice of representation is the type of knowledge avail-
able about the system: do we know only the direction 
of regulations, or are the mechanisms underlying the 
regulation elucidated? Moreover, the nature of available 
experimental data is important: are quantitative time-
course experiments available that yield data on concen-
trations or gene expression levels? Or can we use only 
phenotypes and normalized measurements?

Depending on the system being modelled, a bot-
tom-up or knowledge-based approach can be adopted, 
whereby information on the components to include and 
their relationships is obtained from scientific literature or 
public databases that contain previously generated mod-
els or information to incorporate into building blocks. By 
contrast, it is sometimes possible to infer starting points 
for building models directly from experimental data sets. 
This is called a top-down or data-based approach.

The knowledge-based approach. The existing corpus of 
models is often the most useful source of information 
when starting to build a mathematical model. Even if 
no models have been created specifically for a particu-
lar problem, one may be able to reuse models, or parts of 
models, created to answer others. For instance, a model 
of epidermal growth factor receptor (EGFR) signalling 

in tumour progression47 was built using models of phos-
phoinositide 3-kinase (PI3K)48, mitogen-activated protein 
kinase (MAPK)49 and Janus kinase (JAK)–signal trans-
ducer and activator of transcription (STAT) signalling50. 
Although descriptions of mathematical models in the 
literature vary widely, it has become commonplace to 
provide the model source as supplementary information, 
and the development of standards such as Systems Biology 
Markup Language (SBML)51 permits the reuse of these 
descriptions in different software. The models are also 
often deposited in public databases. This makes it possible 
to search and retrieve relevant models using various crite-
ria (for example, biological process, biochemical compo-
nent, organism and authors). BioModels32 is an example of 
a database that provides a large collection of mathematical 
models of biological processes encoded in SBML.

Nevertheless, existing models developed to answer 
a specific question in a given context are rarely directly 
reusable. Furthermore, in some areas of cellular biology, 
computational models are scarce. Therefore, another 
approach is to retrieve building blocks from biological 
databases, a comprehensive list of which can be found in 
the annual database supplement of the journal Nucleic 
Acids Research52. Of particular use are databases that 
list metabolic and signalling pathways, or enzymes. 
After listing the molecular components to include in 
the model, one must determine physical or genetic 
interactions between them (BOX 1). There are many 
protein interaction databases, distributing information 
generated with methods such as immunoprecipitation 
or yeast two-hybrid assays. One of the largest resources 
is the well-curated IntAct53. In addition to physical 
molecular interactions, Search Tool for the Retrieval 
of Interacting Genes/Proteins (STRING)54 distributes 
functional interactions inferred from various sources, 
such as co-expression and text mining. However, the 
sole interactions cannot be directly used in dynamic 
models.

Table 1 | Comparison of quantitative and logic models

Quantitative model Logic model

Suitable for Time series Phenotypes

Time representation Linear representation Abstract iterations

Variables Quantitative Qualitative

Mechanism representation? Yes No

What can we do? Compute concentrations and durations; 
evaluate the effect of parameter values

Compute state transitions and attractors 
(steady states and cyclic attractors)

Data necessary to build  
the model

Molecular species, genes, interactions 
and biochemical processes

Activities, defined phenotypes and rules 
linking those

Data to parameterize and 
validate the model

Amount of molecular species, time 
courses and quantitative phenotype

Perturbations of activities such as RNA 
interference, inhibitors, qualitative 
phenotypes

Advantages Quantitative, precise; direct 
comparison with quantitative 
measurements; large existing toolkit

Easy to build; easy to compose; easy 
simulation of perturbations

Weaknesses Requires quantitative knowledge of 
initial conditions and kinetics

Cannot provide quantitative predictions; 
difficult to choose between alternative 
behaviours
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Biological network 
interference
A procedure whereby an 
unknown set of biological 
interactions and processes is 
deduced from the molecular 
phenotypes it produces:  
for instance, a list of gene 
expression, of molecular 
concentrations or of 
phenotypes on perturbation.

Information theoretic 
methods
Inference methods based  
on the information theory. 
Variables (nodes) are linked in 
a network if information about 
one variable (for instance, the 
distribution of its values) is 
affected by the knowledge of 
the values of the other.

Pathway databases provide functional information 
such as reactions or regulations. The most frequently 
used is KEGG PATHWAY37, which provides a large 
collection of manually drawn maps linked to underly-
ing databases. Reactome38 provides the deepest level of 
curation, albeit with a more limited coverage. Its maps 
exported in SBML can be used directly as a starting 
point for further modelling. The BioCyc database col-
lection, which includes the metabolic pathway data-
base MetaCyc55, provides the largest coverage in terms 
of both organisms and biological processes. Meta-
resources such as ConsensusPathDB56 and Pathguide57 
provide access to a large variety of pathway databases. 
Quantitative information about biochemical reactions 
can also be found in databases such as SABIO-RK58 
and BRENDA59. The Path2Models project60 is an exam-
ple of large-scale generation of mathematical models 
from pathway and biochemistry databases. With 
more than 140,000 annotated SBML files covering all 
domains of cell biology, it provides starting points for  
mathematical models.

