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Using Chemical Kinetics to Model Biochemical Pathways

Nicolas Le Novère and Lukas Endler

Abstract

Chemical kinetics is the study of the rate of reactions transforming some chemical entities into other
chemical entities. Over the twentieth century it has become one of the cornerstones of biochemistry. When
in the second half of the century basic knowledge of cellular processes became sufficient to understand
quantitatively metabolic networks, chemical kinetics associated with systems theory led to the development
of what would become an important branch of systems biology.
In this chapter we introduce basic concepts of chemical and enzyme kinetics, and show how the temporal

evolution of a reaction system can be described by ordinary differential equations. Finally we present a
method to apply this type of approach to model any regulatory network.
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1 Introduction to Chemical Kinetics

A living cell is built up as a series of compartments of various dimen-
sions. The plasma membrane is an example of a bi-dimensional
compartment surrounding the cytosol, which is itself a tridimensional
compartment. Microtubules are examples of unidimensional com-
partments. These compartments can be considered both as
containers—we can count the number of instances of a certain
type of entity present in, or attached to, a compartment—and as
diffusional landscapes—the movements of the entities within the
compartment depend on its properties. Within the compartments,
the entities can move and react with each other. The object of
chemical kinetics is to study the temporal evolution of the positions
and quantities of the entities contained in a compartment, sometimes
called a reactor. In this chapter, wewill not deal with the displacement
of the chemical entities within a compartment.Wewill assume that an
entity-pool, that is a set of entities that are indistinguishable as
far as the model is concerned, is distributed homogeneously
within the compartment. This hypothesis is known as the well-stirred
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approximation (Fig. 1). This approximation is based on the
assumption that there is no diffusional anisotropy in the compart-
ment, i.e., the molecules move randomly in any dimension. This is
obviously a strong simplification in most of the cases pertaining to
biological functions. It has nevertheless proved to be very useful in
the past. In addition, the alternative requires to enter the realm of
reaction–diffusion modeling, which involves not only more complex
methods but also knowledge of distribution and diffusion character-
istics of the reacting entities.

1.1 Chemical

Reactions

A chemical reaction is the transformation of one set of substances
called reactants into another set called products. At a microscopic
scale, such a transformation is in general reversible, although there
are many cases in which the reverse reaction is of negligible impor-
tance compared to the forward one. In all cases, a reversible reaction
can be split into forward and reverse reactions. For a given reaction,
reactants generally combine in discrete and fixed ratios to form
products. These ratios indicate the amount of each substance
involved in the reaction. The amounts consumed or produced in
one reaction event are called the stoichiometric coefficients or num-
bers, νX, and are positive for products, and negative for reactants. If a
substance is neither consumed nor produced by a reaction, its
stoichiometric coefficient is 0. Equation 1 depicts a general reaction,
in which A and B are reactants combining to form the product P. νA
would be�a, νB ¼ �b and νP ¼ p. The list {�a,�b, p} is also called
the stoichiometry of the reaction.

aA þ bB ! pP (1)

Fig. 1 Representation of a well-stirred container with two types of entities,
represented by empty and filled circles. The arrows represent the direction and
speed of their movements
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In many cases in biology only an overall transformation
consisting of many sequential reactions is experimentally observ-
able. In the finest grained form these reactions are also known as
elementary reactions. An elementary reaction is defined as a mini-
mal irreversible reaction with no stable intermediary products. The
lumped stoichiometric coefficients of the overall reaction consist
of the sums of the stoichiometric coefficients for each reactant over
all elementary reactions.

Chemical kinetics is concerned with the velocity of such trans-
formations, the rates with which substances are consumed and
produced. As the rate of change for a reagent depends on its
stoichiometric coefficients, it can be different for individual sub-
stances. Therefore it is convenient to define the reaction rate, ν, as
the rate of change of a substance divided by its stoichiometric
coefficient. This effectively represents the number of reaction
events taking place per unit of time and unit of compartment size.

ν ¼ 1

�a

d½A�
dt

¼ 1

�b

d½B�
dt

¼ 1

p

d½P�
dt

Therefore, we can compute the change of each substance as the
product of the reaction rate and its stoichiometric coefficient for
this reaction.

d½A�
dt

¼ �a � ν

d½B�
dt

¼ �b � ν

d½P�
dt

¼ p � ν

Reaction rates depend on many factors and can effectively take
any form for the purpose of modeling. In the following subsec-
tions, we will describe the simple cases where the reaction rates
depend solely on the concentrations of the reacting substances.

