
Chapter 3
Using Chemical Kinetics to Model Neuronal
Signalling Pathways

Lukas Endler, Melanie I. Stefan, Stuart J. Edelstein, and Nicolas Le Novère

Abstract Understanding the physical principles and mechanisms underlying
biochemical reactions allows us to create mechanistic mathematical models of
complex biological processes, such as those occurring during neuronal signal
transduction. In this chapter we introduce basic concepts of chemical and enzyme
kinetics, and reaction thermodynamics. Furthermore, we show how the temporal
evolution of a reaction system can be described by ordinary differential equations
that can be numerically solved on a computer. Finally we give a short overview of
different approaches to modelling cooperative binding to, and allosteric control of,
receptors and ion channels.

The transduction of neuronal signals and their effects on the behaviours and
phenotypes of neurons involve many biochemical entities that interact, diffuse and
transform, with different intensities and on different timescales. To understand
those biological processes, dynamical and quantitative descriptions are necessary.
However, a mere reproduction of experimental observations by non-mechanistic
models often is not sufficient, as many experimental results represent averages
over time. Furthermore, as the observables are emerging from complex biological
systems, in general their behaviour can only be predicted and fully understood by
considering the underlying reactions and biophysical processes.

Numerical simulations of models founded in chemical kinetics have been used
successfully to describe neuronal signalling for a few decades. Early models
concentrated on a single given entity, such as the models of acetylcholine receptors
at the neuromuscular junction by Land et al. (1981). Later, models of complex
pathways were designed that made full use of the wealth of data accumulated in
the field of molecular neurobiology (Bhalla and Iyengar 1999).
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In this chapter we introduce basic concepts of chemical and enzyme kinetics, and
show how the temporal evolution of a reaction system can be described by ordinary
differential equations. Finally we give an overview of different approaches to model
cooperative binding to, and allosteric control of, receptors and ion channels.

3.1 Introduction to Chemical Kinetics

A neuron, as any living cell, is built up as a series of compartments of various dimen-
sions. The post-synaptic membrane is an example of a bi-dimensional compartment
surrounding the cytosol of the dendritic spine, which is itself a tri-dimensional
compartment. Microtubules are examples of uni-dimensional compartments. These
compartments can be considered both as containers—we can count the number of
instances of a certain type of entity present in, or attached to, a compartment—and
as diffusional landscapes—the movements of the entities within the compartment
depend on its properties. Within the compartments, the entities can move and react
with each other. The object of chemical kinetics is to study the temporal evolution of
the positions and quantities of the entities contained in a compartment, sometimes
called a reactor.

In this chapter, we will not deal with the displacement of the chemical entities
within a compartment. This question will be treated in Chap. 5. We will assume that
an entity-pool, that is a set of entities that are indistinguishable as far as the model is
concerned, is distributed homogeneously within the compartment. This hypothesis
is known as the well-stirred approximation (Fig. 3.1). This approximation is based
on the assumption that there is no diffusional anisotropy in the compartment, i.e. the
molecules move randomly in any dimension.

3.1.1 Chemical Reactions

A chemical reaction is the transformation of one set of substances called reactants
into another set called products. At a microscopic scale, such a transformation
is in general reversible, although there are many cases in which the reverse
reaction is of negligible importance compared to the forward one. In all cases,
a reversible reaction can be split into forward and reverse reactions. For a given
reaction, reactants generally combine in discrete and fixed ratios to form products.
These ratios indicate the amount of each substance involved in the reaction. The
amounts consumed or produced in one reaction event are called the stoichiometric
coefficients or numbers, �X , and are positive for products, and negative for reactants.
If a substance is neither consumed or produced by a reaction, its stoichiometric
coefficient is 0. Equation 3.1 depicts a general reaction, in which A and B are
reactants combining to form the product P. �A would be �a, �B D �b and �P D p.
The list f�a; �b; pg is also called the stoichiometry of the reaction.

aA C bB �����! pP (3.1)
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Fig. 3.1 Representation of a well-stirred container with two types of entities, represented by
empty and filled circles. The arrows represent the direction and speed of their movements

P.reaction �/ D P.find �/ � P.� reacts/

P.reaction � C�/ D P.find �/ � P.find another �/ � P.� reacts with �/

P.reaction � Cı/ D P.find �/ � P.find ı/ � P.� reacts with ı/

and P.find �/ / n.�/

V
D Œ��

where V is the volume of the container

In many cases in biology only an overall transformation consisting of many
sequential reactions is experimentally observable. In the finest grained form these
reactions are also known as elementary reactions. An elementary reaction is
defined as a minimal irreversible reaction with no stable intermediary products. The
lumped stoichiometric coefficients of the overall reaction consist of the sums of the
stoichiometric coefficients for each reactant over all elementary reactions.

Chemical kinetics is concerned with the velocity of such transformations, the
rates with which substances are consumed and produced. As the rate of change for a
reagent depends on its stoichiometric coefficients, it can be different for individual
substances. Therefore it is convenient to define the reaction rate, v, as the rate of
change of a substance divided by its stoichiometric coefficient. This effectively
represents the number of reaction events taking place per unit of time and unit of
compartment size.

v D 1

�a

dŒA�

dt
D 1

�b

d ŒB�

dt
D 1

p

dŒP�

dt
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Therefore, we can compute the change of each substance as the product of the
reaction rate and its stoichiometric coefficient for this reaction.

dŒA�

dt
D �a � v;

d ŒB�

dt
D �b � v;

d ŒP�

dt
D p � v

Reaction rates depend on many factors, and can effectively take any form for
the purpose of modelling. In the following subsections, we will describe the simple
cases where the reaction rates depend solely on the concentrations of the reacting
substances.

3.1.2 Mass-Action Kinetics

For a chemical reaction to take place, the participants have to collide, or come into
close vicinity of each other. The probability of such collisions depends, among
other parameters, on the local density of the reactants, and hence, in well stirred
environments, on their concentrations.1 This relationship was first described by
Guldberg and Waage in the second half of the nineteenth century in a series of
articles on the dynamical nature of the chemical equilibrium (Waage and Guldberg
1864). They assumed that at equilibrium both the forward and backward reaction
forces or velocities were equal, and that these velocities where proportional to the
concentrations of the reactants to the power of their stoichiometric coefficients. The
relationship of reaction velocities and concentrations is called the “Law of Mass-
Action”, and rate expressions equivalent to the ones employed in their articles are
sometimes referred to as “Mass-Action Kinetics”.2

The rates of simple unidirectional chemical reactions are usually proportional to
the product of the concentrations of the reactants to the power of constant exponents,
called partial reaction orders or nX . The sum of all partial orders is called the order

1Under non-ideal conditions, as found in biology, activities instead of concentrations should
actually be used both for describing rate equations and equilibria. As this is not common practise in
biological modelling, we do not distinguish between activities and concentrations in the following.
It should be noted, though, that activities can differ significantly from concentrations in cellular
environments.
2The term mass-action stems from the proportionality of the so called reaction “force” to the mass
of a substance in a fixed volume, which is proportional to the molar concentration of a substance.



3 Using Chemical Kinetics to Model Neuronal Signalling Pathways 85

n of a reaction, and the proportionality factor is called the rate constant k. For
example, for the reaction described in Eq. 3.1 assuming mass action kinetics the
reaction rate appears as follows:

v D k � ŒA�nA � ŒB�nB

The reaction has an order of n D nA C nB . In general, the order of elementary
reactions is equal to the number of molecules interacting, also known as the
molecularity. A unimolecular reaction A ! P for example would have an order
of one, a bimolecular reaction, such as 2A ! P or A C B ! P would be a second
order reaction etc. However, this equivalence is not always true, and anisotropy or
crowding of the reaction environments may affect the motion of molecules, resulting
in different, and sometimes non-integral, reaction orders.

