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Abstract. Share and reuse of biochemical models have become two of
the main issues in the field of Computational Systems Biology. There
already exist widely-accepted formats to encode the structure of models.
However, the problem of describing the simulations to be run using those
models has not yet been tackled in a satisfactory way. The community
believes that providing detailed information about simulation recipes will
highly improve the efficient use of existing models. Accordingly a set of
guidelines called the Minimum Information About a Simulation Exper-
iment (MIASE) is currently under development. It covers information
about the simulation settings, including information about the models,
changes on them, simulation settings applied to the models and out-
put definitions. Here we present the Simulation Experiment Description
Markup Language (SED-ML), an XML format that enables the storage
and exchange of part of the information required to implement the MI-
ASE guidelines. SED-ML is independent of the formats used to encode
the models – as long as they are expressed in XML –, and it is inde-
pendent of the software tools used to run the simulations. Several test
implementations are being developed to benchmark SED-ML on simple
cases, and pave the way to a more complete support of MIASE.

1 Introduction

As Systems Biology transforms into one of the main fields in life sciences, the
number of available computational models is growing at an ever increasing pace.
At the same time, their size and complexity are also increasing. The need to build
on existing studies by reusing models therefore becomes more imperative. It is
now generally accepted that one needs to be able to exchange the biochemical and
mathematical structure of models. Guidelines, such as the Minimum Information
Requested in the Annotation of Models (MIRIAM [1]), describe the information
that needs to be exchanged to properly understand a model; computer formats,
such as SBML [2] or CellML [3], allow people to implement those guidelines and
exchange models between a large diversity of tools.

However, the computational modeling procedure is not limited to the defini-
tion of the model structure. According to the MIRIAM specification, “the model,
when instantiated within a suitable simulation environment, must be able to re-
produce all relevant results given in the reference description that can readily

M. Heiner and A.M. Uhrmacher (Eds.): CMSB 2008, LNBI 5307, pp. 176–190, 2008.
c© Springer-Verlag Berlin Heidelberg 2008



SED-ML – An XML Format for the Implementation 177

be simulated” [1]. MIRIAM does not impose to list those relevant results, or to
describe how to obtain them. It became nevertheless clear that the description
of simulation experiments was mandatory to correctly exchange, re-use and in-
terpret models. This led to the development of the Minimum Information About
a Simulation Experiment (MIASE). Obtaining a desired numerical result of-
ten requires to run complex simulation tasks on original and perturbed models.
Furthermore, the same model can provide various results when simulated using
different approaches. Well-known examples are systems that exhibit steady-state
when simulated with deterministic approaches, and oscillation or multistation-
arity when simulated with stochastic methods. MIASE addresses exactly these
problems by providing a list of mandatory information required for the produc-
tion – or reproduction – of a given set of simulation results. This information
can be split into the following four categories:

Information about the models simulated
MIASE recommends to explicitly define all models used in a simulation by
providing a specific name and the source of each model. The use of a model
as such is often not sufficient to get a desired simulation result, therefore
changes that have to be applied to the model before the simulation must
be described in detail. Examples are the assignment of a new value (e. g.
constant, initial concentration), or the change of a mathematical expression
(e. g. using different enzyme kinetics).

Information about the simulation methods used
Each simulation can be characterized by certain types of simulation proce-
dures to be run (e. g. steady-state, time course) and the simulation algo-
rithms used to perform them. The information has to be sufficiently detailed
so that no arbitrary choices have to be made when setting up the simulations.

Information about the tasks performed
Once simulation settings and changes on the models have been defined, the
simulation tasks undertaken to complete the simulation experiment need to
be specified. Typically, that will involve describing how a simulation proce-
dure has to be applied to a specific model, and in which order.