1.2 Mass-Action

Kinetics

For a chemical reaction to take place, the participants have to
collide or come into close vicinity of each other. The probability
of such collisions depends, among other parameters, on the local
density of the reactants, and hence, in well-stirred environments,
on their concentrations.1 This relationship was first described by
Guldberg andWaage in the second half of the nineteenth century in
a series of articles on the dynamical nature of the chemical equilib-
rium [1]. They assumed that at equilibrium both the forward and

1Under nonideal conditions, as found in biology, activities instead of concentrations should actually be used both
for describing rate equations and equilibria. As this is not common practice in biological modeling, we do not
distinguish between activities and concentrations in the following. It should be noted, though, that activities can
differ significantly from concentrations in cellular environments.
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backward reaction forces or velocities were equal, and that these
velocities where proportional to the concentrations of the reactants
to the power of their stoichiometric coefficients. The relationship of
reaction velocities and concentrations is called the “Law of Mass-
Action”, and rate expressions equivalent to the ones employed in
their articles are sometimes referred to as “Mass-Action Kinetics”.2

The rates of simple unidirectional chemical reactions are usually
proportional to the product of the concentrations of the reactants
to the power of constant exponents, called partial reaction orders or
nX. The sum of all partial orders is called the order n of a reaction
and the proportionality factor is called the rate constant k. As the
name indicates, this parameter does not vary in a given system. For
example, for the reaction described in Eq. 1 assuming mass-action
kinetics the reaction rate appears as follows:

v ¼ k � ½A�nA � ½B�nB

The reaction has an order of n ¼ nA + nB. In general, the order
of elementary reactions is equal to the number of molecules inter-
acting, also known as the molecularity. A unimolecular reaction
A ! P for example would have an order of one, a bimolecular
reaction, such as 2A ! P or A + B ! P would be a second-order
reaction etc. However, this equivalence is not always true, and
anisotropy or crowding of the reaction environments may affect
the motion of molecules, resulting in different, and sometimes
nonintegral, reaction orders.

While mass-action kinetics are strictly only valid for elementary
reactions, they are widely and successfully applied in various fields
of mathematical modeling in biology. Especially for large and
vaguely defined reaction networks, as found in signal transduction,
mass-action kinetics are commonly employed as a very general
initial approach. Most often, the partial orders are taken to be
identical to the stoichiometric coefficients. The rate constants can
either be calculated from separately measured equilibrium con-
stants and characteristic times, or computationally fitted to repro-
duce experimental results.

1.2.1 Zeroth Order

Reactions

Reactions of order zero have a reaction rate that does not depend
on any reactant. Zeroth order reactions can be used for instance to
represent constant creations from boundary condition reactants,
such as:

X��!k P

2The termmass-action stems from the proportionality of the so-called reaction “force” to the mass of a substance
in a fixed volume, which is proportional to the molar concentration of a substance.
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where X represent a set of source reactants that are not depleted by
the reaction. The reaction rate is then equal to:

v ¼ k � ½X�0 ¼ k

in which k is the rate constant, and has the units of a concentration
per time.

1.2.2 First-Order

Reactions

In general unimolecular reactions are modeled using first-order
mechanisms. In irreversible first-order reactions, the reaction rate
linearly depends on the concentration of the reactant. Many decay
processes show such kinetics, for example radioactive decay,
dissociation of complexes or denaturation of proteins. For a simple
reaction:

A��!k P

the following rate law applies:

v ¼ k � ½A�
in which k is the first-order rate constant, and has the units of
a reciprocal time, [1/time]. If this is the only reaction affecting
the concentration of A in a system, the change of [A] equals
the negative reaction rate.Similarly, the change of [P] equals the
reaction rate.

d½A�
dt

¼ �v ¼ �k½A�
d½P�
dt

¼ þv ¼ þk½A�

1.2.3 Second-Order

Reactions

Second-order reactions are often used to model bimolecular
reactions, either between different types of molecules or between
two instances of the same molecules. Examples are complex forma-
tion and dimerization reactions. For a simple reaction:

A þ B��!k P

the following rate law applies:

v ¼ k � ½A� � ½B�
in which k is the second-order rate constant, and has the unit of
[1/(time � concentration)]. The change of [P] with time is
described by the following differential equation:

d½P�
dt

¼ v ¼ k � ½A� � ½B�
A special case of bimolecular reaction is when two reactant

molecules of the same type react to form the product, for example
in protein dimerization reactions. For the general reaction:

2A��!k P
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the reaction velocity and the temporal development of [A] and [P]
are given by the following equations:

v ¼ k � ½A� � ½A�
d½A�
dt

¼ �2v ¼ �2k½A�2

d½P�
dt

¼ v ¼ k½A�2

Note that this formula is only valid because we assume a very
large number of molecules are available to react. If picking one
molecule changes significantly the probability to pick a second one,
we must replace ½A�2 by ½A� � ðð½A�V � 1Þ=V Þ, where V the volume
of the reactor.

