
Chapter 15
Encoding Neuronal Models in SBML

Sarah M. Keating and Nicolas Le Novère

Abstract Encoding computational models in a standard format permit to share
and re-use them in a variety of contexts. The Systems Biology Markup Language
(SBML) is the de facto standard open format for exchanging models between
software tools in systems biology. Neuronal models can often be encoded using
this format, thus providing the modeler with access to a large variety of software
packages that support SBML. We give a brief overview of the main constructs
of SBML Level 3 Version 1 Core (the latest version of SBML). We provide
practical examples of encoding particular neuronal models using SBML, illustrate
the results of using the SBML encoding to simulate the models, and demonstrate the
correspondance of results produced by the original modelers and the exchangeable
encoding of the model in SBML.

15.1 Systems Biology and the Need to Exchange Models

Systems Biology of neurobiological systems needs to take into account the
interactions between a very large number of physical entities, and the analysis
of many parameters. As seen in the previous chapters, the quantitative relationships
between entities, their interactions, are often described using mathematical models.
It is therefore crucial to be able to encode those models in a standard way to foster
their exchange and re-use. Additionally using a standard format permits further
processing, for instance merging of models, and relating them to other types of
information. Early modelers and software developers in systems biology quickly
realized that if their efforts were to be of benefit to the wider community it must
be possible to share and re-use the models. The best way to facilitate this, and to
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enable concurrent use of multiple software packages with different capabilities,
was to agree a common format for describing the models. There are many ways to
describe models in a standardized manner. One can use natural languages, graphical
languages, sets of equations, logical relationships between elements etc. In this
chapter, as in the chapter (Chap. 16), we focus on the representation of the variables
representing physical entities, their relationships and the necessary parameters,
encoded in a text file.

15.1.1 A Bit of History

The need for a language to exchange models became manifest at the end of the
last century, with efforts starting in the field of metabolic networks (see history in
Kell and Mendes 2008) and physiology modeling (Hedley et al. 2001). A similar
need was expressed during the first Workshop on Software Platforms for Systems
Biology, held at the California Institute of Technology in early 2000. The Systems
Biology Markup Language (SBML) (Hucka et al. 2003) is a machine-readable
model definition language based on XML, the eXtensible Markup Language (Bray
et al. 2000). An SBML document contains all the information pertaining to the
structure of a model, including the list of symbols, both variables and constants,
the list of mathematical relationships linking them, and all the numbers needed
to instantiate simulations. SBML was originally viewed as being aimed towards
models of molecular pathways (Strömbäck and Lambrix 2005). However, its
versatility means that SBML can be, and today is being, used in a variety of
modeling contexts. For instance, BioModels Database (Le Novère et al. 2006)
contains SBML representations of models including cell signaling (Goldbeter
1991), metabolism (Curto et al. 1998), gene regulation (Elowitz and Leibler 2000)
and neuronal models, some of which are described in detail later in this chapter. In
general, SBML enables the encoding of any mathematical model based on pools
of entities and processes that modify them. This versatility is currently expanding,
towards rule-based modeling, reaction-diffusion etc. Since its creation in 2000,
SBML has continued to evolve as an international community effort, and has grown
in terms of the levels of acceptance; to the point where, at the time of this writing,
it is used by over 200 software packages worldwide and required as a format for
model encoding by many journals.

15.1.2 Levels and Versions of SBML

SBML is being developed in stages, with specifications released at the end of each
development stage. This approach, which effectively freezes SBML development at
incremental points, allows users to work with stable standards and gain experience
with the standard before further development. Future development can then benefit
from the practical experiences of users and developers.
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Major editions of SBML are termed levels and represent substantial changes to
the composition and structure of the language. The latest level being developed is
Level 3 (Hucka et al. 2009); representing a major evolution of the language through
Level 2 (Hucka et al. 2008) from the introduction of Level 1 in the year 2001 (Hucka
et al. 2001, 2003). SBML Level 3 is being developed as a modular language, with
a central core comprising a self-sufficient model definition language, and extension
packages layered on top of this core to provide additional, optional sets of features.
Only the core will be described in this chapter.

The separate levels of SBML are intended to coexist. All of the constructs of
Level 1, i.e. the elements and attributes of the SBML representation, can be mapped
to Level 2; likewise, the majority of the constructs from Level 2 can be mapped
to Level 3 Core.1 In addition, a subset of Level 3 constructs can be mapped to
Level 2, and a subset of Level 2 constructs can be mapped to Level 1. However, the
levels remain distinct; a valid SBML Level 1 document is not a valid SBML Level 2
document, and so on.

Minor revisions of SBML are termed versions, and constitute changes within a
Level to correct, adjust and refine language features. All examples used here will
be from the latest stable version of SBML; that is, SBML Level 3 Version 1 Core.
It should be noted that SBML Level 3 is a recent development and as yet not many
software tools support it.

15.2 Structure of SBML

SBML is a structured language, with a strict syntax and very precise semantics.
In this section we will present the most common constructs of SBML. However,
a serious understanding of the language can only be achieved through the SBML
specification document (Hucka et al. 2009).

An SBML document is essentially an XML document containing an sbml
element which declares the namespace, level and version of SBML. The sbml
element MUST contain a model element which itself consists of lists of one or
more components. The SBML snippet shown illustrates an sbml element containing
a model element.