Information about the outputs produced
It is often necessary to define the transformations that have to be performed
on the raw output of the simulation tasks, and how to provide the final
results. These results can be numerical or graphical. For instance, a model
of a periodic process can provide just time courses showing oscillations; or
it can, on the contrary, provide phase diagrams, which are more explicit in
describing the relationship between variables. An even more striking example
of the necessity for output definitions is the bifurcation diagram.

The adoption of MIASE will be greatly fastened, both on the generation and
the reuse sides, if the required information is encoded in a standard format
– produced and understood by simulation software. The object model (SED-
OM) presented in this paper is a platform independent prototype model encod-
ing MIASE guidelines for simple simulation experiments. We also present an
XML based implementation of that model (SED-ML) which is introduced with
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a detailed example in section 3. Related efforts are compared and discussed in
section 4.

2 The Simulation Experiment Description Object Model

The Simulation Experiment Description Object Model (SED-OM) is a formal
representation of the MIASE guidelines using the Unified Modeling Language
(UML [4]). The top-level classes of the SED-OM can be seen in Figure 1 and
will be described in more detail in the following section. For clarification, the
SED-OM class names are put in brackets using typewriter font.

2.1 Information on the Model and Model Changes

A MIASE based simulation description will in many cases make use of more than
just one model. That is why all models have to be defined clearly for later refer-
ence. In SED-OM, all models involved in the simulation experiment are in a list
of models (see Figure 2). Each model (Model) has its own unambiguous identifier
(id). Additionally, it may have a name (name) and it may hold information about
its encoding (type). As most simulation tools support only particular formats, it
is strongly recommended to provide the type of model encoding (e. g. CellML).
Information about the model format helps simulation tools to decide whether
the model can be loaded directly or has to be converted into another format
first. SED-OM also requires the source of the model to be defined (source). It is
not within the scope of SED-OM to store model representations, but to provide
a secure way of accessing them. The source should be reliable, meaning it should
point to a repository of curated models in order to ensure the correctness and
validity of the model.

Models often need to be modified before subjected to a simulation task. Those
changes can be direct atomic changes on simple attributes of a model, such
as changes on a parameter or on the initial concentration (ChangeAttribute).
Complex changes, depending on other values, can be described using mathemat-
ical expressions (ChangeMath). Those expressions are mathML [5] constructs
that are made up of parameters defined in a list of parameters (Parameter) and
variables defined in a list of variables (Variable). A variable object holds a ref-
erence to an already defined model and targets a certain XML element within
that model using XPath. Finally, a general class (ChangeXML) allows to replace
any piece of XML code by another valid one, including void which amounts to
a deletion.

The XML Path Language (XPath [6]) has been chosen to target model ele-
ments. Apart from being a natural choice when working with XML files, XPath
expressions allow to unambiguously identify any (syntactical) part of a model
that can be altered. XPath offers a very convenient way of describing changes on
the model independently of the actual model representation format: An XPath
expression defines a path through an XML document and points to a particular
XML element or XML attribute within the document. The only restriction im-
posed upon the model by the usage of XPath is that it has to be available in an
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DataGenerator

+id : String [1]

+name : String [0..1]

+mathExpression : MathML

Output

+id : String [1]

+name : String [0..1]

Notes

+anyNote : String

Annotation

+anyAnnotation : String

SED-ML

+xmlns : String = http://www.sed-ml.org

+version : String

SEDBase

+metaID : String

Model

+id : String [1]

+name : String [0..1]

+type : String [0..1]

+source : XLink [0..1]

Simulation

+id : String [1]

+name : String [0..1]

+algorithm : kisaoID [1]

Task

+id : String [1]

+name : String [0..1]

All classes inherit from

SEDBase.