While mass-action kinetics are only strictly valid for elementary reactions, they
are widely and successfully applied in various fields of mathematical modelling in
biology. Especially for large and vaguely defined reaction networks, as found in
signal transduction, mass action kinetics are commonly employed as a very general
initial approach. Most often, the partial orders are taken to be identical to the stoi-
chiometric coefficients. The rate constants can either be calculated from separately
measured equilibrium constants and characteristic times, or computationally fitted
to reproduce experimental results.

3.1.2.1 Zeroth Order Reactions

Reactions of order zero have a reaction rate that does not depend on any reactant.
Zeroth order reactions can be used for instance to represent constant creations from
boundary condition reactants, such as:

X
k�����! P

where X represent a set of source reactants that are not depleted by the reaction. The
reaction rate is then equal to:

v D k � ŒX�0 D k

in which k is the rate constant, and has the units of a concentration per time. The
solution describing the evolution of P is of course a monotonic increase:

ŒP�.t/ D ŒP0� C kt

3.1.2.2 First Order Reactions

In general unimolecular reactions are modelled using first order mechanisms. In irre-
versible first order reactions, the reaction rate linearly depends on the concentration
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of the reactant. Many decay processes show such kinetics, for example, radioactive
decay, dissociation of complexes, or denaturation of proteins. For a simple reaction:

A
k�����! P

the following rate law applies:
v D k � ŒA�

in which k is the first order rate constant, and has the units of a reciprocal time,
Œ1=time�. If this is the only reaction affecting the concentration of A in a system, the
change of [A] equals the negative reaction rate. Similarly, the change of [P] equals
the reaction rate.

dŒA�

dt
D �v D �kŒA�

d ŒP�

dt
D v D CkŒA�

The first equation above can be easily rearranged and analytically solved,
assuming an initial concentration ŒA0� at time t D 0. Furthermore, since ŒP�t C
ŒA�t D ŒP0� C ŒA0�:

ŒA�t D ŒA0� � e�kt

ŒP�t D ŒP0� C ŒA0� � .1 � e�kt /

The rate constant in first order kinetics is directly related to some characteristic
times of substances, which are often readily available. For example the average life
time of the reactant, � , and the time it takes for its concentration to halve, the half-
life t 1

2
, can be derived as (see Fig. 3.2):

� D 1

k

t 1
2

D ln2

k

3.1.2.3 Second Order Reactions

Second order reactions are often used to model bimolecular reactions, either be-
tween different types of molecules or between two instances of the same molecule.
Examples are complex formation and dimerisation reactions. For a simple reaction:

A C B
k�����! P

the following rate law applies:

v D k � ŒA� � ŒB�
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Fig. 3.2 Decay of a reactant A, that is consumed by a first order reaction with a constant k from
an initial concentration of ŒA0�. The average lifetime of a given molecule of A is given by 1=k. ŒA�

tends toward 0 while ŒP� tends towards ŒA0� C ŒP0�

in which k is the second order rate constant, and has the unit of Œ1=.time �
concentration/�. The change of [P] with time is described by the following
differential equation:

dŒP�

dt
D v D k � ŒA� � ŒB�

Integration of the above expression using the initial concentrations [A0], [B0] and
[P0] leads to a hyperbolic time dependency:

ŒP�.t/ D ŒP0� C ŒA0�ŒB0�
e�kt ŒB0� � e�kt ŒA0�

ŒA0�e�kt ŒB0� � ŒB0�e�kt ŒA0�

Different from first order reactions, the characteristic times in second order
reactions are not independent of the initial conditions, but depend on both the rate
constant and the initial concentrations of the reactants. The half life of the limiting
reactant, that is B in the case that ŒA0� � ŒB0�, is given by the following expression:

t 1
2

D
ln

�
1 C ŒA0��ŒB0�

ŒA0 �

�

.ŒA0� � ŒB0�/k

A special case of bimolecular reaction, in which two reactant molecules of the
same type react to form the product, occurs quite commonly in biology, for example
in protein dimerisation reactions. For the general reaction:

2A
k�����! P



88 L. Endler et al.

the reaction velocity and the temporal development of [A] and [P] are given by the
following equations:

v D k � ŒA� � ŒA�

d ŒA�

dt
D �2v D �2kŒA�2

d ŒP�

dt
D v D kŒA�2

Again, these differential equations can be integrated and, assuming the initial
concentrations to be [A0] and [P0], resulting time courses for [A] and [P] are
described by the following hyperbolic functions:

ŒA�.t/ D ŒA0�

2kŒA0�t C 1

ŒP�.t/ D ŒP0� C 2ŒA0�kt

2kŒA0�t C 1

The half life, t 1
2

of [A] again depends on the initial concentration:

t 1
2

D 1

2kŒA0�

3.1.3 The Thermodynamics of Reactions

The field of thermodynamics is concerned with the interconversion of different
forms of energy, subsumed mainly under the notions of heat and work, and
relates them to changes in observable properties of a system, such as temperature,
electrochemical potentials, osmotic pressure, and concentrations of substances. The
tools provided by chemical thermodynamics allow us to explore the energetics
of a biochemical system and to determine the direction of coupled reactions
and processes, such as the transport of ions across a membrane coupled to an
electrochemical potential.

3.1.3.1 Energetics and Equilibrium

Central in chemical thermodynamics is the notion of the chemical equilibrium, a
state in which all concentrations stay constant over time. While this means that all
net reaction fluxes are zero, forward and reverse reactions can still occur, but simply
cancel out. Solutions of reacting compounds in a closed environment tend towards a
state of equilibrium at which the time evolution of their concentrations stops. In their
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work on the dynamical equilibrium Guldberg and Waage found that at equilibrium
a certain ratio of the products and reactants, the so called mass action ratio, � , was
constant for specific conditions. This value is called the equilibrium constant, Keq .
For a reversible reaction, � is defined as the product of all product concentrations,
divided by the product of the reactants, with each concentration taken to the power
of their stoichiometric coefficients. For the general reaction described in Eq. 3.1 �

appears as follows:

� D ŒP�p

ŒA�a � ŒB�b

and at equilibrium:

�eq D Keq D ŒPeq�p

ŒAeq�a � ŒBeq�b
(3.2)

The disequilibrium ratio, � D � =Keq, gives the direction of a reaction. For
� < 1, a reaction tends towards the products, while for � > 1 the reverse reaction
rate is greater than that of the forward reaction.

The original derivation of Keq by Guldberg and Waage was based on setting
the forward rate of a reaction equal to the backward rate under the assumption of
mass action kinetics. While this approach strictly speaking is only valid for simple
elementary reactions, the derived expression for the equilibrium constant, which
today is also called the Law of Mass action (3.2), is still valid under the caveat that
under non–ideal conditions activities, rather than concentrations, have to be used.
For the following reaction with mass action kinetics

A C B�)������*� C

with W �f D kf � ŒA� � ŒB�

�r D kr � ŒC�

the following relationship between the rate constants can be derived, by setting the
forward and reverse rate equal:

�f Dkf � ŒAeq� � ŒBeq� D �r D kr � ŒCeq�

Keq D ŒCeq�

ŒAeq�ŒBeq�
D kf =kr

Keq is related to the Gibb’s free energy G, which describes the potential of a
system to perform usable work, or equivalently, to undergo spontaneous change.
The change of G, �G, accompanying a process, indicates whether this process
is spontaneous and how much non-expansive work can be obtained during this
change. Non-expansive work can be, for example, the movement of ions to create
an electrochemical potential, fuelling of other non-spontaneous processes, such as
synthesis of ATP, or mechanical work, such as muscle contraction. At equilibrium,
the Gibb’s free energy of a system is minimal and �G D 0 for all processes.
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The change of G for a reaction can be defined independent of the reactants’
stoichiometries, so that �rG is the change of G per defined amount of reaction
turnover, e.g. 1 mol. These so called reaction Gibb’s free energies can be calculated
by subtracting the sum of the reactants’ free energies times their stoichiometric
coefficients from the products’ free energies. For the general reaction described
above (3.1) this would mean:

�rG D pGP � .aGA C bGB/

In the literature, in general, free energies are given for standard conditions, such
as room temperature and substance concentrations of 1 M. These standard reaction
free energies, �rG

0, can be used to calculate �rG for other concentrations of
substances, simply by using their mass action ratios � . In general, if a reaction
has a �rGX at a state X with a mass action ratio of �X , then �rGY at state Y with
�Y can be written as

�rGY D �rGX C RT ln.�Y =�X/

In this R is the universal gas constant, and T stands for the absolute temperature.
As at equilibrium the reaction free energy, �rGeq , equals 0 and for standard reaction
free energies, �rG

0, the mass action ratio, � 0, is in general equal to 1, the following
relation between Keq and �rG

0 can be derived:

�rGeq D0 D �rG
0 C RT ln.Keq=� 0/

�rG
0 D � RTlnKeq

It is also possible to calculate a reaction Gibb’s free energy of a solution from the
reaction’s mass action ratio � and the equilibrium constant:

�rG D RT ln
�

Keq

D RT ln�

For coupled reactions, the free energy changes, �G, of the individual reactions
add up to give the overall change. As reaction free energies are proportional to
the logarithm of the equilibrium constants, the overall equilibrium constant can be
obtained as the product of the different individual reaction Keqs. In the case of cyclic
reaction systems that are not driven by an external energy source, the overall reaction
free energy, �rG, is zero, and therefore the product of all equilibrium constants has
to equal unity. As the product of all equilibrium constants Ki in a reaction cycle
has to equal unity, the same holds true for the product of the ratio of the reverse
and the forward rate constants k�i and ki , respectively. For a cycle of n reactions
this leads to the following relationship, also known as detailed balance relation or
Wegscheider’s cyclicity condition (Heinrich and Schuster 1996):

nY
iD1

Ki D 1 D
nY

iD1

k�i

ki
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Fig. 3.3 Reaction diagram
for binding of a ligand L to
two distinct sites on a
receptor R. Assuming
detailed balance allows us to
express one equilibrium
constant as a function of the
others (After Colquhoun et al.
2004)

Applications of this principle to ions binding to a receptor are shown in
Colquhoun et al. (2004). Figure 3.3 illustrates the method for binding of a ligand
L to two, distinct binding sites on a receptor R. The detailed balance relation allows
us to express one of the equilibria, or one of the rate constants through the other
ones.

For binding reactions the inverse of the equilibrium constant, Keq , also known
as dissociation constant, Kdiss is commonly used. In case of a simple complex
formation reaction of a receptor R and a ligand L the dissociation constant would be
defined as follows:

R C L
kon�)������*�
koff

RL

Kdiss D 1

Keq

D ŒReq�ŒLeq�

ŒRLeq�
D koff

kon

with kon and koff being the complex association and dissociation rate constants.

3.1.3.2 Transition State and Temperature Dependence of Reaction Rates

Rate constants, in general, show a strong positive temperature dependence, that is,
they increase with rising temperatures. This relation was studied in detail in the latter
part of the nineteenth century first by Jacobus van’t Hoff and Svante Arrhenius.
Arrhenius derived an empirical expression for the temperature dependence of the
rate constant, k, and postulated a general mechanism underlying this relationship.
He assumed that a reaction could only occur if the reacting molecules possessed
enough internal energy to overcome a threshold termed activation energy, Ea, and
that the proportion of such molecules was given by a Boltzmann distribution.

k D Ae�Ea=RT
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Fig. 3.4 Schematic free energy diagram for the reaction S ! P without (solid) and with a
catalyst (dashed), E . The reaction coordinate is a one-dimensional abstraction of the progress
of the reaction. S spontaneously reacts to P via a transition state S�. The catalyst E binds S

and stabilises the transition state, leading to intermediate steps with a much smaller activation free
energy �G�, thereby accelerating the reaction. The reaction energy �r G is the same in both cases

In this relation, called Arrhenius equation, A is simply called the pre-exponential
or frequency factor. It can be interpreted as the total frequency of reactant collisions
in the correct constellation to react, but not necessarily possessing sufficient energy.
A later and more detailed theory is the Transition State Theory, TST, initially
pioneered by Henry Eyring and Michael Polanyi in the 1930s. Its basic assumption
is that an elementary reaction runs over an unstable activated or transition state
(see Fig. 3.4), with a free energy of G�. Therefore, to reach the transition state, the
participating reactants need at least an activation free energy of �G� D G� � Ggs ,
with Ggs being the free energy of the ground state of the reactants. The Eyring
equation derived using TST relates k to the free activation energy �G� and the
temperature similar to the Arrhenius equation:

k D 	
kBT

h
e��G�=RT

Here 	 is called the transmission coefficient and indicates the proportion of
transition states reacting to give products, kB is the Boltzmann and h the Planck
constant.

Catalysts, such as enzymes, work by reducing the free activation energy �G�.
One common possibility for this is to stabilise the transition state. It should always
be kept in mind, though, that the reaction free energy, �rG, and with it the
equilibrium constant, Keq , is not affected by enzymes.
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3.1.4 Representing the Evolution of Multi-reaction Systems

In the sections above, we only derived expressions describing the temporal evolution
of species altered by single reactions. In biological systems, substances are involved
in many different processes, leading to complex ordinary differential equation sys-
tems, that normally can only be solved numerically and with the help of computers.

3.1.4.1 Reconstruction of a System of Ordinary Differential Equations

Having carefully designed the elementary processes composing the system, re-
constructing the differential equations representing the evolution of the different
substances is a systematic and easy procedure. We already saw in Sect. 3.1.2.2 that
the reaction:

A
k�����! P

could be modelled by the system:

dŒA�

dt
D �1v D �1kŒA�

d ŒP�

dt
D 1v D C1kŒA�

If the reaction is reversible, such as:

A
kf�)������*�
kr

P

then we can consider it as a combination of two irreversible reactions, the rates of
which depend on ŒA� and ŒP �:

vf D kf � ŒA�

vr D kr � ŒP�

The evolution of both substances therefore depends on the forward and reverse
reaction rates. A is consumed by the forward reaction and produced by the reverse
reaction. It is the other way around for P.

dŒA�

dt
D �1vf C 1vr D �1kf ŒA� C 1krŒP�

d ŒP�

dt
D C1vf � 1vr D C1kf ŒA� � 1krŒP�
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To understand how to handle non-unity stoichiometric numbers, consider the
following dimerisation:

2A
kf�)������*�
kr

P

The forward reaction will be modelled using second-order kinetics, and the rates
will therefore be:

vf D kf � ŒA�2

vr D kr � ŒP�

As above the evolution of both substances therefore depends on the forward and
reverse reaction rates. But this time two molecules of A are consumed by each
forward reaction and produced by each reverse reaction. Therefore:

dŒA�

dt
D �2vf C 2vr D �2kf ŒA�2 C 2kr ŒP�

d ŒP�

dt
D C1vf � 1vr D C1kf ŒA�2 � 1kr ŒP�

This approach can then be extended, independently of the size of the system
considered. An ODE system will contain (at most) one differential equation for each
substance. This equation will contain components representing the involvement
of the substance in the different reactions of the system. For the substance Sn,
involved in a system containing r reactions, the differential equation takes the
following form:

dŒSn�

dt
D

rX
iD1

�ni vi

�ni denotes the stoichiometric coefficient of Sn in reaction i , vi the rate of this
reaction. The resulting ODE system can also be represented in matrix notation,
by introducing the stoichiometric matrix, N, and the reaction rate vector, v. The
stoichiometric matrix, N, contains a row for each of the n species in the system,
and a column for each of the r reactions. Its entries, Nij , are the stoichiometric
coefficients, �ni , of substance i in reaction j . v is a column vector with each
element vi indicating the rate of the i th reaction. Using the above, the change of
the concentration vector S over time is described by:

dŒS�

dt
D N � v

3.1.4.2 Numerical Integration of ODE Models

Besides the most elementary systems containing only few well-behaved reactions,
we cannot generally solve a system of ordinary differential equations analytically.
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Fig. 3.5 Graphical representation of the forward Euler method to integrate ordinary differential
equations. The thick curve represents ŒX� D f .t/, and the vectors its derivative. Note the
progressive error introduced by the coarse time discretization

We have to resort to numerical integration, a method that goes back to the origin of
differential calculus, where we approximate the current values of the variables based
on the knowledge we have of their values in the (close) past. Many approximations
have been developed. The simplest and easiest to grasp is the forward Euler rule. If
we discretize the time, one can make the following approximation:

dŒX�

dt
� �ŒX�

�t
D .ŒX�tC�t � ŒX�t /

�t

We can rearrange the equation above and extract the concentration as follows:

ŒX�tC�t � ŒX�t C dŒX�

dt
.t/ � �t

We know dŒX�=dt as a function of the vector of concentrations, obtained with
the method described in Sect. 3.1.4.1, and can therefore compute the difference
introduced during one �t . This procedure is represented in Fig. 3.5. We can see
on the figure that a systematic error is introduced by the time discretization.
Such an error becomes larger for more complex dynamics, such as non-monotonic
behaviours, or systems with fast and slow components. One can address the error by
using tiny time steps but at the expense of computational efficacy. Many methods
have been developed over the years to address this problem. A good introduction is
given in LeMasson and Maex (2001) and a more comprehensive survey of the field
by Hairer et al. (1993) and Hairer and Wanner (1996).
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Biological modelling tools such as COPASI (Hoops et al. 2006), JDesigner/
Jarnac (Sauro 2000), E-Cell (Takahashi et al. 2003) or CellDesigner (Funahashi
et al. 2008) have their own in-built numerical ODE solver. They also generate the
system of ODE to be solved automatically, so the user input that is required usually
consists of a list of chemical reactions in some defined format and of the parameters
governing those reactions.

3.2 Modelling Biochemical Networks

Modelling the biochemical pathways involved in neuronal function does not require
much more than what has been presented in Sect. 3.1. The only complexity we will
introduce in the following sections are slightly more complex expressions for the
reaction rates.

3.2.1 Basal Level and Homoeostasis

Before modelling the effect of perturbations, such as extracellular signals, it is
important to set up the right basal level for the substances that we will consider in the
model. This basal level is obtained when the processes producing the substance and
the processes consuming it are compensating each other. We then reach a steady-
state, where input and output are equal. To illustrate this, we will build the simplest
system possible that permits to have a steady basal concentration of calcium. The
system is made up of a continuous creation of calcium, for instance due to leaky
channels in the plasma membrane or in the internal stores, modelled as a zeroth
order reaction (see Sect. 3.1.2.1). The calcium is then removed from the system
for instance by pumps or buffers in excess, modelled as a first order reaction (see
Sect. 3.1.2.2).

; kin�����! Ca2C kout�����! ;
The instantaneous changes of calcium concentration then result from the combi-

nation of the two reaction rates (Fig. 3.6).

dŒCa2C�

dt
D kin � koutŒCa2C�

The steady-state level is reached when the changes are null, that is ŒCa2C� D
kin=kout. If the concentration of calcium is higher than this ratio, the second term
wins and the concentration decreases. In contrast, if the concentration of calcium
is lower than this ratio, the first term wins and the concentration increases. kout
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t1

Ca2+

t0

kin

kin

kout

t2

Fig. 3.6 Evolution of calcium concentration over time. Between t0 and t1, the extrusion is stronger
than the creation. At t1, kin strongly decreases, for instance by a block of leak channels, and the
concentration is brought to a lower steady-state value. At t2 the block is removed. The creation
becomes stronger than extrusion, and brings back the concentration to the initial steady-state.
Vertical arrows represent the intensity and direction of the reaction’s flux for a given concentration
of calcium

can be estimated from the decay observed after stimulation. kin can therefore be
computed from the steady-state. Changing kin in a discrete manner is a simple way
of modelling the opening or closing of calcium channels.

Such a homoeostatic control is extremely simple. More complex schemes can be
designed, with control loops such as negative feed-backs on the creation steps and
positive feedforwards on the extrusion steps.

3.2.2 Representing Enzymatic Reactions

In order to accelerate chemical reactions and select among different isomers, cells
use enzymes, which are protein-based catalysts. They can increase reaction rates
to a tremendous degree and often are essential to making reactions occur at a
measurable rate. Enzyme catalysed reactions tend to follow complex sequences
of reaction steps, and the exact reaction mechanisms are generally unknown. The
single reaction steps can be contracted into an overall description with lumped
stoichiometries. However, since the detailed reaction mechanisms are most often
unknown, and also parameters for each of these steps are hard to come by, such
reactions can rarely be modelled considering each single step and using mass
action kinetics. Depending on how much detail is known, an enzyme catalysed
reaction can be described on different levels. The reaction equations for a simple
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conversion of a substrate S to a product P catalysed by an enzyme E, for example,
can vary depending on the consideration of intermediate enzyme complexes and
reaction reversibility:

S C E �)������*� ES �)������*� EP �)������*� E C P

S C E �)������*� ES �����! EP �)������*� E C P

S C E �)������*� ES �)������*� E C P

S C E �)������*� ES �����! E C P

S C E �����! E C P (3.3)

Knowledge of the mechanism of an enzymatic reaction can be used to derive
compact and simplified expressions fitting the overall kinetics. The alternative is
to use generic rate laws that are known to loosely fit wide classes of reaction
mechanisms, and to choose the ones that seem most appropriate for the reaction
in question. The kinetics of the overall reaction are determined by the reac-
tion mechanisms of the elementary steps, but exact derivations can become quite
complex and cumbersome to handle. In general it is safer and more convenient
to use approximate expressions in biological modelling, even more so as exact
mechanisms are rarely known.

Two assumptions are available to simplify complex enzymatic reaction descrip-
tions. The more general one is the quasi steady state approximation, QSSA. The
QSSA considers that some, or all, of the intermediary enzyme substrate complexes
tend to a near constant concentration shortly after the reaction starts. The other
widely used assumption, called the rapid equilibrium assumption, is that some steps
are much faster than the overall reaction, meaning that the participating enzyme
forms are virtually at equilibrium and that their concentrations can be expressed
using equilibrium constants. This approach is often used to model fast reactant or
modulator binding to the enzyme. The application of these techniques depends very
much on how much of the reaction mechanism is known. An excellent introduction
into enzyme kinetics is given by Cornish-Bowden (2004). For a more exhaustive
treatment with detailed derivations of rate laws for a multitude of mechanisms please
refer to the standard work by Segel (1993).