<?xml version="1.0" encoding="UTF-8"?>
<sbml xmlns="http://www.sbml.org/sbml/level3/version1/core"

level="3" version="1">
...
<model ...> ... </model>

</sbml>

1The SpeciesType and CompartmentType contructs which appear in Level 2 Versions 2–4 were
removed in Level 3 Core as it was considered they were better suited to an extension package.
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Table 15.1 Components of an SBML model element

Component Description

compartment A container of finite size for well-stirred substances
species A pool of undistinguishable entities
parameter A quantity of whatever type is appropriate
reaction A statement describing some transformation, transport or binding

process that can change one or more species
rule A mathematical expression that is added to the model equations
event A set of mathematical formulas evaluated at specified moments in

the time evolution of the system
initialAssignment A mathematical formula to assign the initial value of a component
functionDefinition A named mathematical function that can be used in place of

repeated expressions
constraint A mathematical formula for stating the assumptions under which

the model is designed to operate
unitDefinition A name for a unit used in the expression of quantities in a model

Table 15.1 lists all the components defined by SBML; with a brief description of
the semantics of each.

Some components in SBML represent items that have a numerical value, that
may be constant or may vary throughout a simulation. The constructs that represent
possible variables are compartment, species and parameter. In all these cases, the id
attribute of the component is used throughout the model to represent the numerical
value of that component at the point in time specified by any simulation/analysis
that is being undertaken. It is also possible to introduce variable stoichiometry into
reactions but this is beyond the scope of the current text.

Other components represent mathematical constructs that define some level of
interaction between the components that can be varied. These constructs include the
reaction, rules and event components.

The remaining constructs: initialAssignment, functionDefinition, constraint and
unitDefinition; provide methods of adding further information or mathematical
detail to a model. It is however possible to construct a complete model without
using these components, which will not be explored further here.

15.2.1 Compartment

The compartment component in SBML represents a container of finite size
for well-stirred substances where the species defined in the model are located.
Biologically speaking this may represent for instance a body fluid, a cell or a
subcellular compartment, but SBML does not require the compartment to represent
an actual structure, either inside or outside a biological system.
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The compartment has attributes that specify its spatialDimensions, its size and
the corresponding units, plus a constant attribute that determines whether the size
can change or not during a simulation. The following SBML snippet represents a
constant, 3D compartment with volume 2.3 l.

<model>
...
<listOfCompartments>

<compartment id="cell" spatialDimensions="3"
size="2.3" units="litre" constant="true"/>

</listOfCompartments>
...

</model>

The id attribute can be used elsewhere in the model to represent the numerical
value of the size of the compartment.

15.2.2 Species

The species component in SBML does not represent a single molecule but rather
a pool, that is an ensemble of indistinguishable entities, represented by its con-
centration or amount in a compartment. The environment is well-stirred and thus
no concentration gradients need to be considered.2 Regardless of whether species
within models are specified using amount or concentration, the value of the attribute
id of a species refers to concentration when it is used in a mathematical context,
UNLESS the species has been declared as being in units of amount by either using
the hasOnlySubstanceUnits attribute or locating the species in a compartment with
spatialDimensions of zero.

It is also common for a species to exist on the boundary of the system being
modeled; in which situation the quantity is unchanged by reactions it may be
involved in. The boundaryCondition attribute implies that whilst the species may
be a product or reactant within reactions, its quantity is not determined by those
reactions.

The SBML snippet illustrates a variable species located in the compartment with
id ‘cell’. It is not on the boundary, it is to be used as a concentration and possesses
an initial amount of 4.6 mol.

<model>
...
<listOfSpecies>

<species id="s"
compartment="cell"
initialAmount="4.6"
substanceUnits="mole"

2Discussions are under way to propose one or more Level 3 package that will address this issue.
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hasOnlySubstanceUnits="false"
boundaryCondition="false"
constant="false"/>

</listOfSpecies>
...

</model>

The species specified above has an initial amount of 4.6 mol. However, the
hasOnlySubstanceUnits attribute has a value of false, indicating that whenever the id
of the species appears in the model it refers to concentration. Thus for any analysis,
it may be necessary to convert between amount and concentration using

concentration D amount
size

where size refers to the size of the compartment in which the species is located.

It is possible to create models in SBML without the need to consider units and
thus units have largely been ignored within this text. However, in the situation
where a model uses species that have been located within a compartment
whose size is not unity the issue of concentration and amount must be
considered.

15.2.3 Parameter

The parameter component in SBML can represent anything with a numerical value
that the modeler wishes to include. This may be the rate constant of a rate equation,
the potential of a membrane or the current used to induce spiking in a neuronal
model. Therefore, it is a component of particular importance for neurobiological
models. The parameter has attributes that specify the value, units and whether the
value is fixed.

The SBML snippet illustrates a variable parameter with value 3,000 and a
constant parameter with value 8,000.

<model>
...
<listOfParameters>

<parameter id="p1"
value="3000"
constant="false"/>

<parameter id="p2"
value="8000"
constant="true"/>

</listOfParameters>
...