+listOfOutputs

0..*

+listOfDataGenerators

0..*

+listOfSimulations

0..*

+listOfTasks

0..*

+notes

+listOfModels

0..*

+annotation

Fig. 1. SED-OM – Top level classes

XML based format. The addressed XML element can be a leaf element, or an el-
ement containing a whole mathematical expression. In principle, everything that
can be addressed by an XPath expression can be modified. Other solutions that
were considered for the definition of changes on a model would have involved
the creation of change classes for each supported language format, depending
on the current version of the standard and its syntactical naming of the model
elements.
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ChangeXML

+newXML : XML [1]

Variable

+id : String [1]

+name : String [0..1]

+target : XPath [1]

Model

+id : String [1]

+name : String [0..1]

+type : String [0..1]

+source : XLink [0..1]

Change

+target : XPath [1]

ChangeAttribute

+newValue : String [1]

ChangeMath

+math : MathML [1]

Parameter

+id : String [1]

+name : String [0..1]

+value : String [1]

+modelReference
1

+listOfVariables

0..*

+listOfChanges

0..*

+listOfParameters

0..*

Fig. 2. SED-OM – The Model class

UniformTimeCourse

+initialTime : double [1]

+outputStartTime : double [1]

+outputEndTime : double [1]

+numberOfPoints : Integer [1]

AnySimulation

Simulation

+id : String [1]

+name : String [0..1]

+algorithm : kisaoID [1]

SimulationProperty

+propertyName : String [1]

+propertyValue : String [1]

+listOfProperties 1..*

Fig. 3. SED-OM – The Simulation class

2.2 Information on the Simulation Settings

A simulation is typically characterized by the simulation algorithm used, the
settings applied to the simulation algorithm, and the simulation type.

Each simulation (Simulation, see Figure 3) can be referred to by an identi-
fier (id). It might also contain a name (name) and a reference to the simulation
algorithm used to run the experiment (algorithm). This algorithm reference



SED-ML – An XML Format for the Implementation 181

is an identifier corresponding to a KiSAO term. The Kinetic Simulation Algo-
rithm Ontology (KiSAO [7]) is an effort to characterize and categorize existing
algorithms for the simulation of quantitative models within the field of Systems
Biology. Using terms from an ontology rather than agreed-upon strings allows
for reasoning. The simplest reasoning procedure is to find that algorithm avail-
able from KiSAO which is the closest to the one described in the simulation
description, if the latter is not available for the user.

Depending on the chosen simulation algorithm different settings have to be
applied. The necessary information which settings that are can be retrieved from
the KiSA ontology which will provide the according information about additional
settings for each simulation algorithm covered by the ontology. At the current
state of development, KiSAO does not allow for extracting the mandatory simu-
lation algorithm settings. As a consequence, the storage of simulation algorithm
settings are not yet possible.

Very important is the type of simulation that should be launched. SED-OM de-
fines the different types of simulations as sub-classes of the Simulation class. For
the time being, UniformTimeCourse simulations are supported. The inclusion of
further simulation types has been postponed to future versions of SED-OM as the
integration of classes with different but overlapping attributes is not trivial. Until
then, the AnySimulationclass functions as a generic place holder for all additional
simulation types. Depending on the type of simulation, different additional infor-
mation has to be provided, such as the initial simulation time for uniform time
courses. For the AnySimulation class, those simulation properties can explicitly
be defined in the SimulationProperty class through the name and the value of
the property (propertyName, propertyValue). For particular simulation types
derived from the general simulation class, those attributes are already defined in
the SED-OM, e. g. initialTime in the UniformTimeCourse class.

2.3 Information on the Simulation Task

In a simulation experiment, simulation approaches described in a Simulation
object are combined with specific models described in a Model object. In SED-
OM, the association between those two objects is supported through the defini-
tion of tasks (Task, see Figure 4). Each task contains one reference to a model
and one reference to a simulation. The task itself can be referenced by its own
identifier (id) and might have an additional name (name).

By providing the opportunity of explicitly linking models to simulations, a
redundant definition of models as well as of simulation settings is avoided – a
single model can easily be used with several different simulations and vice versa.