The data-based approach. An alternative to recon-
structing molecular and gene network models from  
known interactions is to infer their topology  
from experimental data sets. Most inference software 

was originally developed to infer the network from 
gene expression data61,62, although information can be 
extracted from various molecular phenotypes63. Such 
biological network inference is part of reverse engineer-
ing64 (another part is parameter estimation, which is 
discussed below). Comprehensive surveys of exist-
ing network inference methods and tools have been  
undertaken elsewhere65,66.

Different approaches perform better with different 
kinds of measurements (for example, steady state or 
time courses) and provide different types of information 
(for example, directed versus undirected arcs) (FIG. 3). 
Statistical methods such as correlation (for instance, 
WGCNA) and regression (for example, TIGRESS67) 
reveal whether variables are independent. For instance, 
if two genes are consistently upregulated or downreg-
ulated together, the chances are that they share some 
regulatory features. A recent example of such an analysis 
is the definition of a gene regulatory network that con-
trols naive pluripotency68. Information theoretic methods 
such as mutual information — for instance, context 
likelihood of relatedness (CLR)69 and ARACNE70 — 
express how much information one gets on a variable 
value when the value of another variable is known; for 
example, how much more certain we are of the expres-
sion of a gene when we know the expression of another 
one. Correlation and information theoretic methods 
infer networks with undirected arcs, whereas regression 
methods can predict directed influences. Undirected 
networks cannot be easily used to build dynamic 
models, and some methods have been proposed to 
add directionality to interaction networks71. Directed 
influences are also predicted by probabilistic methods 
such as Bayesian inference72 — for example, Banjo73 and 
CatNet — which compute the probability that a cer-
tain set of data is produced by various networks. One 
can then select the most probable network. Such meth-
ods can infer causal networks from large-dimensional 
data sets, such as signalling pathways from multi- 
parametric flow cytometry74. Bayesian inference methods  
permit the construction of directed, sometimes signed 
(in which arcs represent positive or negative effects), 
networks from functional genomics data sets and 
interactomes. Thereafter, those networks can be trans-
formed into fully fledged logic models (for instance, with 
CellNetOptimizer71). Bayesian inference networks are 
graph models. Other methods based on graph theory 
have recently been proposed75. Finally, methods based 
on ordinary differential equations (ODEs)76 (for exam-
ple, Inferelator77 and NIR78) are particularly suited to 
time-course data and aim at inferring quantitative and 
dynamic interactions between genes and molecules. 
Only in the case of linear models can interactions and 
their signals be easily inferred from data79,80. Methods 
can be compared and ranked between and within any of 
the categories above. However, the advantages and pit-
falls of the various categories are often complementary, 
and the best approach to robustly infer accurate net-
works seems to be a combination of methods81. Recent 
software tools can be used to help to implement such a 
multiple-prong strategy82. 
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Figure 2 | The four views of systems biology. Four different types of networks used to 
represent biological processes and their features are shown. a | An interaction network 
can be used to represent physical interactions (black line) — such as that between 
extracellular signal-regulated kinase (ERK) and ELK1 — and functional interactions  
(grey lines), such as those between UBC9 (also known as UBE2I), ERK, ELK1 and c-FOS.  
b | An activity flow can be used to show the stimulation of c-FOS activity by ELK1 activity, 
the stimulation of ELK1 activity by ERK activity, and its inhibition by UBC9 activity.  
c | A detailed process description can be used to show the catalysis of ELK1 sumoylation 
(SUMO) and phosphorylation (P), their reversed reactions, and the trigger of c-FOS 
expression. The graph is simplified by the inexistence of ELK1 with both covalent 
modifications. d | Entity relationships can be used to describe the stimulation of 
sumoylation and phosphorylation of ELK1 by UBC9 and ERK, respectively, and the 
influence of these processes on c-FOS. 
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Bayesian inference
A method of inference using 
Bayes’ theorem to evaluate the 
probability of a network given 
a data set, as a function of the 
probability that this network 
produces the data set, the 
chance probability of this 
network and the chance 
probability of the data set.

Logic models
Mathematical models in which 
the discrete values of variables 
are determined by logical 
combinations of the values  
of other variables.

Ordinary differential 
equations
(ODEs). Equations describing 
the change of a variable in a 
system over time as a function 
of the values of other variables 
and parameters in the system. 
In a model of a biochemical 
systems, the ODEs are derived 
from the combination of the 
different processes in which 
the entity represented by the 
variable is involved.