</model>
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15.2.4 Reaction

A reaction in SBML represents any kind of process that can change the quantity of
one of more species. It may be a mass action reaction, or involve transport, catalysis,
or any process that changes the species involved (note that transport changes species
because they are located in compartments). It is necessary to define the participating
reactants and/or products. This is done using a speciesReference component that
identifies the species from the model’s listOfSpecies and assigns a stoichiometry
value to that species role within the reaction. Species that merely influence a
reaction, such as a catalyst, are listed as objects of type modifierSpeciesReference.
This construct is similar to speciesReference without the stoichiometry attribute.
Attributes for a reaction object allow the modeler to specify whether the reaction
is reversible or fast. The mathematics describing the velocity of the reaction can
be encoded in the kineticLaw component. SBML uses a subset of the MathML
2.0 standard (Ausbrooks et al. 2003) to encode mathematical formula directly
within SBML components. LocalParameter objects can be included within a
kineticLaw. These localParameters have constant values and are local to the
enclosing kineticLaw; they cannot be used elsewhere in the model. Note that an
SBML kineticLaw represents the extent of the reaction per unit of time, and not
the rate of the reaction. In other words, the result is not a concentration per time,
but a quantity per time. This is why the rate is multiplied by the volume in the
kineticLaw.

The SBML snippet shows the description of the reaction

S0
k! S1

with a rate of
k � S0 � S2

where S0 and S1 are two species residing in a compartment V , and S2 is a catalyst.

<model>
...
<listOfReactions>

<reaction reversible="false"
fast="false">

<listOfReactants>
<speciesReference species="S0"

stoichiometry="1"/>
</listOfReactants>
<listOfProducts>

<speciesReference species="S1"
stoichiometry="1"/>

</listOfProducts>
<listOfModifiers>

<modifierSpeciesReference species="S2"/>
</listOfModifiers>
<kineticLaw>
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<math xmlns="http://www.w3.org/1998/Math/MathML">
<apply>

<times/>
<ci> k </ci>
<ci> S0 </ci>
<ci> S2 </ci>
<ci> V </ci>

</apply>
</math>
<listOfLocalParameters>

<localParameter id="k" value="0.1"/>

</listOfLocalParameters>
</kineticLaw>

</reaction>
</listOfReactions>
...

</model>

15.2.5 Rule

In SBML, rules provide additional ways of defining values of variables in a model,
their relationships, and the dynamical behaviors of those variables. For example,
a model may wish to calculate the total concentration of a chemical that appears
as a part of several compounds within the model or vary a parameter representing
voltage. There are three subclasses of rules: algebraicRules, assignmentRules and
rateRules. In the current discussion, we will only consider the latter two types,
which have the following form:

Assignment W x D f .V /

Rate W dx

dt
D f .W /

where

x variable
f some arbitrary function

V vector of variables not including x
W vector of variables that may include x

Rules included in an SBML model are considered to hold true at all times.
Therefore they must be included in the set of equations that define the model for
simulation or other purposes.

The SBML snippet here shows two rules that describe the following equations.

y D 2x C 1
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dg

dt
D g � 1

<model>
...
<listOfRules>

<assignmentRule variable="y">
<math xmlns="http://www.w3.org/1998/Math/MathML">

<apply>
<plus/>
<apply>

<times/>
<cn> 2 /cn>
<ci> x </ci>

</apply>
<cn> 1 </cn>

</apply>
</math>

</assignmentRule>
<rateRule variable="g">
<math xmlns="http://www.w3.org/1998/Math/MathML">

<apply>
<minus/>
<ci> g </ci>
<cn> 1 </cn>

</apply>
</math>

</rateRule>
</listOfRules>
...

</model>

15.2.6 Event

An event in SBML describes the time and form of an explicit discontinuous state
change in the model. For example this could be a situation where the voltage is reset
when it reaches a given threshold.

The description of an event involves a trigger; a mathematical statement that
determines when the event is fired; and a listOfEventAssignments that determine
the action to be executed.

SBML does provide a delay for describing delayed events, when there is a period
of time between when an event is ‘fired’ and when the event is ‘executed’. There
is also a priority component for assigning a priority to the event. Neither delay or
priority are discussed here.
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The SBML snippet3 describes an event that resets the value of parameter Vthres
to �60 when the value of a second parameter V exceeds a value of 30.

<model>
...
<listOfParameters>

<parameter id="Vthres"
value="30"
constant="false"/>

</listOfParameters>
...
<listOfEvents>

<event useValuesFromTriggerTime="true">
<trigger initialValue="true" persistent="true">

<math xmlns="http://www.w3.org/1998/Math/MathML">
<apply>

<gt/>
<ci> V </ci>
<cn> 30 </cn>

</apply>
</math>

</trigger>
<listOfEventAssignments>

<eventAssignment variable="Vthres">
<math xmlns="http://www.w3.org/1998/Math/MathML">

<cn> -60 </cn>
</math>

</eventAssignment>
</listOfEventAssignments>

</event>
</listOfEvents>
...

</model>

15.2.7 Metadata

In addition to the model semantics, that is the variables and their mathematical re-
lationships, SBML provides two mechanisms to add a layer of biological semantics
on top of each component of the model.