1.3 Representing

the Evolution of

Multi-Reaction

Systems

In the sections above, we only derived expressions describing the
temporal evolution of species altered by single reactions. In biological
systems, substances are involved in many different processes, leading
to complex ordinary differential equation systems, that normally can
only be solved numerically and with help of computers. Having
carefully designed the elementary processes composing the system,
reconstructing the differential equations representing the evolution
of the different substances is a systematic and easy procedure. We
already saw in Subheading 1.2.2 that the reaction:

A��!k P

Could be modeled by the system:

d½A�
dt

¼ �1v ¼ �1k½A�
d½P�
dt

¼ þ1v ¼ þ1k½A�

If the reaction is reversible, such as:

AÐkf
kr
P

then we can consider it as a combination of two irreversible reac-
tions, the rates of which depend on [A] and [P]:

v
f
¼ k

f
� ½A�

v
r
¼ kr � ½P�

The evolution of both substances therefore depends on the
forward and reverse reaction rates. A is consumed by the forward
reaction and produced by the reverse reaction. It is the other way
around for P.

d½A�
dt

¼ �1vf þ 1vr ¼ �1kf ½A� þ 1kr½P�
d½P�
dt

¼ þ1vf � 1vr ¼ þ1kf ½A� � 1kr½P�
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To understand how to handle non-unity stoichiometric num-
bers, consider the following dimerization:

2AÐkf
kr
P

The forward reaction will be modeled using second-order
kinetics, and the rates will therefore be:

vf ¼ kf � ½A�2
vr ¼ kr � ½P�

As above the evolution of both substances therefore depends
on the forward and reverse reaction rates. But this time two mole-
cules of A are consumed by each forward reaction and produced by
each reverse reaction. Therefore:

d½A�
dt

¼ �2vf þ 2vr ¼ �2kf ½A�2 þ 2kr½P�
d½P�
dt

¼ þ1vf � 1vr ¼ þ1kf ½A�2 � 1kr½P�
This approach can then be extended, independently of the size

of the system considered. An ODE system will contain (at most)
one differential equation for each substance. This equation will
contain components representing the involvement of the substance
in the different reactions of the system. For the substance Sn,
involved in a system containing r reactions, the differential equa-
tion takes the following form:

d½Sn�
dt

¼
Xr
i¼1

νnivi

νni denotes the stoichiometric coefficient of Sn in reaction i, vi the
rate of this reaction. The resulting ODE system can also be repre-
sented in matrix notation, by introducing the stoichiometric
matrix, N, and the reaction rate vector, v. The stoichiometric
matrix, N, contains a row for each of the n species in the system,
and a column for each of the r reactions. Its entries, Nij, are
the stoichiometric coefficients, of substance i in reaction j. v is a
column vector with each element vi indicating the rate of the ith
reaction. Using the above, the change of the concentration vector S
over time is described by:

d½S�
dt

¼ N � v

2 Numerical Integration of ODE Models

Once a set of differential equations has been determined, to
describe the changes of the variables per unit of time, the behaviour
of the system can be obtained by fixing initial conditions and
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solving the equations. In the case of a zeroth order reaction, the
solution describing the evolution of P is of course a monotonic
increase since a fixed amount of P is created per unit of time:

½P�ðtÞ ¼ ½P0� þ kt

The equation describing the evolution of A in a First-order
reaction can be easily rearranged and analytically solved, assuming
an initial concentration [A0] at time t ¼ 0. Furthermore, since
[P]t + [A]t ¼ [P0] + [A0]:

½A�t ¼ ½A0� � e�kt

½P�t ¼ ½P0� þ ½A0� � ð1� e�ktÞ
The rate constant in first-order kinetics is directly related to

some characteristic times of substances, which are often readily
available. For example the average life time of the reactant, τ, and
the time it takes for its concentration to half, the half-life t½, can be
derived as (see Fig. 2):

τ ¼ 1

k

t1
2
¼ ln 2

k

Integration of the equation describing the evolution of P in a
second-order reaction using the initial concentrations [A0], [B0]
and [P0] leads to a hyperbolic time dependency:

½P�ðtÞ ¼ ½P0� þ ½A0�½B0� e�kt ½B0� � e�kt ½A0�

½A0�e�kt ½B0� � ½B0�e�kt ½A0�

Contrarily from first-order reactions, the characteristic times in
second-order reactions are not independent of the initial condi-
tions, but depend on both the rate constant and the initial

Fig. 2 Decay of a reactant A, that is consumed by a First-order reaction with a
constant k from an initial concentration of [A0]. The average lifetime of a given
molecule of A, is given by 1/k. [A] tends toward 0 while [P] tends towards
[A0] + [P0]
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concentrations of the reactants. In case the two reactants are
instances of the same molecular pool (A ¼ B), and assuming the
initial concentrations to be [A0] and [P0], the resulting time courses
for [A] and [P] are described by the following hyperbolic functions:

½A�ðtÞ ¼ ½A0�
2k½A0�t þ 1

½P�ðtÞ ¼ ½P0� þ ½A0�2kt
2k½A0�t þ 1

However, beside the most elementary systems containing only
few well-behaved reactions, we cannot generally solve a system of
ordinary differential equations analytically. We have to resort to
numerical integration, a method that goes back to the origin of
differential calculus, where we approximate the current values of
the variables based on the knowledge we have of their values in the
(close) past. Many approximations have been developed. The sim-
plest and easiest to grasp (but also the most error prone) is the
forward Euler rule. If we discretize the time, one can make the
following approximation:

d½X�
dt

� Δ½X�
Δt

¼ ½X�tþΔt � ½X�t
� �

Δt
We can rearrange the equation above and extract the concen-

tration as follows:

½X�tþΔt � ½X�t þ
d½X�
dt

ðtÞ � Δt

We know d[X]/dt as a function of the vector of concentrations,
obtained with the method described above, and can therefore
compute the difference introduced during one Δt. This procedure
is represented in Fig. 3. We can see on the figure that a systematic

Fig. 3 Graphical representation of the forward Euler method to integrate ordinary
differential equations. The thick curve represents [X] ¼ f(t), and the vectors its
derivative. Note the progressive error introduced by the coarse time
discretization
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error is introduced by the time discretization. Such an error
becomes larger for more complex dynamics, such as non-
monotonic behaviours (e.g., oscillations), or systems with fast and
slow components. One can address the error by using tiny time
steps but at the expense of computational efficacy. Many methods
have been developed over the years to address this problem. A good
introduction is given in LeMasson and Maex [2] and a more
comprehensive survey of the field by Hairer et al. [3] and Hairer
and Wanner [4]. Biological modeling tools such as COPASI [5],
JDesigner/Jarnac [6], E-Cell [7] or CellDesigner [8] have their
own in-built numerical ODE solver. They also generate the system
of ODE to be solved automatically, so the required user input is
limited to the list of chemical reactions in some defined format and
of the parameters governing those reactions.

3 Modeling Biochemical Networks

Modeling the biochemical pathways does not require much more
than what has been presented in Subheading 1. The only complex-
ity we will introduce in the following sections are slightly more
complex expressions for the reaction rates.

3.1 Basal Level

and Homeostasis

Before modeling the effect of perturbations, such as extracellular
signals, it is important to set up the right basal level for the sub-
stances that we will consider in the model. This basal level is
obtained when the processes producing the substance and the
processes consuming it are compensating each other. We then
reach a steady state, where input and output are equal. To illustrate
this, we will build the simplest system possible that permits to have
a steady basal concentration of calcium. The system is made up
of a continuous creation of calcium, for instance due to leaky
channels in the plasma membrane or in the internal stores, modeled
as a zero-order reaction (see Subheading 1.2.1). The calcium is then
removed from the system for instance by pumps or buffers in
excess, modeled as a first-order reaction (see Subheading 1.2.2).

60��!kin Ca2þ��!kout 60
The instantaneous changes of calcium concentration then

result from the combination of the two reaction rates (Fig. 4).

d½Ca2þ�
dt

¼ kin � kout½Ca2þ�

The steady-state level is reached when the changes are null, that
is [Ca2+] ¼ kin/kout. If the concentration of calcium is higher than
this ratio, the second term wins and the concentration decreases.
In contrast, if the concentration of calcium is lower than this ratio,
the first term wins and the concentration increases. kout can be
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estimated from the decay observed after stimulation. kin can there-
fore be computed from the steady state. Changing kin in a discrete
manner is a simple way of modeling the opening or closing of
calcium channels. Such a homoeostatic control is extremely simple.
More complex schemes can be designed, with control loops such as
negative feed-backs on the creation steps and positive feed forwards
on the extrusion steps.

3.2 Representing

Enzymatic Reactions

In order to accelerate chemical reactions and select among different
isomers, cells use enzymes, which are protein-based catalysts. They
can increase reaction rates to a tremendous degree and often are
essential to make reactions occur at a measurable rate. Enzyme
catalyzed reactions tend to follow complex sequences of reaction
steps, and the exact reaction mechanisms are generally unknown.
The single reaction steps can be contracted into an overall descrip-
tion with lumped stoichiometries. However, since the detailed
reaction mechanisms are most often unknown, and also parameters
for each of these steps are hard to come by, such reactions can rarely
be modeled considering each single step and using mass-action
kinetics. Depending on how much detail is known, an enzyme
catalyzed reaction can be described on different levels. The reaction
equations for a simple conversion of a substrate S to a product P
catalyzed by an enzyme E, for example, can vary depending on the
consideration of intermediate enzyme complexes and reaction
reversibility:

Fig. 4 Evolution of calcium concentration over time. Between t0 and t1, the
extrusion is stronger than the creation. At t1, kin strongly decreases, for instance
by a block of leak channels, and the concentration is brought to a lower steady-
state value. At t2 the block is removed. The creation becomes stronger than
extrusion, and brings back the concentration to the initial steady state. Vertical
arrows represent the intensity and direction of the reaction’s flux for a given
concentration of calcium
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Sþ E Ð ESÐEP Ð Eþ P