Stochastic simulation
Simulation of a model in which 
each process has a certain 
probability to occur. Examples 
of stochastic simulations  
are solutions of stochastic 
differential equations in which 
noise factors are added to 
otherwise deterministic 
ordinary differential equations, 
and dynamic Monte Carlo 
simulations in which reaction 
rates are sampled from 
distributions.

Quantitative kinetic models
The most common approach used to model molecular 
networks is based on the application of systems theory 
to chemical kinetics. A state variable of the model 
represents the quantity of a molecular species (such 
as a metabolite concentration), an amount of mRNA 
or the activity of a gene. This quantity is dynamically 
controlled by the combination of all processes that 
increase the level of the molecular species (for exam-
ple, synthesis, import and activation) and all processes 
that decrease the level of molecular species (for exam-
ple, degradation, export and inhibition). Each process is 
characterized by a rate that can be modulated by various 
parameters, including the quantity or activity of other 
molecular species. A more thorough explanation of the 
basis of chemical kinetics can be found elsewhere83,84. 
The system can be simulated by computing the changes 
in variable values over small intervals of time. This is 
done either by reconstructing ODEs that represent the 
whole system or by simulating each process separately 
using, for instance, stochastic simulation approaches 
(BOX 2). A plethora of tools are available to create such 
models and simulate their behaviours (TABLE 2). These 
programs range from simple simulators of models 
encoded in SBML, such as SBMLsimulator85, to fully 
featured modelling environments, such as COPASI86. A 
good starting point for exploring the current offerings 
is the SBML Software Guide.

Depending on the size of the model, the type of 
information available and the granularity of answers 
sought from the simulations, different approaches can 
be used to represent the regulatory mechanisms87. Used 
in conjunction with quantitative experimental data, 
such models are powerful tools for decrypting and 
understanding systems. Testing the effect of mutations 
in silico and replacing them within the context of com-
plete pathway models can direct experimental pertur-
bations and help to interpret their result, as shown by 
the discovery of a new PI3K-insensitive activation of 
mammalian target of rapamycin (mTOR) by insulin88. 
Their simulations provide quantitative and temporal 
predictions (FIG. 1), which can be crucial for under-
standing biological processes. For instance, quantita-
tive models of nuclear factor-κB (NF-κB) signalling 
predicted oscillations that were shown to be essential 
to NF-κB-dependent transcription89. It was later shown 
with experiments and stochastic simulations of single 
cells that a complex model of three feedback loops 
accounted for the response to pulsatile stimulations 
with different frequencies of NF-κB signalling and  
patterns of NF-κB-dependent transcription90.

Process description models can be developed 
with varying degrees of mechanistic insight. I pre-
sent only three of them below, going from more bio-
chemically accurate representations to more abstract 
descriptions.
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Reaction order
The order of a reaction for  
a given reactant is defined  
as the exponent to which its 
concentration is raised in the 
rate law that characterizes  
the reaction. In the case of 
reactions taking place in a 
well-stirred, diluted medium, 
the reaction order of a 
molecular species is equal to its 
stoichiometry for this reaction.

Box 2 | Quantitative modelling based on chemical kinetics

Chemical kinetics is based on the notion of 
processes that consume reactants and generate 
products. The rate of a process is determined by 
the quantity of the components involved, their 
reaction order and parameters. The exact form 
of the mathematical expression depends on the 
assumptions made. The behaviour of a system 
emerges from the combination of all of the 
processes affecting its components. The value 
of each variable — for instance, the amount of a 
protein or the activity of a gene — is positively 
or negatively affected by processes such as 
binding or catalysis. The resulting effect on a 
given component is the sum of the rates of all 
processes that the component is involved in, 
multiplied by its stoichiometries for these 
processes. For instance, if two molecules of X 
reversibly bind to form a molecule Y, the 
stoichiometries for X are −2 for the formation of 
Y and +2 for its dissociation, whereas the 
stoichiometries for Y are 1 for its formation and 
−1 for its dissociation. If we model the processes 
using mass action law, the reaction orders are 2 
for the formation of Y (2 molecules of X are 
needed to form 1 Y) and 1 for its dissociation  
(1 molecule of Y dissociates into 2 X). Therefore, 
equations describing the temporal evolution of 
X and Y concentrations are as shown below, 
where rate

ass
 and rate

diss
 are the rates of 

association and dissociation, respectively, and 
k

ass
 and k

diss
 are the association and dissociation 

constants, respectively. 

d[X]/dt = −2 · rate
ass 

+2 · rate
diss

 = −2 · k
ass 

· [X]2 + 2 · k
diss 

· [Y]
d[Y]/dt = +1 · rate

ass 
−1 · rate

diss
 = +1 · k

ass 
· [X]2 − 1 · k

diss 
· [Y]