2.4 Information on the Output

One important part of SED-OM is the description of a simulation experiment
based on particular (changed or unchanged) models. However, just as important
is the definition of the results to be produced and the way to provide them (see
Figure 5).
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Simulation

+id : String [1]

+name : String [0..1]

+algorithm : kisaoID [1]

Task

+id : String [1]

+name : String [0..1]

Model

+id : String [1]

+name : String [0..1]

+type : String [0..1]

+source : XLink [0..1]

+modelReference

1

+simulationReference 1

Fig. 4. SED-OM – The Task class

The output class (Output) can be referred to by an identifier (id) and an
optional name (name). The SED-OM allows for the definition of different kinds
of outputs, which can either be specified as simple data tables (i. e. reports) or
as plots. Reports (Report) consist of a number of columns (Column); a formula
defines how to generate the data written in each column (see the DataGenerator
class further down). In addition, the SED-OM provides structures for two dimen-
sional plots (Plot2D) and three dimensional plots (Plot3D). A two dimensional
plot displays a number of curves (Curve) and a three dimensional plot displays
a number of surfaces (Surface). Curves and surfaces refer to the data to be
mapped on the according axes, and precise if the mapping is logarithmic or not.
The aim of the output class is to define concisely the procedure leading to a
certain output rather than to define how it should be presented to the user.
Nonetheless, since all classes may have notes attached, it is always possible to
store meta data such as information on the output shape or labels for curves.

The formulas used to generate the data are described in the DataGenerator
class (see Figure 6). All types of output reference an instance of that class. In
doing so it does not matter whether the data is calculated for plots or for the
columns of a report. One example for such a calculation is the definition of the
x-axis of a plot (referenced through the Curve class by an xDataReference).
Each data generator has an identifier (id) and might have a name (name). A
single data generator consists of a list of variables (Variable), a list of param-
eters (Parameter) and a mathematical expression (Math). A variable definition
is a reference to an existing variable in one of the defined models. However, in-
stead of referencing an element in a particular model using the model id, the
variable definition refers to the the task that simulates the model. As every task
uses only one model and one simulation setting description, this reference is
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Plot3D

DataGenerator

+id : String [1]

+name : String [0..1]

+math : MathML

Curve

+logX : Boolean

+logY : Boolean

Output

+id : String [1]

+name : String [0..1]

ReportPlot2D

DataSetSurface

+logZ : Boolean

+yDataReference

1

+dataReference

1

+xDataReference

1

+listOfSurfaces 1..* +listOfDataSets 1..*+listOfCurves 1..*

+zDataReference 1

Fig. 5. SED-OM – The Output class

Task

+id : String [1]

+name : String [0..1]

Parameter

+id : String [1]

+name : String [0..1]

+value : String [1]

DataGenerator

+id : String [1]

+name : String [0..1]

+math : MathML

Variable

+id : String [1]

+name : String [0..1]

+target : XPath [1]

+taskReference

1

+listOfVariables

0..*

+listOfParameters

0..*

Fig. 6. SED-OM – The DataGenerator class

unambiguous. The variable inside the model is addressed via XPath expressions
for the same reasons justifying the use of XPath in the description of model
changes. Parameters are values introduced additionally to be used in the math-
ematical post-processing of the variable’s values. To facilitate calculations based
on the defined parameters and variables, mathematical expressions (Math) can
be constructed using mathML. The use of a data generator could, for instance,
lead to the following definition of a plot: “Take variable v1 of model m02 and
multiply its values by 2. Use the result as the abcissa x-axis of a 2D plot”.
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3 A Simple Example for a Simulation Description

As an example for a simulation description in the Simulation Experiment De-
scription Markup Language (SED-ML) we will use a model of circadian oscilla-
tions of PER and TIM proteins in Drosophila published by Leloup and Goldbeter
[8]. The SED-ML file describes a uniform time course simulation run on the orig-
inal model, as well as on a perturbed version of it. As has been shown in [8], the
system changes its behavior from oscillation to chaos depending on the values
of two parameters (maximal velocity of TIM messenger degradation V mT and
maximal velocity of degradation of the bi-phosphorylated TIM V dT). In order
to show the difference between both behaviors, a simulation experiment with two
different parameter settings is described in the following simulation experiment
in listing 1.1.