Firstly, an attribute sboTerm allows any element to be linked to a single term
of the Systems Biology Ontology (http://www.ebi.ac.uk/sbo, Le Novère et al.
2007). SBO is a controlled vocabulary (an “ontology”) tailored specifically for
the kinds of problems being faced in Systems Biology, especially in the context
of computational modeling. SBO is made up of different vocabularies covering

3In order to show valid SBML a number of attributes are shown within the snippet. These are not
referred to in the text as they represent a level of complexity beyond the scope of this text.

http://www.ebi.ac.uk/sbo
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quantitative parameters, modeling frameworks, type of mathematical expressions,
biological interactions, types of entities etc. The sboTerm enables unambiguous
identification of the type of concept being dealt with by the model.

Secondly, one can add biological information by linking an SBML component to
external resources, either terms from controlled vocabularies or entries in biological
databases. In order to precisely relate SBML components and annotations, the
links are encoded using existing semantic web technologies such as the Resource
Description Framework (Manola and Miller 2004).

The following SBML snippet described a species that corresponds to a “protein
complex” (SBO:0000297). It is made up of two parts, the protein calmodulin
(described by the UniProt entry P62158) and the divalent calcium cation (ChEBI
term CHEBI:29108).

<species id="Ca_calmodulin" metaid="cacam" sboTerm="SBO:0000297"

compartment="C" hasOnlySubstanceUnits="false"

boundaryCondition="false" constant="false">

<annotation>

<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"

xmlns:bqbiol="http://biomodels.net/biology-qualifiers/">

<rdf:Description rdf:about="#cacam">

<bqbiol:hasPart>

<rdf:Bag>

<rdf:li rdf:resource="urn:miriam:uniprot:P62158"/>

<rdf:li rdf:resource="urn:miriam:obo.chebi:CHEBI%3A29108"/>

</rdf:Bag>

</bqbiol:hasPart>

</rdf:Description>

</rdf:RDF>

</annotation>

</species>

15.3 Creating Neuronal Models in SBML

The SBML structures discussed above provide a syntax sufficiently rich to encode
many basic neuronal models. In particular, models involving metabolic networks,
signaling pathways or gene regulatory networks are covered. In addition, “single
compartment” electrical models can also be encoded in SBML. In this section,
we give a couple of concrete examples. For encoding multi-compartment electrical
models (“Rall models”), other representations such as NeuroML (Gleeson et al.
2010; see also Chap. 16) are more suitable.

15.3.1 Integration of Dopamine and Glutamate Signals

The integration of different neurochemical signals (Cohen 1992) is one of the
fundamental basis of neuronal function and plasticity (Bhalla and Iyengar 1999).
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Fig. 15.1 Graphical representation of the model in the Process Description language of the
Systems Biology Graphical Notation (Le Novère et al. 2009)

Figure 15.1 depicts a simple integration of glutamate and dopamine signals by
the phosphatase inhibitor DARPP-32. The model is derived from a more com-
prehensive one described by Fernandez et al. (2006). It is possible to create a
quantitative model of the reactions involved in the phosphorylation and dephos-
phorylation of DARPP-32, and study the dynamic behavior using calcium and
cAMP as inputs to represent the response to glutamate and dopamine respectively.
The complete model can be found in BioModels Database with the accession
BIOMD0000000152.

15.3.1.1 Mathematical Model of the Biochemistry

Here we construct a reduced version of the model concentrating on the threonine
34 phosphorylation site of DARPP-32, the phosphorylation due to protein kinase
A (PKA) and the dephosphorylation by calcineurin (PP2B). The resulting reactions
are listed below in Table 15.2. The parameter values are modified slightly from the
original model in order to retain the main behavior despite a drastic simplification.
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Table 15.2 Reactions in the model

Type Reactions

Phosphorylations

D C PKA • D PKA

D PKA ! D34 C PKA

D34 C PP2B • D34 PP2B

D34 PP2B ! D C PP 2B

PP2B activation

PP2Binactive C 2Ca • PP2B

PKA activation

R2C2 C cAMP • cAMP R2C2

cAMP R2C2 C cAMP • cAMP2 R2C2

cAMP2 R2C2 C cAMP • cAMP3 R2C2

cAMP3 R2C2 C cAMP • cAMP4 R2C2

cAMP4 R2 C PKA • cAMP4 R2C

cAMP4 R2C C PKA • cAMP4 R2C2

cAMP degradation

cAMP C PDE • cAMP PDE

cAMP PDE ! PDE C ;

Calcium input/destroy

; ! Ca

Ca ! ;

15.3.1.2 Encoding the Model in SBML

The model consists of species that represent the chemicals being altered, parame-
ters that define the rate constants, and reactions that determine how the species are
being altered. All reactions are modeled using Mass-Action Law, and the enzymatic
processes are decomposed in elementary steps. Consider the first equation listed:

D C PKA • D PKAs (15.1)
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with forward rate equation:

vf D k1f � D � PKA (15.2)

and backward rate equation:

vb D k1b � D PKA (15.3)

The SBML model to encode this reaction must contain a compartment, in
which the species are located and definitions for each of the species. Although
biochemically speaking the reaction is reversible, since the rate equations for the
forward and reverse reactions differ it is sometimes more convenient to define this
as two irreversible SBML reactions. In the following, we use reversible reactions
for reasons of compactness.