The addition of simple processes allows the rapid 
construction of more-complex systems. Part a of 
the figure represents, using the Systems Biology 
Graphical Notation (SBGN) process description 
language40, a simple two-gene system that can 
display different behaviours, such as 
monostability and bistability or oscillations, 
depending on the parameter values139. We can 
model the system’s behaviour by following the 
state of gene B (reversibly binding to protein A), 
the amount of mRNA B (increased by gene B 
expression and decreased by degradation), the 
amount of protein A (increased by gene A expression and decreased by binding to gene B, binding to protein B and 
degradation), protein B (increased by mRNA B expression and decreased by binding to protein A and degradation) 
and complex AB (increased by the binding of A to B and decreased by degradation). The resulting equations are as 
follows (see the figure, part a).

d[gB]/dt = θ · (1 – gB) – α · gB · [A]
d[rB]/dt = ρ

f
 · gB + ρ

b
 · (1 – gB) – δ

r
 · [rB]

d[A]/dt = (1 ·) ρ
A
 + θ · (1 – gB) – α · gB · [A] – γ · [A] · [B] – δ

A
 · [A] 

d[B]/dt = β · [rB] – γ · [A] · [B] – δ
B
 · [B]

d[AB]/dt = γ · [A] · [B] – δ
AB

 · [AB]

Using a biochemical simulator such as COPASI86, one does not need to write the differential equations. The 
modeller writes down the chemical equations and the rates of the reactions. The software will then numerically 
solve the resulting equations (see the figure, part b). Alternatively, one can run a stochastic simulation, in which 
case each process is considered separately. The model and simulation description can be found in Systems Biology 
Markup Language (SBML) and Simulation Experiment Description Markup Language (SED-ML), and in COPASI 
format in the BioModels database (accession number: BIOMD0000000539).
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Mass action law
A law stating that the velocity 
of a reaction is proportional  
to the concentration of  
the reactants it consumes 
raised to the power of their 
stoichiometry. For instance, the 
rate of a reaction consuming 
two molecules of A and  
one molecule of B will be 
proportional to [A]2 × [B].

Chemical kinetics. Biochemical and cellular phenomena 
follow the laws of chemistry and physics. If the underly-
ing chemical processes are known, the behaviour of the 
system can be described on the basis of thermodynam-
ics and chemical kinetics. The rate of elementary reac-
tions is determined by the relative activities (molecular 
concentrations or gene activity) of the reactants and 
products, and by rate constants, which are themselves 
linked to the free energy of the different states. The most 
generic representation is based on the mass action law, 
which takes into consideration all of the elementary 
binding events, dissociation events, catalyses and state 
transitions driven by the laws of chemical kinetics91.  
This approach is the most accurate if one wants to 
quantitatively explore the behaviours of simple molecu-
lar92 or gene regulatory networks90. BOX 2 presents an 
example of such a model. However, if some conditions 
are met, simplified rate law can be used93. The most  
frequent simplification is Henry–Michaelis–Menten kinetics,  
which allows the enzyme–substrate complex (or ligand–
receptor or promoter–transcription factor complexes) to 
be ignored if the concentration of this complex does not 
change or if the rate of binding is much faster than the 
rate of product formation. These rules can be general-
ized to represent a large range of regulatory processes, 
including non-independent regulations94,95.

However, the detailed molecular mechanisms 
underlying a process are often unknown, or the aim 
is to reduce their complexity and concentrate on the 
main effect of a component. In such cases, the model 
needs to be derived from experimental observations, for 
which several approaches have been developed. Below, I 
describe in detail the use of Hill functions; an example of 
an alternative approach is the use of S-systems11,96.

Hill functions. A generic way to represent modulations 
if the underlying biochemical mechanisms is unknown 
is to multiply the default activity of a gene or the velocity 
of a process by Hill functions, of the form Xα / (Xα + Kα). 
K represents the activity of X for which the effect is 50%. 
If α is positive, the value of the function is 0 for X = 0 and 
1 when X is very large. Therefore, X is an activator. If α 
is negative, the value of the function is 1 for X = 0 and 0 
when X is very large. Therefore, X is a repressor. K shifts 
the response curve horizontally and represents the sen-
sitivity of the response to X. The exponent α controls the 
steepness of the response to X (that is, the cooperativ-
ity). With α = 1, the systems respond linearly to X when 
X is not very large in comparison to K. As α increases, 
the response becomes ever closer to a threshold with a 
small dynamic range. It is easy to see that one can then 
combine the effects of different regulators by multiply-
ing the Hill function terms. One can even combine 
different Hill functions for the same regulator to repre-
sent several modulations at different concentrations97. 
More-complex representations can take into account 
basal expressions in the absence of activators, the  
non-independence of regulators, and so on.