Sþ E Ð ES ! EP Ð Eþ P

Sþ E Ð ES Ð Eþ P

Sþ E Ð ES ! Eþ P

Sþ E ! Eþ P (2)

Knowledge of the mechanism of an enzymatic reaction can be
used to derive compact and simplified expressions fitting the overall
kinetics. The alternative is to use generic rate laws that are known to
loosely fit wide classes of reactionmechanisms, and to choose the ones
that seem most appropriate for the reaction in question. The kinetics
of the overall reaction are determined by the reaction mechanisms of
the elementary steps, but exact derivations can become quite complex
and cumbersome to handle. In general it is safer andmore convenient
to use approximate expressions in biological modeling, even more so
as exact mechanisms are rarely known.

Two assumptions are available to simplify complex enzymatic
reaction descriptions. The more general one is the quasi steady-
state approximation, QSSA. The QSSA considers that some, or all,
of the intermediary enzyme-substrate complexes tend to a near
constant concentration shortly after the reaction starts. The other
widely used assumption, called the rapid equilibrium assumption,
is that some steps are much faster than the overall reaction, mean-
ing that the participating enzyme forms are virtually at equilibrium
and that their concentrations can be expressed using equilibrium
constants. This approach is often used to model fast reactant or
modulator binding to the enzyme. The application of these tech-
niques depends very much on how much of the reaction mecha-
nism is known. An excellent introduction into enzyme kinetics is
given by Cornish-Bowden [9]. For a more exhaustive treatment
with detailed derivations of rate laws for a multitude of mechanisms
please refer to the standard work by Segel [10].

At the beginning of the twentieth century, Henri [11] pro-
posed a reaction scheme and an accompanying expression for
describing the rate of sucrose hydrolysis catalyzed by invertase.
This reaction showed a deviation from normal second-order kinet-
ics and tended to a maximal velocity directly proportional to the
enzyme concentration. Making use of the existence of an interme-
diary substrate-enzyme complex, ES, and assuming that the sub-
strate S and the enzyme E were in a rapid binding equilibrium with
the complex, he could derive an expression fitting the experimental
observations. A similar approach was taken and expanded in 1913
by Michaelis and Menten [12], who proposed the current form of
the reaction rate based on a rapid equilibrium between enzyme and
substrate.
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Eþ SÐk1
k�1

ES��!k2 Eþ P

(k2 is the catalytic constant, or turnover number, and often called
kcat). The QSSA was proposed as a more general derivation by
Briggs and Haldane [13]. The substrate binding and dissociation,
as well as the product formation step, lead to the following expres-
sion for the time dependence of [ES]:

d½ES�
dt

¼ k1½E�½S� � k�1½ES� � k2½ES�

At steady state, the concentration of the intermediate complex,
[ES], is constant hence d[ES]/dt ¼ 0. Rearranging this equation
and setting KM ¼ k�1þk2

k1
, we obtain [E] ¼ [ES] � KM/[S]. Fur-

thermore, because the concentration of enzyme is constant, we
have [E] ¼ [Et] – [ES]. Equating both, we obtain:

v ¼ d½P�
dt

¼ k2½ES� ¼ k2½Et� ½S�
KM þ ½S� (3)

k2 � [Et] is sometimes called the maximal velocity νmax. This rate
expression is often used—and abused—when modeling biochemi-
cal processes for which the exact mechanisms are unknown. How-
ever, one has to realize that it only holds true if the concentration of
the enzyme-substrate complex stays constant, which in turns
implies that the concentration of substrate is in large excess.
Those conditions are very rarely met in signal transduction systems,
resulting in many artifacts.

Plotting the reaction velocity, ν, against the substrate
concentration, [S], gives a rectangular hyperbolic curve (see
Fig. 5). The parameter KM has the unit of a concentration and is
of central importance in describing the form of the substrate
dependence of the reaction velocity. As can be seen by inserting
KM for [S] in Eq. 3, it denotes the substrate concentration at which
the reaction speed is half of the limiting velocity. If ½S� � KM, then
[S] in the denominator can be disregarded and the reaction
becomes linear with regard to S, showing first-order characteristics:

½S� � KM ) v � vmax

KM
� ½S�

On the other extreme, for high substrate concentrations,
½S� � KM , the reaction speed becomes virtually independent of
[S] and tends toward νmax.