3.2.2.1 Henri-Michaelis-Menten Kinetics

At the beginning of the twentieth century, Henri (1902) proposed a reaction scheme
and an accompanying expression for describing the rate of sucrose hydrolysis
catalysed by invertase. This reaction showed a deviation from normal second-order
kinetics and tended to a maximal velocity directly proportional to the enzyme
concentration. Making use of the existence of an intermediary substrate-enzyme
complex, ES, and assuming that the substrate S and the enzyme E were in a rapid
binding equilibrium with the complex, he could derive an expression fitting the
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experimental observations. A similar approach was taken and expanded in 1913
by Michaelis and Menten (1913), who proposed the current form of the reaction
rate based on a rapid equilibrium between enzyme and substrate.

E C S
k1�)������*�

k�1

ES
k2�����! E C P

(k2 is the catalytic constant, or turnover number, and often called kcat .)
A more general derivation, using the QSSA, was proposed by Briggs and

Haldane (1925). The substrate binding and dissociation, as well as the product
formation step, lead to the following expression for the time dependence of [ES]:

dŒES�

dt
D k1ŒE�ŒS� � k�1ŒES� � k2ŒES�

At steady state, the concentration of the intermediate complex,[ES], is constant
hence dŒES�=dt D 0. Rearranging this equation and setting KM D k

�1Ck2

k1
, we

obtain ŒE� D ŒES� � KM =ŒS�. Furthermore, because the concentration of enzyme
is constant, we have ŒE� D ŒEt � � ŒES�. Equating both, we obtain:

v D dŒP�

dt
D k2ŒES� D k2ŒEt�

ŒS�

KM C ŒS�
(3.4)

k2 � ŒEt � is sometimes called the maximal velocity vmax.
This rate expression is often used—and abused—when modelling biochemical

processes for which the exact mechanisms are unknown. However, one has to realise
that it only holds true if the concentration of the enzyme-substrate complex stays
constant, which in turns implies that the concentration of substrate is in large excess.
Those conditions are very rarely met in signal transduction systems, resulting in
many artifacts.

Plotting the reaction velocity, v, against the substrate concentration, [S], gives
a rectangular hyperbolic curve (see Fig. 3.7). The parameter KM has the unit of a
concentration and is of central importance in describing the form of the substrate
dependence of the reaction velocity. As can be seen by inserting KM for [S] in
Eq. 3.4, it denotes the substrate concentration at which the reaction speed is half of
the limiting velocity. If ŒS� � KM , then [S] in the denominator can be disregarded
and the reaction becomes linear with regard to S, showing first order characteristics:

ŒS� � KM ) v � vmax

KM

� ŒS�

On the other extreme, for high substrate concentrations, ŒS� � KM , the reaction
speed becomes virtually independent of [S] and tends toward vmax.

ŒS� � KM ) v � vmax D kcat � ŒEt�
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Fig. 3.7 Dependence of the reaction velocity, v, of the irreversible Michaelis Menten equation on
the concentration of the substrate, S. The left graph shows the uninhibited case. On the right various
forms of inhibition are shown in a semi-logarithmic plot. The horizontal dotted lines indicate
the apparent half maximal velocities, the vertical ones the apparent KM s. Competitive inhibition
does not alter the maximal velocity, but shifts the KM to higher values, while non-competitive
inhibition simply decreases the apparent vmax. The special case of uncompetitive inhibition leads
to an apparent increase of substrate affinity of the enzyme, that is a lower KM , but a reduction
of the apparent vmax. Mechanistically this is due to the unproductive enzyme-substrate-inhibitor
complex (KM D 1; [I]D 1; comp., uncomp. and non-comp. inhib.: KI D 1)

Most enzyme catalysed reactions show a similar rate behaviour inasmuch as they
exhibit first or higher order dependencies on the substrate at lower substrate con-
centrations and tend to a limiting rate depending only on the enzyme concentration
when the reactant concentrations are high.

While the original Michaelis–Menten equation was derived to describe the initial
velocity of the enzymatic reaction in absence of product, allowing the reverse
reaction to be neglected, the QSSA can also be used to derive a reversible Michaelis–
Menten equation describing the most extensive reaction scheme in Eq. 3.3.

Using the same procedure as above, the following expression for the reaction
velocity in dependence of ET, S and P can be derived:

v D
vfwd

ŒS�

KMS
� vrev

ŒP�

KMP

1 C ŒS�

KMS
C ŒP�

KMP

(3.5)

As the net rate of a reversible reaction has to vanish at equilibrium, one of
the parameters of Eq. 3.5 can be expressed using the equilibrium constant by
setting the numerator of the expression to zero. The so called Haldane relationship
connects kinetic and thermodynamic parameters of an enzymatic reaction. While
some mechanisms lead to much more complicated expressions, at least one Haldane
relationship exists for every reversible reaction.

Keq D vfwdKMP

vrevKMS
D k2KMP

k�1KMS
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Fig. 3.8 Reversible
inhibition of an enzyme E

by binding of an inhibitor I .
Depending on the values of
the dissociation constants
KIa and KIb , the inhibition
can be of competitive,
uncompetitive or mixed type

3.2.2.2 Enzyme Regulation

An important aspect of enzyme catalysed reactions is the regulation of enzyme
activity by effectors or modifications. There are many possible mechanisms for both
activation and inhibition of enzymes, often leading to complicated and unwieldy
mathematical expressions. Luckily, for modelling purposes crude approximations
can be sufficient in many cases.

Alteration of an enzyme’s activity by covalent modifications, such as phosphory-
lation of cyclin dependent kinases or cleavage in the case of caspases often have to
be modelled directly using explicit differential equations for each state. As binding
processes are normally much faster, regulation by reversible binding of effectors is
more amenable to using rapid equilibrium and steady state assumptions and deriving
compact mathematical expressions.

Inhibition can be either irreversible or reversible, depending on whether the in-
hibitor disrupts enzyme activity permanently or not. For reversible inhibition, three
basic cases can be distinguished, competitive, uncompetitive and noncompetitive
inhibition. For these cases, minimal mechanisms can be assumed in combination
with the Michaelis Menten scheme as depicted in Fig. 3.8. In this scheme, inhibitor
binding is characterised by using the dissociation constants, KIa and KIb of the
enzyme inhibitor complexes.

In competitive inhibition, the inhibitor does not alter the limiting rate, but
increases the effective Michaelis constant, KM , the concentration of substrate
needed to reach half maximal activity. One possible explanation for this behaviour
is that the inhibitor competes with the substrate for the enzyme by binding the
same site and blocking it. In the scheme in Fig. 3.8 this corresponds to the inhibitor
exclusively binding the free enzyme, 1

KIb
D 0 and k4 D k�4 D 0. Under a quasi

steady-state assumption the following dependence of the velocity on the substrate,
S, and inhibitor, I, concentrations can be derived:

v D vmax
ŒS�

KM

�
1 C ŒI�

KIa

�
C ŒS�

The effect of uncompetitive inhibitors on the other hand cannot be counteracted
by higher substrate concentrations. They alter both the apparent limiting rate as
well as the effective Michaelis constant. In the case of the simple Michaelis Menten
mechanism, both vmax and Km are altered by the same factor. This behaviour can
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be explained by exclusive binding of the inhibitor to the enzyme substrate complex.
In the scheme in Fig. 3.8 this corresponds to 1