This approach has been useful in modelling many 
biochemical systems, such as calcium signalling97, the 
cell cycle98 and oscillators in general99. In the field of 
gene regulatory networks, Hill functions have been use-
ful for understanding the control of segmentation16,100,101. 
Although Hill functions and similar phenomenological 
descriptions are extremely useful and practical, one must 
keep in mind that they rely on assumptions that might 
not always be valid. For instance, a core hypothesis is 
that the binding and dissociation of the regulator are 
extremely fast in comparison to the process regulated 
and can therefore be ignored because the fraction of 
bound regulator is at equilibrium. Although this hypoth-
esis does not always hold for signalling cascades — in 
which perturbations and responses are on the same time 
scales as association and dissociation, thus resulting in 
distorted kinetics — it is generally considered to be valid 
for gene regulation because of the considerable differ-
ence between the dynamics of transcription factor dif-
fusion and binding in comparison to transcription and 
translation.

Piecewise linear differential equations. A further 
approximation is taking the limit of Hill functions by 
using step functions (also known as Heaviside func-
tions). In this framework, the response to modulators 
(that is, their effect on the rates of the processes) is dis-
crete: for instance, 0 below a certain amount of modula-
tors and maximal over it. These approaches, which were 

Table 2 | Freely available software used to build and analyse models

Name Features License Refs

Gene regulatory network inference

ARACNE Information theoretic Non-commercial license 70

Banjo Bayesian inferences Non-commercial license 73

CatNet Bayesian inferences General public license –

Inferelator ODEs No license 77

NAIL Multiple Apache license –

NIR ODEs Non-commercial license 78

TIGRESS Regression General public license 67

Quantitative kinetic modelling

BIOCHAM ODEs General public license 141

CellDesigner ODEs; stochastic Gratis 142

COPASI ODEs; stochastic Artistic license 86

DBSolve ODE Gratis –

E-Cell Project ODEs; stochastic General public license 125

iBioSim ODEs; stochastic MIT License 143

SBMLsimulator ODEs Lesser general public license 62

XPP-Aut ODEs General public license 144

Qualitative modelling

BoolNET Logic models Artistic license 145

CellNetOptimizer Logic models General public license 121

GINsim Logic models General public license 140

Genetic Network 
Analyzer

Piecewise linear 
equations

Gratis for non-profit 
academic research

105

ODE, ordinary differential equation; SBML, Systems Biology Markup Language.
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Henry–Michaelis–Menten 
kinetics
A kinetic scheme used in 
enzymatic reactions. If the 
formation of an enzyme–
substrate complex is faster 
than the formation of the 
enzymatic product or if  
the concentration of enzyme–
substrate complex is constant, 
one can explicitly avoid 
representing the enzyme–
substrate complex. The rate  
of formation of the enzymatic 
product is then proportional to 
the fraction of enzyme bound 
to the substrate: that is, 
[E] × [S] / (Km + [S]), where  
Km is the concentration of 
substrate necessary to achieve 
half the maximal reaction 
velocity.

S‑systems
Modelling approaches for 
biochemical systems in which 
the creation and destruction  
of molecular species are 
expressed as products  
of the concentration of  
all of the molecular species  
in the systems raised to a 
phenomenological order 
(obtained by fitting the model 
to experimental data).

Global optimization
A branch of numerical analysis 
that deals with the global 
optimization of a function or a 
set of functions according to 
some criteria. Examples of 
global optimization problems 
in biological network modelling 
are parameter estimation and 
flux balance analysis.

Identifiable model
A model in which the values  
of its parameters can be 
unambiguously determined  
by the data sets available. A 
model is non-identifiable if 
alternative sets of parameter 
values can fit the data sets.

Attractors
Stable behaviour of a system, 
as reflected by a fixed 
trajectory in the space of all 
possible states of the system. 
Examples of attractors are 
periodic behaviours (for 
example, oscillations) and 
steady states.

introduced in the 1970s102, have been intensely studied 
and improved over time. Further simplifications were 
recently introduced, such as the use of discrete instead 
of continuous time, in which the system is updated at 
regular intervals103. Nevertheless, their use in quanti-
tative kinetic models has remained limited, although 
a subset was used to model gene regulatory networks 
that also consider qualitative descriptions of variables104. 
Software such as the Genetic Network Analyzer105 allows 
the construction of such models and the study of their 
possible stable states. The generation and analysis of 
such qualitative models is similar to the study of logic 
models (see below).