½S� � KM ) v � vmax ¼ kcat � ½Et�
Most enzyme catalyzed reactions show a similar rate behaviour

inasmuch as they exhibit first or higher order dependencies on the
substrate at lower substrate concentrations and tend to a limiting
rate depending only on the enzyme concentration when the reac-
tant concentrations are high.
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While the original Michaelis–Menten equation was derived to
describe the initial velocity of the enzymatic reaction in absence of
product, allowing the reverse reaction to be neglected, the QSSA
can also be used to derive a reversible Michaelis–Menten equation
describing the most extensive reaction scheme in Eq. 2. Using the
same procedure as above, the following expression for the reaction
velocity in dependence of ET, S and P can be derived:

v ¼ vfwd
½S�
KMS

� vrev
½P�
KMP

1þ ½S�
KMS

þ ½P�
KMP

(4)

As the net rate of a reversible reaction has to vanish at equilib-
rium, one of the parameters of Eq. 4 can be expressed using the
equilibrium constant by setting the numerator of the expression to
zero. The so called Haldane relationship connects kinetic and ther-
modynamic parameters of an enzymatic reaction. While some
mechanisms lead to much more complicated expressions, at least
one Haldane relationship exists for every reversible reaction.

Keq ¼ vfwdKMP

vrevKMS
¼ k2KMP

k�1KMS

3.3 Modeling Simple

Transport Processes

Compartmentalization of molecular species and transport across
membranes are of great importance in biological systems, and
often need to be implicitly accounted for or explicitly included
into models.

Fig. 5 Dependence of the reaction velocity, ν, of the irreversible Michaelis–Menten equation on the
concentration of the substrate, S. The left graph shows the uninhibited case. On the right various forms of
inhibition are shown in a semi-logarithmic plot. The horizontal dotted lines indicate the apparent half maximal
velocities, the vertical ones the apparent KMs. Competitive inhibition does not alter the maximal velocity, but
shifts the KM to higher values, while non-competitive inhibition simply decreases the apparent Vmax. The
special case of uncompetitive inhibition leads to an apparent increase of substrate affinity of the enzyme, that
is a lower KM, but a reduction of the apparent Vmax. Mechanistically this is due to the unproductive enzyme-
substrate-inhibitor complex (KM ¼ 1; [I] ¼ 1; comp., uncomp. and non-comp. inhib.: KI ¼ 1.)
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Transport across membranes can either occur passively by sim-
ple diffusion, or be coupled to another reaction to actively move
molecules against a chemical potential gradient. In the simplest
form of passive diffusion, molecules just directly pass through a
membrane or an open channel or pore. As the connected compart-
ments in general have differing volumes, the change of concentra-
tion of a substance flowing from one compartment to another is
not equal in both compartments. Therefore the rate of transloca-
tion is commonly described by the flux, j, of a substance, that is the
amount of a substance crossing a unit area per time unit. In case of
no other influences on the translocation, but simple diffusion, the
flux of a substance S into a cell through a membrane follows a
variant of Fick’s first law:

½Sout� Ð ½Sin�
js ¼ ps ½Sout� � ½Sin�ð Þ

in which [Sout] and [Sin] are the concentrations of S on the exterior
and inside the cell, respectively. pS denotes the permeability of the
membrane for S. The permeability for direct diffusion is propor-
tional to the diffusion coefficient of S and, for pores or channels, to
the number of open channels per area.

To derive an expression of the change of concentration of S, it is
important to consider that the flux is given as amount per area and
time and not as concentration per time. Therefore the volumes of
the exterior and the cell have to be included in the differential
expressions of concentrations. The overall rate of translocation, νt,
depends on the surface area, A, of the membrane, and the perme-
ability and area can be contracted to a transport rate constant,
kS ¼ pS � A. For the change of [Sout] and [Sin], respectively, the
following expressions can be derived:

d½Sout�
dt

¼ � vT
Vout

¼ � kS
Vout

½Sout� � ½Sin�ð Þ
d½Sin�
dt

¼ vT
Vin

with Vout and Vin being the volumes of the exterior and the cell.
In the case of a molecule that does not simply diffuse through a

membrane or pore, but needs to bind a carrier to be translocated
from one compartment to the other, the kinetic expressions depend
on the exact mechanism of translocation. The simplest case of
facilitated, or carrier-mediated, diffusion consists of a carrier with
a single binding site, C, which can bind a substance A with equal
affinity on each side of the membrane, and flips from one side of the
membrane to the other. Using the steady-state approach the fol-
lowing expression can be derived for the translocation rate:
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vt ¼ vmax ½Aout� � ½Ain�ð Þ
KM þ ½Aout� þ ½Ain� þ Ki½Aout�½Ain�

KM

In this equation νmax is the limiting rate of translocation and
depends mostly on the amount of carrier. KM is the concentration
of A on one side at half maximal translocation in case of zero
concentration on the other side of the membrane, and Ki, called
the interactive constant, depends on the relative mobility of the free
and loaded carrier (for details see Ref [14]).

4 Modeling Modulation of Dynamical Processes

Reactions in biological systems are not only regulated by the avail-
ability of reactants and catalysts, but also by compoundsmodulating
the activity of channels and enzymes, often without any direct
involvement in the specific reactions. Examples are neurotransmit-
ters that alter the flow of ions through channels, without direct
involvement in the transport process, enzyme allosteric effectors,
that will modulate the activity of an enzyme without being involved
in the catalytic reaction etc. In this section, we will introduce a
generic method to model activation and inhibition of reactions,
based on Hill equations.