1 <?xml version ="1.0" encoding ="utf -8"?>
2 <sedML version ="1.0" xmlns="http://www.miase.org/">
3 <notes >Changing a system from oscillation to chaos </notes >
4 <listOfSimulations>
5 <uniformTimeCourse id=" simulation1"
6 algorithm=" KiSAO :0000071" initialTime="0" outputStartTime="50"
7 outputEndTime="1000" numberOfPoints="1000" />
8 </listOfSimulations>
9 <listOfModels >

10 <model id=" model1" name=" Circadian Oscillations" type="SBML"
11 source ="urn:miriam:biomodels.db:BIOMD0000000021" />
12 <model id=" model2" name=" Circadian Chaos" type="SBML" source ="model1">
13 <listOfChanges >
14 <changeAttribute target ="/sbml/model/ listOfParameters/
15 parameter[@id=’V_mT ’]/@value" newValue ="0.28">
16 </changeAttribute >
17 <changeAttribute target ="/sbml/model/ listOfParameters/
18 parameter[@id=’V_dT ’]/@value" newValue ="4.8" >
19 </changeAttribute >
20 </listOfChanges >
21 </model >
22 </listOfModels >
23 <listOfTasks >
24 <task id="task1" name="Baseline " modelReference=" model1"
25 simulationReference="simulation1">
26 </task >
27 <task id="task2" name="Modified parameters" modelReference=" model2"
28 simulationReference="simulation1">
29 </task >
30 </listOfTasks >
31 <listOfDataGenerators>
32 <dataGenerator id=" time" name="Time">
33 <mathExpression >
34 <math >
35 <apply >
36 <plus />
37 <csymbol encoding ="text"
38 definitionURL=" http://www.sbml.org/sbml/symbols /time">time
39 </csymbol >
40 </apply >
41 </math >
42 </mathExpression >
43 </dataGenerator >
44 <dataGenerator id=" tim1" name="tim mRNA (total)">
45 <listOfVariables >
46 <variable id="v1" taskReference=" task1"
47 target ="/sbml/model/ listOfSpecies/species [@id=’Mt ’]" />
48 </listOfVariables >



SED-ML – An XML Format for the Implementation 185

49 <mathExpression >
50 <math >
51 <apply >
52 <plus />
53 <ci>v1 </ci>
54 </apply >
55 </math >
56 </mathExpression >
57 </dataGenerator >
58 <dataGenerator id=" tim2" name="tim mRNA (changed parameters)">
59 <listOfVariables >
60 <variable id="v2" taskReference=" task2"
61 target ="/sbml/model/ listOfSpecies/species [@id=’Mt ’]" />
62 </listOfVariables >
63 <mathExpression >
64 <math >
65 <apply >
66 <plus />
67 <ci>v2 </ci>
68 </apply >
69 </math >
70 </mathExpression >
71 </dataGenerator >
72 </listOfDataGenerators>
73 <listOfOutputs >
74 <plot2D id=" plot1" name="tim mRNA with Oscillation and Chaos">
75 <listOfCurves >
76 <curve logX="false" logY="false" xDataReference=" time"
77 yDataReference=" tim1" />
78 <curve logX="false" logY="false" xDataReference=" time"
79 yDataReference=" tim2" />
80 </listOfCurves >
81 </plot2D>
82 </listOfOutputs >
83 </sedML >

Listing 1.1. Encoding of simulation settings using SED-ML

The original model used for the simulation experiment is model number 21 in
BioModels database [9]. This is specified by the source attribute of the first
model entry in the list of models (l. 11). The second model defined in the
SED-ML file references the first one (source="model1", l. 12). Contrary to the
first model definition, this XML element contains a sub-element listOfChanges
(ll. 13-20) that has two changeAttribute elements, each defining one change
in the XML model representation. Both changes apply new values to exist-
ing parameters: The parameter V mT is adapted in the first change definition
(newValue="0.28", l. 15), and the parameter V dT is adapted in the second
change definition (newValue="4.8", l. 18).