Parameterization of quantitative models. A bottleneck 
in building quantitative kinetic models is the lack of suit-
able parameters, such as rate or equilibrium constants. 
One way of addressing this issue is to estimate the values 
of those parameters using experimental data sets. The 
estimation of model parameter values is a form of global  
optimization and part of the reverse engineering of 
molecular and gene networks64, a complement of network 
inference presented above. The principle is to test differ-
ent parameter values and select the sets that minimize an 
error function. This function can be derived, for instance, 
from the difference between the values of model variables 
and their experimental determination. As testing all of 
the possible data sets is impossible, the difficulty of the 
procedure is sampling the parameter space and selecting 
the next set to test on the basis of past values of the error 
function. Many methods have been developed106, and 
several of them have been implemented in software such 
as COPASI86. It is important to note that the experimental 
data do not necessarily directly correspond to the variable 
of the model. As far as there is a mathematical transfor-
mation that can lead from the experiment to unique val-
ues of the model variables, parameters can be estimated. 
A model for which one can theoretically find values for 
unknown parameters from adequate data is known as an 
identifiable model64.

Limitations of quantitative kinetic modelling. Despite 
quantitative kinetic modelling being a natural repre-
sentation of molecular and gene networks, and despite 
the approach providing the most precise predictions, 
the lack of kinetic data (and of quantitative data in 
general) hampers its use in many situations. Although 
central metabolism has been characterized quantita-
tively for more than a century, little is known about 
reaction kinetics or equilibrium constants in the realm 
of gene expression or signalling. Moreover, reaction-
based descriptions are sensitive to the existence of mul-
tiple-state entities — for instance, proteins with several 
conformations, covalent modifications, methylation 
states and promoters with different occupancies — or 
multiple-component complexes. In such situations, 
process descriptions lead to a combinatorial explosion 
of both variables and processes, as described above. 
Finally, the theoretical framework of chemical kinetics 
assumes a homogeneous distribution of participants 
in volumes. Most signalling reactions involve a few 

molecular partners that are heterogeneously located in 
spatially complex cellular compartments, such as mem-
branes. Gene regulation involves even fewer partners, 
and reactions take place in a complex spatial domain 
composed of folded nucleic acids. These limitations are 
tentatively addressed by other approaches, such as logic 
modelling.

Logic models
Logic models are characterized by the assignment of 
new values to model variables on the basis of the result 
of logical statements107. These statements combine the 
values of the model variables. For instance, C = x if A = y 
and B = z. Logic models are most often used in con-
junction with qualitative variables that are represented 
by a few discrete integers. In most variants, time is not 
represented in the model or during its simulation. State 
transitions take place at each time step; however, a time 
step can represent a different duration for different tran-
sitions. Once a logic model is built, one can produce tra-
jectories (pseudo time courses) and study the possible 
attractors of the system (BOX 3).

Logic models are versatile: a variable can represent 
almost anything, such as a gene activity, the presence 
of a protein or the state of a cell. They are flexible: the 
state of a given cellular component can be represented by 
one or more variables, with different sets of values. For 
instance, EGFR could be represented by a single vari-
able: EGF would switch EGFR ‘on’, and once on, EGFR 
would switch its targets on. Alternatively, if we want 
to model separately the effect of drugs that target the 
binding of EGF (such as cetuximab) and those that block 
the tyrosine kinase activity of EGFR (such as gefitinib), 
we can represent EGFR as two variables: EGFRbinding 
would be switched on by EGF and ‘off ’ by cetuximab. 
Once on, it would turn on the variable EGFRtk, which is 
itself turned off by gefitinib. Finally, perturbations, such 
as the effects of inhibitors and mutations, can be tested 
straightforwardly in a logic model.

Logic modelling remained fairly theoretical until the 
end of the 1990s, when it aided the modelling of gene 
regulatory networks involved in the regulation of devel-
opment108,109. Since then, logic models have played an 
important part in increasing our understanding of cell 
differentiation; recently, such models have been used 
in the study of haematopoiesis110 and embryonic stem 
cells29. In a similar way to the modelling of gene regula-
tion, the modelling of signalling pathways suffers from 
the lack of kinetic information. Logic modelling has thus 
made a difference in, for instance, our understanding of 
the pathways underlying cell fate in cancer111–113.

Different types of logic models. Logic modelling of 
biological systems is a rapidly expanding field with 
the development of new methods107. In particular, the  
representation of time is the subject of many variations.

An updating scheme is needed when simulating 
logic models; variables in a logic model can be updated 
synchronously, with the values of all variables being cal-
culated after each transition, or asynchronously, when 
variables undergo these transitions one at a time114. 
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Fuzzy logic
Approximate logic 
computation in which the 
variables can have partial  
truth values ranging from  
0 (false) to 1 (true).

This requires mechanisms of prioritization and delay115. 
Probabilistic Boolean networks allow greater flexibility 
by providing alternative logical functions with different 
probabilities for updating a node116. Stochastic simula-
tions of such models allow biological noise and the 
resulting variability of responses to perturbations to be 
taken into account117,118. In the most frequent variant of 
logic models, Boolean models, variables take the values 
0 or 1 (REF. 119). The use of multi-valued variables allows 
the encoding of much richer behaviours with alternative 
influences of one variable on another on the basis of its 
state. Examples are semi-quantitative proportionality, 
with off, low and high activities resulting in no, weak 
and strong effects, respectively, and alternative signs for 
the resulting influences with off, low and high activi-
ties resulting in no effect, stimulation and inhibition, 
respectively. Continuous regulations were ultimately 
introduced in logic models with fuzzy logic120. The limit 
of this trend is reached through methods that allow the 
transformation of logic models into quantitative ones 
using, for instance, Hill functions111.