KIa
D 0 and k4 D k�4 D 0 and the

following expression can be derived for the velocity:

v D vmax
ŒS�

KM C ŒS�
�
1 C ŒI�

KIb

�

Noncompetitive inhibition is a rarely occurring case, in which the inhibitor only
alters the apparent limiting velocity. A possible mechanism would be that inhibitor
binds the enzyme independent of the substrate, totally abolishing the enzyme’s
activity. In the scheme in Fig. 3.8 this would correspond to KI D KIa D KIb

and k4 D k1; k�4 D k�1 and an expression for the velocity of the form:

v D vmax
ŒS�

KM C ŒS�

1�
1 C ŒI�

KIb

�

The more realistic scenario, in which inhibitor binding depends on substrate
binding, is called mixed inhibition. With this form of inhibition both the apparent
limiting rate and KM are altered by the inhibitor. This scenario subsumes all
three other forms of inhibition as special cases with the proper KIa and KIb .
An expression for the mixed type mechanism with the scheme in Fig. 3.8 can be
derived by using the steady state assumptions equivalent to those used for derivation
of the irreversible Michaelis–Menten equation (3.4) and considering all possible
enzyme states. This gives an expanded conservation relation for the total enzyme
concentration, ŒET� D ŒE�CŒES�CŒEI�CŒEIS�. Taking a rapid equilibrium approach
for inhibitor binding, [EI] and [EIS] can be expressed using their dissociation
constants, KIa and KIb respectively, and the concentrations of free enzyme and
inhibitor:

ŒEI� D ŒE� � ŒI�

KIa

and ŒEIS� D ŒES� � ŒI�

KIb

Proceeding as for Eq. 3.4 the rate law for the simple mixed type inhibition
mechanism in Fig. 3.8 results as:

v D kcat ŒET�
ŒS�

KM

�
1 C ŒI�

KIa

�
C ŒS�

�
1 C ŒI�

KIb

�

3.2.3 Modelling Simple Transport Processes

Compartmentalisation of molecular species and transport across membranes is of
great importance in biological systems, and often needs to be implicitly accounted
for or explicitly included into models.
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Transport across membranes can either occur passively by simple diffusion, or be
coupled to another reaction to actively move molecules against a chemical potential
gradient. In the simplest form of passive diffusion, molecules just directly pass
through a membrane or an open channel or pore. As the connected compartments in
general have differing volumes, the change of concentration of a substance flowing
from one compartment to another is not equal in both compartments. Therefore the
rate of translocation is commonly described by the flux, j , of a substance, that is
the amount of a substance crossing a unit area per time unit. In case of no other
influences on the translocation, but simple diffusion, the flux of a substance S into a
cell through a membrane follows a variant of Fick’s first law:

ŒSout��)*� ŒSin�

jS D pS.ŒSout� � ŒSin�/

in which [Sout] and [Sin] are the concentrations of S on the exterior and inside
the cell, respectively. pS denotes the permeability of the membrane for S. The
permeability for direct diffusion is proportional to the diffusion coefficient of S and,
for pores or channels, to the number of open channels per area.

To derive an expression of the change of concentration of S, it is important to
consider that the flux is given as amount per area and time and not as concentration
per time. Therefore the volumes of the exterior and the cell have to be included in
the differential expressions of concentrations. The overall rate of translocation, vt ,
depends on the surface area, A, of the membrane, and the permeability and area can
be contracted to a transport rate constant, kS D pS �A. For the change of [Sout] and
[Sin], respectively, the following expressions can be derived:

dŒSout�

dt
D � vT

Vout
D � kS

Vout
.ŒSout� � ŒSin�/

d ŒSin�

dt
D vT

Vin

with Vout and Vin being the volumes of the exterior and the cell.
In the case of a molecule that does not simply diffuse through a membrane

or pore, but needs to bind a carrier to be translocated from one compartment to
the other, the kinetic expressions depend on the exact mechanism of translocation.
The simplest case of facilitated, or carrier-mediated, diffusion consists of a carrier
with a single binding site, C, which can bind a substance A with equal affinity on
each side of the membrane, and flips from one side of the membrane to the other.
Using the steady state approach the following expression can be derived for the
translocation rate:

vt D vmax .ŒAout� � ŒAin�/

KM C ŒAout� C ŒAin� C Ki ŒAout �ŒAin �

KM
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In this equation vmax is the limiting rate of translocation and depends mostly on
the amount of carrier. KM is the concentration of A on one side at half maximal
translocation in case of zero concentration on the other side of the membrane, and
Ki , called the interactive constant, depends on the relative mobility of the free and
loaded carrier (for details see Kotyk 1967).

3.3 Modelling Cooperative Modulation of Dynamical
Processes

Reactions in biological systems are not only regulated by the availability of reactants
and catalysts, but also by compounds modulating the activity of channels and en-
zymes, often without any direct involvement in the specific reactions. Examples are
neurotransmitters, such as acetylcholine and gamma-aminobutyric acid, that alter
the flow of ions through channels, without direct involvement in the translocation
process.

Often, these processes display cooperativity. Intuitively, one can imagine a
cooperative scenario as one where the modulating effect of a compound depends
on its concentration in a non-linear manner, where the whole is more (or less)
than the sum of its parts. In this section, we will first introduce useful measures
of ligand binding and conformational state, and then examine how cooperativity
can be modelled using different frameworks.

3.3.1 Binding of Modulators and Conformational State

The activities of receptors, channels, and enzymes are often regulated by ligands
binding to them. One important characteristic of such binding processes is the
fractional occupancy, NY , of the bound compound. It is defined as the number of
binding sites occupied by a ligand, divided by the total number of binding sites.
For a ligand X binding to a single binding site of a protein P, we can express [PX]
and NY as follows, using the dissociation constant Kdiss D koff

kon
and the total protein

concentration ŒPt� D ŒP� C ŒPX�:

P C X
kon�)������*�
koff

PX

ŒPX� D ŒPt�ŒX�

Kdiss C ŒX�

NY D ŒPX�

ŒPt�
D ŒX�

Kdiss C ŒX�
: (3.6)
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Equation 3.6, also known as the Hill-Langmuir equation, is very similar to the
Michaelis–Menten equation. Like [S] in Eq. 3.4, [X] stands for the concentration
of free ligand, but can be substituted with the total ligand concentration ŒXt� D
ŒX� C ŒPX� in case that ŒXt� � ŒPT�.

Often, a protein can exist in various distinct states, only one of which can
perform a specific function. Many enzymes, for example, have an inactive state,
in which their active site is blocked and an active state, in which this block is
relieved. Ion channels can be open and closed. Some proteins exist in two (or more)
distinct structural conformations that favour distinct binding partners. We call such
a conformation of interest the R state for reasons that will become apparent later
in this chapter. Since not all proteins in a population of protein P are necessarily
in the same conformation, it is useful to define a fractional conformational state,
analogous to the previous definition of the fractional occupancy. We denote
fractional conformational state by NR and define it as follows:

NR D ŒR�

ŒPt�

It is important to note that fractional occupancy and fractional conformational
state do not necessarily coincide. Occupancy is usually easier to measure, but
the conformational state might be more relevant (and, indeed, sufficient) in some
modelling scenarios. Both ligand binding and conformational change can display
cooperative behaviour.

In the case of multiple ligand binding sites on a protein, cooperativity can
arise if the binding of a ligand to one site influences binding to the others. If the
binding of a ligand increases the affinity to other ligands, the binding is said to
exhibit positive, if it decreases the affinity, negative cooperativity. Effects of ligands
binding to a protein on an activity physically separated from their binding sites
are called allosteric. They often occur in the regulation of channels by ligands that
are structurally unrelated to the transported compounds. Depending on the kind of
ligands that influence each others’ binding, allosteric and cooperative effects are
called homotropic, if a ligand influences the binding of ligands of the same kind, or
heterotropic, if it influences the affinity to ligands of a different kind.

