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Abstract

Most of the modelling approaches used in Computational Systems
Biology are population-based, discarding reactant individuality. While
those methods have been, and still are, tremendously useful, the com-
plexity of cellular reactions calls for another type of modelling ap-
proach, based on particle-based simulations. The discrete stochas-
tic approaches permit to track the state and position of each single
molecules, paving the way to the use of multistate components and
accurate simulation of spatial events. Those features are particularly
important when it comes to modelling signal transduction machinery.

1 Introduction
The vast majority of mathematical models developed to understand biochem-
ical or cellular behaviours are based on assumptions coming from classical
chemical kinetics. In particular, the Mass Action Law, expressed by Waage
and Guldberg in 1864 [20] still largely dominates the scene. In modern words,
this law stipulates that the rate of a reaction is proportional to the product
the “activity” of the reactants. In a diluted solution, those activities are
equal to the concentrations of the reactants. As a consequence biochemical
modelling and simulation largely relied on deterministic methods describing
the evolution of populations with differential equations.

However, this law is valid only if the behaviour of a particular reactant is
ignored and only the average behaviours of the populations are considered.
This ideal situation is of course rarely matched in Cell Biology, where the
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small number of reacting entities cause the individual behaviours to be sig-
nificant. This led to the development of stochastic methods, the most widely
used belonging to the family of approaches stemming form Gillespie’s algo-
rithm [8]. While those methods permit to handle the noise mechanistically,
they are still intrinsically population-based in most of the cases. Therefore,
one cannot track a particular reactant across time steps. Two major conse-
quences are the explosion of the number of component and reactions due to
the multistate molecules and the impossibility to build “true” spatial models.

2 Combinatorial explosion and multistates
In a population-based model, one has to keep track of the concentrations
of all reactants, whether those reactants are different types of molecules, or
the “same” molecules under different states (e.g., covalent modifications, 3D
conformations etc.). For instance, a model representing the MAPK cascade
on a molecular scaffold [12], comprises almost 50 different species representing
the various phosphorylation states of RAF, MEK and ERK, bound or not
to the molecular scaffold, while there are only 4 different proteins involved.
Very large assemblies of proteins such as the post-synaptic machinery can
reach a number of different states far more important than the total number
of molecules in the system. Furthermore, each new state doubles the number
of potential reactions, resulting in very inefficient simulations, where most
species pools are empty, and most of the reactions cannot occur.

This problem has been tackled in particle-based simulators using multi-
state molecules, such as in the simulator StochSim [15]. In StochSim, the
model of MAPK cascade described above has only four multistate molecules.
The number of possible states is still important. However, because the soft-
ware tracks every existing molecule, rather than all possible ones, there is no
wasting computation on unpopulated pools.

3 Spatial modelling
An overview of the methods used to simulate spatial events in Systems Bi-
ology has been presented by Takahashi [19]. A popular method used to
run stochastic simulations bearing spatial information is the extension of
Gillespie’s next reaction method to 3D lattices of small volumes [18]. This
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approach is used for instance in the simulators MesoRD [9] or SmartCell [1].
Here again, the use of a population-based approach rather than a particle-
based approach precludes the simulation of situations where the relative po-
sitions and states of the molecules are important.

Several attempts have been made to realistically represent diffusion of
single molecules. One of the earliest was MCell [4]. The software has been
used mainly to model synaptic transmission. Its accurate representation of
space allowed for instance to investigate the influence of the relative positions
of various neurotransmitter receptors [7]. The main problem of MCell is that
only small molecules are mobile, the proteins being represented as reactive
surfaces, and the reactions decided on the basis of ray-tracing, i.e. occuring
at surfaces.

An alternative approach has been used in the software Smoldyn [2], where
the diffusion of all molecules is considered using Brownian dynamics. The
program allowed the development of highly accurate simulations of E. coli
chemotaxis [14, 3]. However, Smoldyn considers molecules with different
states as different species. While the problem of the number of species types
is irrelevant (since single molecules are tracked rather than pools), the com-
binatorial explosion of reactions is still not addressed.

4 Signalling lattices
Signalling lattices are example cellular systems, where both the position and
the state of individual elements are important. Those lattice typically func-
tions as memory devices, and the history of each element is recorded in their
state. Because of the complexity of even the simplest such lattice, ad-hoc
programs are often used to model them. A recurrent pattern is the circular
lattice of multistate elements, such as the flagella motor of the bacteria [6],
or the calcium/calmodulin kinase II [21]. The software StochSim has been
extended to handle bi-dimensional lattices of various geometry [11]. Each cell
of the lattice can contain one multistate molecule, and the lattice functions
as a stochastic cellular automaton. Very accurate simulations the lattice
of chemotaxis receptors of E. coli [16] have been developed using StochSim
[13, 17].
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5 Generic particle-based simulation of neuronal
signalling

The Abstracted Protein Simulator (APS) is a software which enables pro-
teins to be simulated at a highly abstracted level, initially developed by Dan
Mossops and Fred Howell at the University of Edinburgh. We extended
the software to render the simulations more realistic. Each protein is built
from simple geometric elements (spheres and cylinders). Binding sites can be
added anywhere on the resulting assemblies. APS can be extended to define
compartments of various dimensionality, with different diffusion laws. The
reactions taking place upon molecule encounters are treated probabilistically.

When several molecules assemble in a cluster, they retain their individ-
uality, and therefore their state, a crucial feature when modelling biological
processes such as synaptic plasticity. Our simulations permit not only to
study the effect of the relative positions of neurotransmitter receptors, as
with MCell, but also the consequences of their movements [5] and their ag-
gregation on the signal processing. We are working to develop further our
models, in an attempt to provide the most detailed simulations of a post-
synaptic density so far.

6 Conclusion
Particle-based simulations offer an alternative to classical population-based
approaches, tackling molecular behaviours in a more realistic way. Despite
the fact that they generally requiring dedicated software and are more com-
putationally demanding, the steady increase in computing power, associated
with the continuous improvement of single-molecule recordings, should make
the use of there methods more widespread in the future.
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Figure 1: Dynamical model of the post-synaptic density of a glutamater-
gic synapse. The AMPA glutamate receptor (green), stargazin (white),
PSD95 (tricolour), cytoskeletal proteins (red rods) and adaptor proteins (red
spheres) are represented. The post-synaptic membrane is yellow, while extra-
synaptic surface is purple.
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