As is the case for quantitative kinetic models, a cru-
cial part of building logic models is the parameteri-
zation, which might consist of deciding on the terms 
(also called ‘gates’ or ‘connectors’) of the logical func-
tion regulating the values of the variables. Advanced 
software121 can provide different approaches for fitting 
logic models with experimental information. The ade-
quacy of data fitting to the variants of logic modelling 
is discussed elsewhere122. Logic models are also easily 
amenable to model checking123, a set of approaches 
that seek to evaluate whether a model produces a given 
behaviour.

Limitations of logic models. Despite their ease of use, 
logic models present a few inconveniences. First, 
although scaling up logic models is relatively easy, the 
number of states increases exponentially with the num-
ber of variables. Computing state-transition diagrams 
and attractors (that is, stable solutions of the model) is not 
necessarily a problem with modern computers. However, 
gathering insights from these analyses becomes difficult. 
Second, the lack of a representation of time in simple 
logic modelling approaches makes it difficult to take 
into account slow and fast processes and delays. Third, 
because of its purely qualitative nature, it can often be dif-
ficult to choose between alternative behaviours proposed 
by logic modelling: for instance, a functional negative 
feedback would always lead to a periodic behaviour, with 
the model cycling between states, whereas in a quantita-
tive kinetic mode it would lead to either equilibrium or 
oscillation, depending on the strength of the feedback. 
To alleviate such shortcomings, more-complex logic 
model analysis have been designed, some of which are  
implemented in the software listed in TABLE 2.

Towards modular hybrid models
So far, models have been developed mostly in a mono-
lithic manner; that is, a system is described using a sin-
gle model, based on a single modelling method. This 
design approach is reaching its limit, and a paradigm 
shift is needed to support the emerging fields of research. 
Synthetic biology involves the assembly of existing parts 
(‘biobricks’) to create new systems. Predicting the behav-
iour of these systems requires a model that is built by 
merging models of individual parts. Systems pharmacol-
ogy bridges the fields of pharmacometrics and systems 

Box 3 | Logic modelling

Logic modelling is based on the idea that a variable can take a discrete number of states  
or values (two in the case of Boolean models) and that the state of a variable is decided  
by a logical combination of the states of other variables. The system can be updated 
synchronously, with the values of all variables being calculated after a transition, or 
asynchronously, when variables undergo transitions one at a time114. 

We can create a logic version of the system presented in BOX 2 by building a model with 
three nodes representing protein A, protein B and the complex AB (see the figure, part a).  
The activity of A is represented by a Boolean variable. It is inhibited by the complex AB, 
otherwise it is always ‘on’. The activity of AB is represented by a Boolean variable and is 
stimulated if both A and B are active. Finally, the activity of B is represented by three values.  
It can be off, low or high if A is on (and stimulates its production) and AB is off. Note that in 
the following expressions, B is true if B = 1 or B = 2.
• A = 0 if AB

• A = 1 if not AB

• B = 0 if not A and AB

• B = 1 if (not A and not AB) or (A and AB)

• B = 2 if A and not AB

• AB = 0 if not A or not B

• AB = 1 if A and B
The model was implemented using the GINsim software140. The synchronous simulation  

of the logic rules permits the tracing of trajectories across the ensemble of states. The 
combination of all of these trajectories forms the state-transition graph (see the figure,  
part b). Whatever the starting state, the system will end up as a circular attractor in which  
all three variables oscillate.
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biology124, and requires statistical pharmacokinetic and 
pharmacodynamic models that can ‘talk’ to mechanis-
tic network models. Finally, the development of virtual 
organs and organisms (single-cell or multicellular) relies 
on the assembly of many different models of processes 
taking place at different scales5,6.

The next generation of models needs to be modular, in 
which different processes are modelled independently and 
the integration of models takes place during simulation 
through variable transformation and synchronization. 
Such modularization of models and simulations would 
allow more even distribution of the model-development  
burden, more efficient version handling and the use of 
different simulators for the relevant modules. Chemical 
kinetics is intrinsically modular (that is, each reaction 
can be seen as a module), and combining different quan-
titative simulation algorithms was proposed by members 
of the E-Cell Project125, in which separate processes can 
be simulated using different ‘steppers’ that update the 
system when synchronization is needed.