4.1 Binding

of Modulators

and Activity

The activities of receptors, channels and enzymes are often regu-
lated by ligands binding to them. One important characteristic of
such binding processes is the fractional occupancy, Y of the bound
compound. It is defined as the number of binding sites occupied by
a ligand, divided by the total number of binding sites. For a ligand
X binding to a single binding site of a protein P, we can express [PX]
and �Y as follows, using the dissociation constant Kd ¼ koff

kon
and the

total protein concentration [PT] ¼ [P] + [PX]:

Pþ XÐkon
koff

PX

½PX� ¼ ½PT�½X�
Kd þ ½X�

�Y ¼ ½PX�
½PT� ¼

½X�
Kd þ ½X�

(5)

Equation 5, also known as the Hill–Langmuir equation, is very
similar to the Michaelis–Menten equation. Like [S] in Eq. 3, [X]
stands for the concentration of free ligand, but can be substituted
with the total ligand concentration [XT] ¼ [X] + [PX] in case that
½XT� � ½PT�. If P is active only when bound to X, one must multiply
the reaction rate by �Y to describe the actual reaction velocity. On
the contrary, if P is active only when not bound to X, one must
multiply the reaction rate by 1� �Y :
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1� �Y ¼ 1� ½PX�
½PT� ¼

Kd

Kd þ ½X� (6)

A general form of Eq. 5 was developed by Hill [15]. Drawing
on observations of oxygen binding to haemoglobin, Hill suggested
the following formula for the fractional occupancy �Y of a protein
with several activator binding sites:

�Y ¼
½X�h
KH

1þ ½X�h
KH

¼ ½X�h
KH þ ½X�h

where [X] denotes ligand concentration, KH is an apparent dissoci-
ation constant (with the unit of a concentration to the power of h)
and h is theHill coefficient, which needs not be an integer. TheHill
coefficient h indicates the degree of cooperativity, and in general is
different from the number of ligand binding sites, n. The Hill
equation can show positive and negative cooperativity, for expo-
nent values of h > 1 and 0 < h < 1, respectively. In case of h ¼ 1 it
shows hyperbolic binding behaviour. With increasing exponents,
the ligand binding curve becomes more and more sigmoid, with

the limit of a step function with a threshold value of
ffiffiffiffiffiffiffiffi
KH

h
p

. The

constant Kh ¼
ffiffiffiffiffiffiffiffi
KH

h
p

provides the ligand concentration at which
half the binding sites are occupied (equivalent to a dissociation
constant), or, in purely phenomenological uses, activation or inhi-
bition by the effector is half maximal. Note that negative values of
h produce the same decreasing sigmoid function than the above

1� �Y , so the generalized Hill function can be used for both
activators and inhibitors.

4.2 Modeling

Regulation of

Processes with Hill

Functions

The Hill equation can easily be adapted to provide functions to
describe interactions with little prior knowledge. Let us assume a
gene which expression is regulated in a nonlinear fashion for
instance by the binding of a transcription factor A. One can
model the gene expression with increasing concentrations of A
using a Hill function:

v ¼ vmax � ½A�h
Kh

A þ ½A�h
(7)

Here ν is the actual production of mRNA by the gene. νmax

indicates the maximal activity of the gene. KA and h indicate the
transcription factor concentration for half maximal activation, and
a cooperativity coefficient. If [A] ¼ 0, the correcting factor is close
to 0, ν is null, i.e., there is no gene expression. If [A] is large, the
correction factor is close to 1 and the expression is maximal. Simi-
larly, the effect of a repressor I can be described by:
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v ¼ vmax � Kh
I

Kh
I þ ½I�h

(8)

In this equation KI stands for the transcription factor
concentration triggering half maximal inhibition. If [I] ¼ 0, the
correcting factor is close to 1 the gene expression is maximal,
while if [I] is large, the correction factor is close to 0 and so is
the gene expression. Note that the same result is obtained with the
mathematical expression derived for activation above, with expo-
nents of �h. Therefore, one can provide a generic formula that can
phenomenologically describe the effects of all independent activa-
tors and inhibitors at once.

v ¼ vmax �
Yn
i¼1

½Xi�hi
Khi

Xi
þ ½Xi�hi

(9)

Such a formula can then be used in parameter estimation
procedures. For n effectors, one has to estimate 2n independent
parameters, or only n if the cooperativity is assumed negligible.
Note that such a formula is only valid if no significant interactions
take place between the effectors.