In lines four to eight, the simulation settings are stored: The simulation has
been characterized as a uniform time course (ll. 5-7) running from timepoint zero
to 1000, but starting the output at timepoint 50. The simulation algorithm is
specified by a KiSAO id (KiSAO:0000071, l. 6) which corresponds to the ontology
entry ”livermore solver for ordinary differential equations” (LSODE).

After the models have been defined and the simulation settings have been
stored, the next step is to combine both of them by creating simulation tasks
(listOfTasks, ll. 23-30). The first task runs the original model with the (only)
simulation setting defined (model1with simulation1, ll. 24-26). The second task



186 D. Köhn and N. Le Novère

Fig. 7. Simulation result gained from the SED-ML description (created using COPASI
4.2 (Build 22) and Gnumeric Spreadsheet 1.7.11): tim mRNA concentration (line) and
tim mRNA concentration with updated parameters V mT and V dT (dotted line)

then runs model2 with modified parameters using the same simulation setting
(model2 with simulation1, ll. 27-28).

The information given so far is sufficient for the design of valid and repeatable
simulation experiments. SED-ML also offers structures for the specification of
desired outputs. The example in listing 1.1 creates three different data generator
elements: The first data generator (ll. 32-43) is a simple specification of time us-
ing the time construct available from SBML. The second data generator element
(ll. 44-56) points to the species with identifier Mt which is the total amount of
tim mRNA (as can be gained from the SBML model description file) that comes
out of the task task1. The third data generator again points to the total amount
of tim mRNA, but it is now using the values coming out of task task2 (ll. 57-69).
Note that task2 – in contrast to task1 – is performed on the changed model
(model2).

The last part of the SED-ML file describes a plot (listOfOutputs, ll. 70-
79). It consists of two curves (ll. 75-76). Both curves plot time on their x-axis;
however, the first curve plots the total amount of tim mRNA using the original
model (yDataReference="tim1"), and the second curve plots the total amount
of tim mRNA applying the parameter changes (yDataReference="tim2"). The
result of the simulation following the specifications in the SED-ML file is shown
in Figure 7.

4 Related Work

The problem of simulation experiment descriptions is not new to Systems Biology
and has been addressed by several groups before. Of course, each simulation tool
that is capable of storing simulation settings uses its own internal storage format.



SED-ML – An XML Format for the Implementation 187

For example, COPASI [10] uses an XML based format for encoding the selected
simulation algorithm and the task definitions. However, those formats can only
be used with a specific simulation tool, and therefore simulation experiment
descriptions cannot be exchanged with others.

Standardization communities face the problem of describing simulation ex-
periments as well. One example is the ongoing discussion about the CellML
Metadata Specification [11] in the CellML community. The authors mention the
need to not only describe a model but also to describe “details of any particular
simulation being run”. The proposed solution is to extend the CellML meta data
concept by additional simulation description concepts. CellML meta data, and
thus also the simulation meta data, are specified using the Resource Description
Framework (RDF [12]). With help of the CellML Metadata Specification, one
or more simulation runs can be associated and described in one model speci-
fication. The description covers information about the type of simulation and
about the simulation algorithm used (including the name of the linear solver,
the specification of the iteration method and the multistep method used). Apart
from that, the specification of step size and starting values for the simulation
are supported. The CellML Metadata Specification is currently in the state of
a discussion draft. Unlike SED-ML, the approach chosen by the CellML com-
munity will store simulation specification details inside the model definition and
thus be restricted to the use of CellML models. By suggesting to refer to a model
rather than being part of it, SED-ML enhances reusability of simulation descrip-
tions and supports the description of simulation experiments using not only a
single model, but a number of models – which could even be encoded in different
description formats.