3.3.2 The Hill Equation

The first description of cooperative binding to a multi-site protein was developed
by Hill (1910). Drawing on observations of oxygen binding to hæmoglobin, Hill
suggested the following formula for the fractional occupancy NY of a protein with
several ligand binding sites:

NY D
ŒX�h

KH

1 C ŒX�h

KH

D ŒX�h

KH C ŒX�h
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where ŒX� denotes ligand concentration, KH is an apparent dissociation constant
(with the unit of a concentration to the power of h) and h is the Hill coefficient, which
need not be an integer. The Hill coefficient h indicates the degree of cooperativity,
and in general is different from the number of ligand binding sites, n. While n is an
upper bound for h, it is not possible to estimate the binding sites from measurements
of the Hill coefficient alone. This is exemplified in Hill’s original analysis, in which
he found exponents ranging from h D 1:6 to 3.2 for the binding of oxygen to
hæmoglobin, while the heterotetrameric protein possesses four binding sites for O2.
The Hill equation can show positive and negative cooperativity, for exponent values
of h > 1 and 0 < h < 1, respectively. In case of h D 1 it shows hyperbolic binding
behaviour. With increasing exponents, the ligand binding curve becomes more and
more sigmoid, with the limit of a step function with a threshold value of h

p
KH . The

number Kh D h
p

KH gives the ligand concentration at which half the binding sites
are occupied, or, in purely phenomenological uses, activation or inhibition by the
effector is half maximal.

It is important to note that the above formula, known as the Hill equation is
a purely phenomenological description of Hills observations of oxygen binding
to hæmoglobin. It does not offer a mechanistic description of the underlying
processes. Because it is a purely phenomenological description, however, it can
be used to describe the cooperativity of conformational change as a function of
ligand concentration just as well as it can be used to describe the cooperativity
of ligand binding. It is enough to replace KH by a phenomenological constant
pertaining to conformational change (the physical equivalent of which we need
not worry about) and h by an appropriate Hill coefficient that fits the data for
conformational change. Note, however, that the Hill framework does not offer a
way of relating ligand saturation and conformational change.

Because the Hill framework is not concerned with a mechanistic explanation of
cooperative ligand binding, all binding sites are treated as equal and cooperativity
itself does not change with ligand saturation. In other words: Cooperativity in
the Hill model is solely a property of ligand molecules, rather than a property of
binding sites.

3.3.2.1 Using Hill Functions to Model the Regulation of Biochemical
Processes

Hill functions can easily be adapted for use in modelling and to describe interactions
with little prior knowledge. Let us assume a channel C transporting a substance
S, that is regulated in a nonlinear fashion by a ligand A, for example by direct
binding. If the channel is activated with increasing concentrations of A, sometimes
this behaviour can be approximated using a Hill function:

vT .ŒC�; ŒA�; ŒS�/ D vT max.ŒC�; ŒS�/
ŒA�h

Kh
h C ŒA�h
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Fig. 3.9 Activation (left) and inhibition (right) modelled using Hill functions with a Hill exponent,
nh of 2. The concentration of the ligand is shown in units of the concentration of half maximal
activation or inhibition, respectively, Kh on a logarithmic scale, the velocity v in percent of the
fully activated or uninhibited velocity, vmax. The dashed line shows cases with a basal rate, vbas , of
25% of vmax (b D vbas

vmax
D 0:25)

Here vT is the actual flux rate of S through the channel C. vT max indicates
the maximal flux rate at high concentrations of A. Kh and h indicate the ligand
concentration of half maximal activation and the Hill coefficient.

An inhibitory effect of a ligand I on the flux through a channel C can often be
described using a similar expression:

vT .ŒC�; ŒI�; ŒS�/ D vT max.ŒC�; ŒS�/
1

Kh
h C ŒI�h

In this equation Kh stands for the concentration at which the ligand I shows half
maximal inhibition.

In case of non-essential activation or leaky inhibition, a process still proceeds at
a basal rate vbas in absence of the activator or at high concentrations of the inhibitor.
This can be accounted for by using the relative basal rate, b D vbas

vmax
:

v D vmax .b C .1 � b/
.ŒX�//

in which 
.ŒX�/ is a function describing the relative activity in dependence of
the concentration of the regulating ligand X (Fig. 3.9). In the simplest case for an
activating ligand A or an inhibitory ligand I, 
 takes the following form:


.ŒA�/ D ŒA�h

Kh
h C ŒA�h


.ŒI�/ D 1

Kh
h C ŒI�h
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The Hill equation is widely used in neuronal modelling, especially for the
kinetics of ligand-gated channels. An example containing two different types of
activation is given in Borghans et al. (1997) for the Ca2C induced Ca2C release
(CICR) via the inositol triphosphate (InsP3) receptor. Equation 19 in that article
describes the release of calcium from a calcium sensitive pool with a flux rate
given by:

vInsP3R D vmax
ŒCap�2

K2
1 C ŒCap�2

ŒCac�
2

K2
2 C ŒCac�

2

In this equation vmax denotes the maximal release rate, and [Cap] and [Cac]
the Ca2C concentrations in the pool and the cytoplasm. The release is regulated
by the Ca2C concentrations on both sides of the membrane separating the pool
and the cytosol, and K1 and K2 stand for the threshold concentrations for these
activations.

Parthimos et al. (2007) used an even more complex expression for the CICR
from the sarcoplasmic reticulum via the InsP3 receptor. The receptor was modelled
to be both activated and inactivated by cytosolic Ca2C, Cac, using two Hill functions
involving Cac. A possible mechanistic explanation for this form would be the
existence of independent activation and inhibition sites, with different affinities and
degrees of cooperativity for Ca2C. In the flux rate through the InsP3 receptor

vInsP3R D vmax
ŒCas�

2

K2
1 C ŒCas�

2

ŒCac�
4

K4
2 C ŒCac�

4

K4
3

K4
3 C ŒCac�

4
(3.7)

K2 and K3 indicate the cytosolic Ca2C concentrations at which activation and
inhibition of CICR, respectively, are half maximal. If they are chosen in such a
way that K2 < K3, the flux rate through the receptor reaches a maximum for
concentration values between the values of the two constants and vanishes for higher
cytosolic Ca2C concentrations (see Fig. 3.10), creating a complex on-off behaviour
of the InsP3 receptor in dependence of the Ca2C concentration.

3.3.3 The Adair-Klotz Framework

Adair (1925) and Klotz (1946) (reviewed in Klotz 2004) further explored the notion
of cooperative binding. According to their framework, cooperativity was no longer
fixed, but dependent on saturation: Binding of the first ligand molecule would alter
the affinity of the protein for the following ligand molecules.

This type of cooperative binding can be elucidated in the simplest case of a
protein possessing two identical ligand binding sites. Assuming that the first ligand
molecule, X can bind either site of P with a dissociation constant K1 to give the
complex PX and the second molecule with a dissociation constant K2 to give the
complex PX2:
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Fig. 3.10 InsP3 receptor opening probability dependent on cytoplasmic Ca2C after Parthimos
et al. (2007) as described in Eq. 3.7. K2 and K3 indicate the concentrations of half maximal
activation and inhibition, respectively, of the InsP3 receptor. For both activation and inhibition
a Hill factor of 4 was assumed

P C 2X
K1�)������*� PX C X

K2�)������*� PX2

As the first ligand can choose from two binding sites, a factor 2 has to be included
in the expression for [PX]. For the concentrations of the complexes the following
relations follow:

ŒPX� D 2
ŒP�ŒX�

K1

and ŒPX2� D ŒP�ŒX�2

K1K2

or for the fractional saturation NY :

NY D ŒPX� C 2ŒPX2�

2 .ŒP� C ŒPX� C ŒPX2�/
D

ŒX�

K1
C ŒX�2

K1K2

1 C 2
ŒX�

K1
C ŒX�2

K1K2

The two binding affinities, K1 and K2 determine the form of cooperativity
exhibited by the binding process. If the binding of the ligand to both sites is
completely independent, that is K1 D K2, the protein exhibits hyperbolic binding.
On the other hand, if binding of the first ligand leads to an increased affinity, ie.
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Fig. 3.11 Fractional occupancy NY of a protein with two ligand binding sites dependent on the
ligand concentration ŒX�. The solid line shows the behaviour for independent binding sites (K1 D
K2), the dotted for positive (K1 < K2) and the dashed for negative (K1 > K2) cooperativity
between binding sites. Hill type binding with a Hill coefficient of 2 is shown as a boundary case
(dot-dashed line)

decreased dissociation constant for the second site, K1 > K2, the protein exhibits
positive cooperativity. In case of negative cooperativity, the binding of the first
ligand decreases the affinity of the second site, K1 < K2, and the sensitivity of the
protein to the ligand concentration decreases faster than with hyperbolic binding.
Figure 3.11 shows different forms of cooperativity for this binding process.