As an example of Hill equation use, let’s study the kinetics of
calcium-gated channels. An example containing two different types
of activation is given in Borghans et al. [16] for the Ca2+ induced
Ca2+ release (CICR) via the inositol triphosphate (InsP3) receptor.
Equation 18 of the paper describes the release of calcium from a
calcium sensitive pool. The flux rate is given by:

vInsP3R ¼ vmax
½Cap�2

K 2
1 þ ½Cap�2

½Cac�2
K2

2 þ ½Cac�2

In this equation νmax denotes the maximal release rate, and
[Cap] and [Cac] the Ca2+ concentrations in the pool and the
cytoplasm. The release is regulated by the Ca2+ concentrations on
both sides of the membrane separating the pool and the cytosol,
and K1 and K2 stand for the threshold concentrations for these
activations. Parthimos et al. [17] used an even more complex
expression for the CICR from the sarcoplasmic reticulum via the
InsP3 receptor. The receptor was modeled to be both activated and
inactivated by cytosolic Ca2+, Cac, using two Hill functions involv-
ing Cac. A possible mechanistic explanation for this form would be
the existence of independent activation and inhibition sites, with
different affinities and degrees of cooperativity for Ca2+. In the flux
rate through the InsP3 receptor

vInsP3R ¼ vmax
½Cas�2

K2
1 þ ½Cas�2

½Cac�4
K4

2 þ ½Cac�4
K4

3

K4
3 þ ½Cac�4

(10)
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K2 and K3 indicate the cytosolic Ca2+ concentrations at which
activation and inhibition of CICR, respectively, are half maximal.
If they are chosen in such a way thatK2 < K3, the flux rate through
the receptor reaches a maximum for concentration values between
the values of the two constants and vanishes for higher cytosolic
Ca2+ concentrations (see Fig. 6), creating a complex on–off beha-
viour of the InsP3 receptor in dependence of the Ca2+ concentra-
tion. In case of nonessential activation or leaky inhibition, a process
can still proceed at a basal rate νbas in absence of the activator or at
high concentrations of the inhibitor (Fig. 7). This can be accounted
for by using the relative basal rate, b ¼ vbas

vmax
.

v ¼ vmaxðb þ ð1� bÞγð½X�ÞÞ
where γ([X]) is the function describing the relative activity in
dependence of the concentration of the regulating agent X, that is
�Y or 1� �Y mentioned in Eqs. 5 and 6. Note that if there is no
reaction in the absence of a modulator, the basal rate is 0, b ¼ 0,
and the equation is equivalent to Eqs. 7 and 8. One can therefore
further generalise Eq. 9 as:

v ¼ vmax �
Yn
i¼1

bi þ ð1� biÞ � ½Xi�hi
Khi

Xi þ ½Xi�hi

 !

Fig. 6 InsP3 receptor opening probability dependent on cytoplasmic Ca2+ after Parthimos et al. [17] as
described in Eq. 10. K2 and K3 indicate the concentrations of half maximal activation and inhibition,
respectively, of the InsP3 receptor. For both activation and inhibition a Hill factor of 4 was assumed
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This equation provides an initial framework to model the
kinetics of almost any regulatory network in the absence of mecha-
nistic knowledge. Although Hill functions have been frequently
used because of their simplicity, other generic frameworks have
been proposed to phenomenologically model kinetics of regulatory
networks, including logoid function [18], Goldbeter-Koshland
switches [19], S-systems [20] etc. Further information can be
found in a quite famous review [21]. As mentioned above, it is
important to realize that such a framework assumes independence
of the modulators. Other more complicated formulae, derived for
enzyme regulation, can then be used if the concentration of a
modulator affects the effect of another one. The reader should
refer to Segel [10] for more details.

5 Further Reading

Biophysical chemistry, James P. Allen. This is a complete and concise
presentation of the physical and chemical basis of life [22].

Computational Cell Biology, Christopher P. Fall, Eric S. Marland,
John M. Wagner, John J. Tyson. Also known as “the yellow book”,
this is an excellent introduction to modeling cellular processes. It
contains chapters dedicated to ion channels, transporter, biochemical
oscillations, molecular motors and more [23].

Enzyme kinetics, Irwin H. Segel and Fundamentals of Enzyme
Kinetics, Athel Cornish-Bowden. Also known as “the black book”
and the “the red book”, these are the two reference books if one
wants to know how to model an enzymatic reaction, regardless of
its complexity.

Fig. 7 Activation (left) and inhibition (right) modeled using Hill functions with a nh ¼ 2. Ligand concentration is
shown in units of the concentration of half maximal activation or inhibition, respectively, Kh on a logarithmic
scale and the velocity ν in percent of the fully activated or uninhibited velocity, νmax. The dashed line shows
cases with a basal rate, νbas, of 25 % of νmax b ¼ vbas

vmax
¼ 0:25

� �
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Solving Ordinary Differential Equations I and II, Ernst Hairer,
Syvert P. Norsett, Gerhard Wanner.Extensive coverage of the
domain of ordinary differential equations, from Newton and Leib-
niz to the most advanced techniques implicit solvers.
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