<listOfCompartments>
<compartment id="Spine" size="1e-15" spatialDimension="3"

constant="true"/>
</listOfCompartments>

<listOfSpecies>
<species id="D" compartment="Spine"

initialConcentration="4.98e-06" boundaryCondition="false"
hasOnlySubstanceUnits="false" constant="false"/>

<species id="PKA" compartment="Spine"
initialConcentration="0" boundaryCondition="false"
hasOnlySubstanceUnits="false" constant="false"/>

<species id="D_PKA" compartment="Spine"
initialConcentration="0" boundaryCondition="false"
hasOnlySubstanceUnits="false" constant="false"/>

...
</listOfSpecies>

<listOfReactions>
<reaction name="D_PKA_binding" reversible="true" fast="false">

<listOfReactants>
<speciesReference species="D" stoichiometry="1"

constant="true"/>
<speciesReference species="PKA" stoichiometry="1"

constant="true"/>
</listOfReactants>
<listOfProducts>

<speciesReference species="D_PKA" stoichiometry="1"
constant="true"/>

</listOfProducts>
<kineticLaw>

<math xmlns="http://www.w3.org/1998/Math/MathML">
<apply>

<minus/>
<apply>

<times/>
<ci> Spine </ci>
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<ci> kon </ci>
<ci> D </ci>
<ci> PKA </ci>

</apply>
<apply>

<times/>
<ci> Spine </ci>
<ci> koff </ci>
<ci> D_PKA </ci>

</apply>
</apply>

</math>
<listOfLocalParameters>
<localParameter id="kon" value="5600000"/>
<localParameter id="koff" value="10.8"/>

</listOfLocalParameters>
</kineticLaw>

</reaction>
...

</listOfReactions>

This model includes two reactions intended to regulate the level of calcium, that is,
the input and output of calcium from the system, represented as:

; ! Ca

Ca ! ;

Obviously calcium does not just magically appear and disappear; however the
input and output are not relevant to the system being modeled. If one wants to
explicitly represent the fact that there are source and sink, one can make use of
the boundaryCondition attribute on a species ‘Empty’, and define the reactions as
follows. Labeling a species as being a boundaryCondition implies that it remains
unaffected by any reactions it takes part in.

<listOfSpecies>
<species id="Empty" compartment="Spine" boundaryCondition="true"

hasOnlySubstanceUnits="false" constant="true"/>
...

</listOfSpecies>

<listOfReactions>
<reaction name="Ca_in" reversible="false" fast="false">

<listOfReactants>
<speciesReference species="Empty" stoichiometry="1"

constant="true"/>
</listOfReactants>
<listOfProducts>

<speciesReference species="Ca" stoichiometry="1"
constant="true"/>

</listOfProducts>
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<kineticLaw>
<math xmlns="http://www.w3.org/1998/Math/MathML">
<apply>

<times/>
<ci> Spine </ci>
<ci> kin </ci>

</apply>
</math>

</kineticLaw>
</reaction>

<reaction name="Ca_out" reversible="false" fast="false">
<listOfReactants>

<speciesReference species="Ca" stoichiometry="1"
constant="true"/>

</listOfReactants>
<listOfProducts>

<speciesReference species="Empty" stoichiometry="1"
constant="true"/>

</listOfProducts>
<kineticLaw>

<math xmlns="http://www.w3.org/1998/Math/MathML">
<apply>

<times/>
<ci> Spine </ci>
<ci> kout </ci>
<ci> Ca </ci>

</apply>
</math>
<listOfLocalParameters>
<localParameter id="kout" value="1.7"/>

</listOfLocalParameters>
</kineticLaw>

</reaction>
...

</listOfReactions>

Since the value of the species “Empty” is neither used nor displayed, it could
equally be ignored altogether. Indeed a reaction in SBML is only required to have at
least one reactant or one product. The following example represents the regulation
of calcium with one reversible reaction.

<listOfReactions>
<reaction name="Ca_reg" reversible="true" fast="false">

<listOfProducts>
<speciesReference species="Ca" stoichiometry="1"

constant="true"/>
</listOfProducts>
<kineticLaw>
<math xmlns="http://www.w3.org/1998/Math/MathML">

<apply>
<minus/>
<apply>
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<times/>
<ci> Spine </ci>
<ci> kin </ci>

</apply>
<apply>

<times/>
<ci> Spine </ci>
<ci> kout </ci>
<ci> Ca </ci>

</apply>
</apply>

</math>
</kineticLaw>

</reaction>
...

</listOfReactions>

Note that in the reactions above, the parameter ‘kin’ is a global parameter, the value
of which will affect the amount of calcium being added to the system. Since the
purpose of this model is to study the effect of different amounts of calcium, the
parameter ‘kin’ can be varied to simulate different situations. The model uses events
to add a pulse of cAMP and calcium in the course of the simulation. For the cAMP,
this is done by setting a high concentration at a given time, while for the calcium,
we increase the input (conductance of calcium channels) at a particular point and
return it to a lower value after a delay. The events to produce a spike of calcium are
shown below. Note there is an assumption that ‘kin’ is initially low.