Furthermore, because of the range of biological 
processes to represent and the heterogeneity of experi-
mental measurements available to build and validate 
the models, it is necessary to use hybrid modelling 
approaches, in which qualitative and quantitative rep-
resentations are used in the same model. This approach 
was proposed in 1995 for the modelling of gene regu-
latory networks126. One possibility is to use ODEs and 
piecewise linear differential equations to represent the 
evolution of different quantities127. Logic models (for 
instance, of signalling pathways) can also be combined 
with quantitative models (for instance, of metabolism) 
by generating kinetic representations of the logic parts 
when necessary128 (that is, ‘ODEfication’ (REF. 111)). The 
awareness that biological processes take place on differ-
ent time scales led to the development of models that 
use iterative quantitative steady-state representations of 
metabolism, in which the iteration is coupled by logic 
modelling of gene regulatory networks129–131.

This approach culminated in a complete whole-
cell model of Mycoplasma genitalium that combines 

modularization and hybrid modelling. This model used 
a mix of ODEs, stochastic processes and flux balance 
analysis to simulate 28 modules representing gene net-
works, signalling and metabolism4. Recent work also 
showed that synchronizing several simulators allows the 
concurrent use of different representations and simula-
tion procedures. Such synchronization can be applied, 
for example, to a whole-neuron model, in which chemi-
cal kinetics is used to model synaptic signalling and 
cable approximation is used to model electrical signals 
at the level of the entire neuron132. 

Conclusions
Using mathematics to model and understand the world 
is one of the cornerstones of science. With the rise of 
systems biology at the end of the twentieth century, the 
adoption of mathematical modelling has been rapid in 
genetics and molecular biology. The launch of a large 
number of projects by many institutions led to a demand 
for scientists with good knowledge of molecular and 
cellular biology and an understanding of the model-
ling process, along with its underlying mathematics. 
However, there is a skill shortage in the mathematical 
modelling sector; furthermore, the information and 
training needed to address this skills gap is spread across 
disciplines and institutions. Typically, the community of 
quantitative kinetic modelling originates from physics 
and engineering, whereas scientists who develop and use 
formal modelling have a background in bioinformatics 
and/or mathematics.

Mathematical modelling of molecular and gene 
networks is an important part of systems biology, and 
numerous methods and models are continually being 
developed by a vibrant community. Well-designed, 
experimentally validated models help us to understand 
molecular and cellular processes and can predict the 
effects of drugs or mutations. A greater awareness of the 
different modelling methods and how to combine them 
will make such models more versatile and more useful, 
and new training programmes must strive to encompass 
all aspects of the modelling process. 
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FURTHER INFORMATION
ARACNE: http://wiki.c2b2.columbia.edu/califanolab/index.
php/Software/ARACNE
Banjo: https://www.cs.duke.edu/~amink/software/banjo/
BIOCHAM: http://lifeware.inria.fr/biocham/
BioCyc: http://biocyc.org/
BioModels: http://www.ebi.ac.uk/biomodels
BoolNET: http://cran.r-project.org/web/packages/BoolNet/
BRENDA: http://www.brenda-enzymes.org/
CellDesigner: http://www.celldesigner.org
CatNet: http://cran.r-project.org/web/packages/catnet/
CellNetOptimizer: http://www.cellnopt.org/
COPASI: http://copasi.org
ConsensusPathDB: http://consensuspathdb.org/
Davidson’s maps: http://sugp.caltech.edu/endomes
DBSolve: http://insysbio.ru/en/software/db-solve-optimum
E-Cell Project: http://www.e-cell.org/
GINsim: http://www.ginsim.org/
Genetic Network Analyzer: http://www-helix.inrialpes.fr/gna/
iBioSim: http://www.async.ece.utah.edu/iBioSim/
IntAct: http://www.ebi.ac.uk/intact
Inferelator: http://bonneaulab.bio.nyu.edu/networks.html
KEGG PATHWAY: http://www.genome.jp/kegg/pathway.html
Kohn’s maps: http://discover.nci.nih.gov/mim
MetaCyc: http://metacyc.org/
NAIL: http://sourceforge.net/projects/nailsystemsbiology/
NIR: http://dibernardo.tigem.it/softwares/network-inference-
by-reverse-engineering-nir
Path2Models: http://www.ebi.ac.uk/biomodels-main/
path2models
Pathguide: http://www.pathguide.org/
Reactome: http://www.reactome.org
SABIO-RK: http://sabio.villa-bosch.de/
SBMLsimulator: http://www.ra.cs.uni-tuebingen.de/software/
SBMLsimulator/
SBML Software Guide: http://sbml.org/SBML_Software_Guide
Science Database of Cell Signaling: http://stke.sciencemag.
org/cm
STRING: http://string-db.org
TIGRESS: http://cbio.ensmp.fr/tigress
WGCNA: http://labs.genetics.ucla.edu/horvath/
CoexpressionNetwork/ 
XPP-Aut: http://www.math.pitt.edu/~bard/xpp/xpp.html
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