A specification to characterize simulation experiments has been proposed in
the SBML community as well [13]. Along with the development of SBML Level 3
extensions, the author proposes the description of simulation settings. Although
part of Level 3 extensions, the description of simulation runs is suggested to be
included inside the SBML model. So as to define simulation runs, the proposal
consists of several parts: (1) the definition of changes on the model, such as
updates on initial values, model parameters and others; (2) the specification of
simulation parameters and the storage of (time,value) pairs to maintain simula-
tion results; and (3) the definition of plots through specification of the axes and
the data that should be shown in the output. The proposal is currently available
as a DTD [14] draft. Again, the approach as it has been introduced in [13] does
not follow the ideas of a simulation description format independent of software
tools and model description languages. Additionally, the inclusion of simulation
results is proposed. This is not considered to be part of SED-ML, but in our
opinion should be covered by other efforts.

5 Discussion and Future Work

In this paper, an approach for the description of simulation experiments has
been introduced. The novel idea is to define a set of minimal guidelines detailed



188 D. Köhn and N. Le Novère

enough to unambiguously define a simulation experiment, independent of specific
simulation tools and particular model description languages. A first version of a
model for the realization of those guidelines has been proposed (SED-OM) and
has been encoded using XML (SED-ML). A sample simulation experiment in
the SED-ML format has been described in detail. It showed that the SED-OM
can be applied to existing models. The use is restricted to simple simulation
experiments though.

SED-ML can encode simulation experiments being run with several models,
which can even exist in different formats (e. g. comparing simulation results of a
CellML model and an SBML model). SED-ML can specify different simulation
settings applicable to the same model (e. g. running a model with a stochastic and
a deterministic simulation algorithm). Combinations of both are also possible, it
is easily conceivable to set up a simulation experiment that results in an output
comparing a parameter of a CellML model to a parameter of an SBML model,
depending on different simulation algorithms.

However, there are a number of important issues in simulation experiments
that are currently not covered by the SED-OM. The description of more complex
simulation tasks, e. g. parameter scans, is not yet supported. The difficulty here
is to decide how to describe the range of parameter changes that have to be
applied to a model. One option is to do that in the Task class, another option
is to extend the functionality of the Change class. Furthermore, the current
SED-OM allows to freely combine variables from different tasks in one output –
although the combination is depending on integrity restrictions. For example, the
output of variables from different simulation settings in one plot is only possible
as long as all participating simulations produce the same time points. Another
complex task that is not yet supported is the linear execution of simulation
experiments, meaning that the result of one simulation is used as the input for
another simulation task. For example, the result of a steady state analysis will
lead to a model with changed parameters. If that model then should be simulated
using a time course simulation, the results of the steady state analysis have to
be applied to the original model before. The definition of such sequences is not
yet supported by the SED-OM.

For all those reasons, the SED-OM must be further discussed. The use of SED-
ML and test implementations in different simulation tools will help enhancing
the coverage and robustness of the format.

6 Resources

If you want to contribute to the SED-OM and SED-ML development, or should
you have any questions or comments, please contact the authors or visit the
website on http://www.ebi.ac.uk/compneur-srv/sed-ml. The current SED-
OM and sample SED-ML instances can be downloaded from the MIASE project
homepage on sourceforge http://www.sourceforge.net/miase. For discussions
of the MIASE guidelines, please join the mailing list miase-discuss@lists.
sourceforge.net or visit the web site on http://www.ebi.ac.uk/compneur-
srv/miase.

http://www.ebi.ac.uk/compneur-srv/sed-ml
http://www.sourceforge.net/miase
file:miase-discuss@lists.sourceforge.net
file:miase-discuss@lists.sourceforge.net
http://www.ebi.ac.uk/compneur-srv/miase
http://www.ebi.ac.uk/compneur-srv/miase
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