<listOfEvents>
<event id="event_2" name="ca_on1" useValuesFromTriggerTime="true">

<trigger initialValue="true" persistent="false">
<math xmlns="http://www.w3.org/1998/Math/MathML">

<apply>
<geq/>
<csymbol encoding="text"

definitionURL="http://www.sbml.org/sbml/symbols/time">
time </csymbol>

<apply>
<plus/>
<ci> cAMP_delay </ci>
<ci> cAMP_Ca_delay </ci>

</apply>
</apply>

</math>
</trigger>
<listOfEventAssignments>

<eventAssignment variable="kin">
<math xmlns="http://www.w3.org/1998/Math/MathML">

<ci> kon_high </ci>
</math>

</eventAssignment>
</listOfEventAssignments>

</event>
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<event id="event_4" name="ca_off" useValuesFromTriggerTime="true">
<trigger initialValue="true" persistent="false">

<math xmlns="http://www.w3.org/1998/Math/MathML">
<apply>

<geq/>
<csymbol encoding="text"

definitionURL="http://www.sbml.org/sbml/symbols/time">
time </csymbol>

<apply>
<plus/>
<ci> cAMP_delay </ci>
<ci> cAMP_Ca_delay </ci>
<ci> spike_duration </ci>

</apply>
</apply>

</math>
</trigger>
<listOfEventAssignments>

<eventAssignment variable="kin">
<math xmlns="http://www.w3.org/1998/Math/MathML">
<ci> kon_low </ci>

</math>
</eventAssignment>

</listOfEventAssignments>
</event>
...

</listOfEvents>

Since the chemical of interest in this model is DARPP-32 phosphorylated on Thr34,
and that some of these molecules may be bound to other species, such as PP2B,
the SBML adds an assignmentRule which calculates the total number of D34
molecules present.

<assignmentRule variable="parameter_1">
<math xmlns="http://www.w3.org/1998/Math/MathML">

<apply>
<plus/>
<apply>

<times/>
<ci> D34 </ci>
<csymbol encoding="text"

definitionURL="http://www.sbml.org/sbml/symbols/
avogadro">

Na </csymbol>
<ci> Spine </ci>

</apply>
<apply>

<times/>
<ci> D34_PP2B </ci>
<csymbol encoding="text"

definitionURL="http://www.sbml.org/sbml/symbols/
avogadro">

Na </csymbol>
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Fig. 15.2 Simulation of a model of glutamate and dopamine signal integration. The plot represent
the temporal evolution of DARPP-32 phosphorylated on Thr34. After 100 s, cAMP molecules are
added, and after a further delay, two square increases of conductance cause calcium spikes

<ci> Spine </ci>
</apply>

</apply>
</math>

</assignmentRule>

15.3.1.3 Simulation of a Time Course

We can use any simulator supporting SBML’s reactions, assignmentRules and
events to simulate the model and obtain the time course of the different model’s
variables. The result obtained with COPASI (Hoops et al. 2006) is shown in
Fig. 15.2. The description of the simulation experiment, that is what to do with the
model and how, is not encoded in SBML. Another language is under development
to cover this part of the model life-cycle, the Simulation Experiment Description
Markup Language (SED-ML) (Köhn and Le Novère 2008).

15.3.2 Hodgkin-Huxley Axon Model

In the 1930s, Alan Hodgkin and Andrew Huxley started a series of experiments and
modeling to elucidate the flow of electric current through an axonal membrane. This
led to the formulation of the Hodgkin-Huxley model in 1952 (Hodgkin and Huxley
1952), a model that had major influence on our understanding of neuronal function
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Fig. 15.3 In the Hodgkin-Huxley model, the membrane can be represented as an electrical circuit.
Ionic current through the membrane can be divided into three components: potassium current (iK ),
sodium current (iNa), and a small leakage current (iL) caused by other ions. The total current is
calculated assuming that these components plus the capacity current are in parallel

and for which they received the Nobel Prize in 1963. The development of this model
can also be seen as the birth of Systems Biology, since the authors described the
emergence of a system’s dynamic behavior using computational simulations of its
components. The complete model can be found in BioModels Database with the
accession BIOMD0000000020.

15.3.2.1 Mathematical Model of the Axon

Using the equivalent electrical circuit to represent a patch of membrane (Fig. 15.3)
Hodgkin and Huxley derived four main equations that describe how the system, that
is the probabilities of channel openings and the membrane voltage, varies with time.

dV

dt
D I � .iNa C iK C iL/

Cm

dm

dt
D ˛m.1 � m/ � ˇm � m

dh

dt
D ˛h.1 � h/ � ˇh � h

dn

dt
D ˛n.1 � n/ � ˇn � n (15.4)
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where

V membrane depolarization voltage
I constant applied current

iNa sodium current
iK potassium current
iL leakage current

Cm constant membrane capacitance
m sodium channel activation coefficient
h sodium channel inactivation coefficient
n potassium channel activation coefficient

and the ˛ and ˇ parameters are rate coefficients for the opening and closure of the
gates, dependent on the instantaneous value of the membrane potential.

˛m D 0:1.V C 25/

exp . V C25
10

/ � 1

˛n D 0:01.V C 10/

exp . V C10
10

/ � 1

˛h D 0:07 exp

�
V

20

�

ˇm D 4 exp

�
V

18

�

ˇn D 0:125 exp

�
V

80

�

ˇh D 1

exp V C30
10

C 1
(15.5)

The individual current values also depend on the difference between the equilibrium
potential of each ion and the membrane potential, and the conductance of each
channel (e.g. gNa for the sodium channel).

iNa D gNa � m3 � h � .V � VNa/

iK D gK � n4 � .V � VK/

iL D gL � .V � VL/ (15.6)

15.3.2.2 Encoding the Model in SBML

Since none of the variables under consideration in the model represent species, the
SBML encoding of the model defines all these, and a number of other constants
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as parameters. Similarly the model does not contain any reactions, and all the
equations are encoded using rules. For instance, the temporal evolution of the
system is described with rateRules:

<rateRule variable="V">
<math xmlns="http://www.w3.org/1998/Math/MathML">

<apply>
<divide/>
<apply>

<minus/>
<ci> I </ci>
<apply>

<plus/>
<ci> i_Na </ci>
<ci> i_K </ci>
<ci> i_L </ci>

</apply>
</apply>
<ci> Cm </ci>

</apply>
</math>

</rateRule>

<rateRule variable="m">
<math xmlns="http://www.w3.org/1998/Math/MathML">

<apply>
<minus/>
<apply>

<times/>
<ci> alpha_m </ci>
<apply>

<minus/>
<cn> 1 </cn>
<ci> m </ci>

</apply>
</apply>
<apply>

<times/>
<ci> beta_m </ci>
<ci> m </ci>

</apply>
</apply>

</math>
...
</rateRule>

The rate coefficients and the current, depending on the instantaneous voltage are
encoded in SBML using assignmentRules. For instance:

<assignmentRule variable="alpha_n">
<math xmlns="http://www.w3.org/1998/Math/MathML">

<apply>
<divide/>
<apply>
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<times/>
<cn> 0.01 </cn>
<apply>

<plus/><ci> V </ci><cn> 10 </cn>
</apply>

</apply>
<apply>

<minus/>
<apply>

<exp/>
<apply>

<times/>
<cn> 0.1 </cn>
<apply>
<divide/>
<apply>
<plus/><ci> V </ci><cn> 10 </cn>
</apply>
<cn> 10 </cn>

</apply>
</apply>

</apply>
<cn> 1 </cn>

</apply>
</apply>

</math>
</assignmentRule>
...
<assignmentRule variable="i_Na">

<math xmlns="http://www.w3.org/1998/Math/MathML">
<apply>
<times/>
<ci> g_Na </ci>
<apply>

<power/><ci> m </ci><cn> 3 </cn>
</apply>
<ci> h </ci>
<apply>

<minus/><ci> V </ci><ci> V_Na </ci>
</apply>

</apply>
</math>

</assignmentRule>

15.3.2.3 Simulation of an Action Potential

Any simulator supporting SBML’s assignment and rate rules can be used to simulate
the behavior of the model. The results obtained with SBMLodeSolver (Machné et al.
2006) (see Fig. 15.4 reproducing Fig. 12 from the original paper).
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Fig. 15.4 Simulation output of Hodgkin-Huxley model using SBML ODESolver

15.3.3 Cortical Spiking Neurons

While Sects. 15.3.1 and 15.3.2 describe mechanistic models based on experimental
measurements of components’ properties, whether biochemical or electrophysiolog-
ical, one can also describe the behavior of neurons by developing phenomenological
models. This is particularly useful when one does not possess enough molecular
or morphological details about the neuron of interest to reconstruct large-scale
neuronal networks. Examples of such models are the spiking neurons, discussed
in more details in chapter (Chap. 6). Because one can encode any mathematical
description in SBML rules, those models can be easily encoded.

In his paper of 2003 (Izhikevich 2004a), Eugene Izhikevich proposed a simple
model of spiking neuron able to reproduce the behavior of many spiking and
bursting cortical neurons. In a further paper, he explored the response of this model
to various inputs (Izhikevich 2004b). Here we will construct an SBML version of
the model with a choice of parameters that makes it a class 1 excitability neuron,
that is a neuron firing at low frequency for lower inputs. The complete model can be
found in BioModels Database with the accession BIOMD0000000141.

15.3.3.1 Model of a Spiking Neuron

Izhikevitch’s model is a 2-dimensional FitzHughNagumo class model (FitzHugh
1961) described with the following equations:

dv

dt
D 0:04v2 C 5v C 140 � u C I
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du

dt
D a.b � u/ (15.7)

the system being reset when v � 30 as:

v D c

u D u C d (15.8)

where

v membrane potential
u membrane recovery variable
I input current
a time scale of u
b sensitivity of u to fluctuations of v
c after-spike reset value of v
d after-spike reset value of u

15.3.3.2 Encoding a Model with Conditional Assignment

As with the previous example, none of the variables under consideration in the
model represent species or compartments. The SBML encoding of the model
defines all these, and a number of other constants as parameters. Similarly the
model does not contain any reactions, and all the equations are encoded using rules.
Note in some cases the parameters will be constant. Others must have the constant
attribute set to ‘false’ as they will be controlled by other elements of the model, in
this case through rules and events.

<listOfParameters>
<parameter id="a" value="0.02" constant="true"/>
<parameter id="b" value="-0.1" constant="true"/>
<parameter id="c" value="-55" constant="true"/>
<parameter id="d" value="6" constant="true"/>
<parameter id="Vthresh" value="30" constant="true"/>
<parameter id="I" value="0" constant="false"/>
<parameter id="flag" value="0" constant="false"/>
<parameter id="v" value="-60" constant="false"/>
<parameter id="u" value="6" constant="false"/>

</listOfParameters>

Equations 15.7 can be encoded using rateRules as follows.

<rateRule variable="v">
<math xmlns="http://www.w3.org/1998/Math/MathML">

<apply>
<plus/>
<apply>

<minus/>
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<apply>
<plus/>
<apply>

<times/>
<cn> 0.04 </cn>
<apply>
<power/> <ci> v </ci> <cn> 2 </cn>

</apply>
</apply>
<apply>

<times/> <cn> 4.1 </cn> <ci> v </ci>
</apply>
<cn type="integer"> 108 </cn>

</apply>
<ci> u </ci>

</apply>
<ci> i </ci>

</apply>
</math>

</rateRule>

<rateRule variable="u">
<math xmlns="http://www.w3.org/1998/Math/MathML">

<apply>
<times/>
<ci> a </ci>
<apply>

<minus/>
<apply>

<times/>
<ci> b </ci>
<ci> v </ci>

</apply>
<ci> u </ci>

</apply>
</apply>

</math>
</rateRule>

Equation 15.8 can be represented by using an event.

<event useValuesFromTriggerTime="true">
<trigger initialValue="true" persistent="false">

<math xmlns="http://www.w3.org/1998/Math/MathML">
<apply>

<gt/>
<ci> v </ci>
<ci> Vthresh </ci>

</apply>
</math>

</trigger>
<listOfEventAssignments>

<eventAssignment variable="v">
<math xmlns="http://www.w3.org/1998/Math/MathML">

<ci> c </ci>
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</math>
</eventAssignment>
<eventAssignment variable="u">
<math xmlns="http://www.w3.org/1998/Math/MathML">

<apply>
<plus/>
<ci> u </ci>
<ci> d </ci>

</apply>
</math>

</eventAssignment>
</listOfEventAssignments>

</event>

The Class 1 Excitable neurons can encode the strength of the input into their
firing rate. In order to illustrate this, we want to encode an input current that is zero
until a certain point and then increases steadily with time. Mathematically, this can
be described as a discontinuous function:

I.t/ D
�

0 t < 30

0:075.t � 30/ t � 30
(15.9)

To encode Eq. 15.9, we can use of an assignmentRule containing a piecewise
construct:

<assignmentRule variable="I">
<math xmlns="http://www.w3.org/1998/Math/MathML">
<piecewise>

<piece>
<cn type="integer"> 0 </cn>
<apply>

<lt />
<csymbol encoding="text"

definitionURL="http://www.sbml.org/sbml/
symbols/time" />

<cn type="integer"> 30 </cn>
</apply>

</piece>
<otherwise>

<apply>
<times/>
<cn> 0.075 </cn>
<apply>
<minus/>
<csymbol encoding="text"

definitionURL="http://www.sbml.org/sbml/
symbols/time" />

<cn type="integer"> 30 </cn>
</apply>

</apply>
</otherwise>

</piecewise>
</math>

</assignmentRule>
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Fig. 15.5 Simulation of 300 ms of the class I excitable neuron of Izhikevich’s model using
MathSBML. The monotonic input is shown as well as the resulting increasing frequency of
discharge

15.3.3.3 Simulation of a Firing Pattern

We can use any simulator supporting SBML’s piecewise assignmentRules to
simulate the model and obtain the time course of the different model’s variables.
The result obtained with MathSBML (Shapiro et al. 2004) as shown in Fig. 15.5
reproduces figure 1G from the original paper.

15.3.4 Conclusion and Perspectives

For the modeling of biological systems, SBML represented a breakthrough, by
enabling for the first time interoperability between modeling and simulation tools.
Since the number, size and complexity of computational models in biology has
increased in line with the rise of Systems Biology, it is illusory to imagine that
people could re-implement models they required, as was the case during the last
century. SBML provided a means for researchers to consistently encode, exchange
and re-use models. Its creation has revolutionized the modeling process.

A frequent misconception about SBML is that only models of biochemical
reactions using chemical kinetic approaches can be encoded. The versatility of
the language enables the encoding of a wide diversity of models, either based
on processes affecting pools of entities (where the entities are not necessarily
biomolecules), or variables described by differential or algebraic equations. The
existence of discrete conditional events allows the introduction of perturbations,
discontinuous behaviors and event-driven model elements.
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Some types of models cannot currently be encoded in SBML, such as com-
partmental approximations of the cable theory and state-transition representations
of ion channels. Other languages, like NeuroML, are more suitable for such a
purpose. As this chapter is written, the NeuroML and SBML communities are
working conjointly to make those languages interoperable, so that hybrid models
containing biochemical and electrophysiological components may be exchanged.
Such a cooperation may show the way for other collaborations, for instance with the
nascent NineML language developed under the guidance of the International Neu-
roinformatics Coordination Facility (INCF) for encoding large neuronal networks.
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