In the case of K1 � K2, the concentration of the intermediary can be neglected
and it can be assumed that the binding occurs in a single step, with both ligands
binding at the same time. In this case, the above equation reduces to a Hill equation
with an appropriate phenomenological dissociation constant KH .

The Adair-Klotz framework gives a sequence of binding constants, exactly as
many as there are binding sites on protein P for ligand X. It is worth noting that
these constants do not relate to individual binding sites. They describe how many
binding sites are occupied, rather than which ones. In that sense, the reported
dissociation constants are phenomenological. At the same time, they are easily
observable by fitting an Adair-Klotz equation to data on protein saturation as a
function of ligand concentration. They are therefore widely used by experimentalists
to describe measurements of ligand binding in terms of sequential apparent binding
constants.
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Note that the Adair-Klotz equation cannot be used to describe conformational
change, nor is there an easy way to deduce a conformational state from a fractional
occupancy. For some applications, this might not be a problem, because conforma-
tional information might not be needed, or it might be a good enough approximation
to add a simple assignment such as, for instance, equating full ligand saturation with
the active state. It needs to be borne in mind, though, that this approximation does
not always hold and that some signalling proteins with subtle regulation patterns
need to be described using models that account for their conformational state as
well as their ligand saturation.

3.3.4 Allosteric Models

By the middle of the twentieth century, there was an increased interest in models that
would not only describe binding curves phenomenologically,but offer an underlying
biochemical mechanism. Koshland (1958) and Koshland et al. (1966) offered a
tentative biochemical explanation of the mechanism described by Adair (1925) and
Klotz (1946) for proteins made of identical subunits with one ligand binding site
per subunit. The Koshland, Nemethy and Filmer (KNF) model assumes that each
subunit can exist in one of two conformations: active or inactive. Ligand binding
to one subunit would induce an immediate conformational change of that subunit
from the inactive to the active conformation, a mechanism described as induced fit.
Cooperativity, according to the KNF model, would arise from interactions between
the subunits, the strength of which varies depending on the relative conformations
of the subunits involved. This sequential model directly links saturation to the
conformational state of a subunit. Importantly, it posits that not all subunits of a
protein need to be in the same conformational state at the same time.

3.3.4.1 The MWC Model

In contrast, The Monod-Wyman-Changeux (MWC) model of concerted allosteric
transitions (Monod et al. 1965) assumes that all subunits in the enzyme undergo
conformational change together, a concept known as concerted transition. The
probability of transition between two conformational states of the proteins, termed
the tense (T) and the relaxed (R) state, depends on the binding of ligands that have
different affinities for each of these two states. A schema of an MWC-type protein
is shown in Fig. 3.12.

In the absence of a ligand, for instance, the T state prevails, but as more ligand
molecules bind, the R state (which has higher affinity for the ligand) becomes more
and more populated. Remembering the discussion in Sect. 3.1.3.2, we can describe
the situation in terms of free energy: In the absence of ligand, the T state has a lower
free energy than the R state and is therefore the preferred state. As more and more
ligand binds, however, the R state becomes the energetically favoured conformation
(see Fig. 3.13).
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Fig. 3.12 Schematic view of
an MWC protein with four
subunits. The T state is shown
as a square, the R state as a
circle. In this case, the R state
has a higher affinity for the
ligand L; ligand binding thus
stabilises the R state over the
T state

A few new parameters have to be introduced in order to conveniently describe an
MWC protein. The allosteric isomerisation constant L describes the equilibrium
between both states when no ligand molecule is bound: L D ŒT0�

ŒR0�
. If L is very

large, most of the protein exists in the tense state in the absence of ligand. If L
is small (close to one), the R state is nearly as populated as the T state. While
the Adair-Klotz framework traditionally operates with association constants, the
MWC framework has traditionally been described using dissociation constants. The
ratio of dissociation constants for the R and T states is described by the constant

c: c D KR
d

KT
d

. If c D 1, both R and T states have the same ligand affinity and the

ligand does not affect isomerisation. The value of c also indicates how much the
equilibrium between T and R states changes upon ligand binding: the smaller c,
the more the equilibrium shifts towards the R state. According to the MWC model
(Monod et al. 1965), fractional occupancy is described as follows:

NY D
ŒX�

KR
d

�
1 C ŒX�

KR
d

�n�1 C Lc
ŒX�

KR
d

�
1 C c

ŒX�

KR
d

�n�1

�
1 C ŒX�

KR
d

�n C L
�
1 C c

ŒX�

KR
d

�n (3.8)

with KR
d , L and c as described in the paragraph above.
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Fig. 3.13 Free energy diagram for an allosteric protein with four binding sites. Energy levels (in
J=mol) were computed as in (Edelstein et al. 1996) using an allosteric model of calmodulin (Stefan
et al. 2008). Each level of energy represents all the forms carrying the same number of ligand ions.
Free energy differences between the T state and the corresponding R state relate to the allosteric
isomerisation constant. Between corresponding T and R states, a hypothetical transition state is
depicted based on estimates of rate constants. T state is shown on the left, R state on the right and
the transition state in the middle

The degree of conformational change is described by the state function NR, which
denotes the fraction of protein present in the R state. As the energy diagram
illustrates, NR increases as more ligand molecules bind. The expression for NR
according to the MWC model (Monod et al. 1965) is:

NR D
�
1 C ŒX�

KR
d

�n

�
1 C ŒX�

KR
d

�n C L
�
1 C c

ŒX�

KR
d

�n (3.9)

Thus, the MWC model can express both ligand binding and conformational
change as a function of ligand concentration, and the relationship between the
two is well defined because both expressions rely on the same set of microscopic
parameters. It is important to note that the curves for NY and NR do not overlap
(Rubin and Changeux 1966), i. e. fractional saturation is not a direct indicator of
conformational state (and hence, of activity). This is illustrated in Fig. 3.14.
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Fig. 3.14 NY and NR for an allosteric protein. Fractional occupancy ( NY) is shown as a solid line;
fractional conformational change ( NR) as a dashed line. Curves were obtained using a model of
calmodulin (Stefan et al. 2008) with a calmodulin concentration of 2 � 10�7 m

Within the MWC model, the function of an allosteric protein can be modulated
by an allosteric effector: An effector that binds preferentially to the R state and
hence stabilises it is called an allosteric activator, while an effector that prefers the
T state is called an allosteric inhibitor (Monod et al. 1965).

Generalisation and extensions of the MWC framework have been presented
to account for various additional scenarios. Other generalisations of the MWC
framework have been presented to account for allosteric proteins with multiple
states (Edelstein et al. 1996), for proteins that bind to different types of ligand (Mello
and Tu 2005), proteins that bind to several ligands and multiple allosteric activators
or inhibitors (Najdi et al. 2006) and proteins with non-identical binding sites for the
same ligand (Stefan et al. 2009).

The conformational spread model by Duke et al. (2001) is a general allosteric
model that encompasses both the KNF model and the MWC model as special cases.

3.3.5 Which Framework to Use

In theory, the same system can be described using either of the frameworks
presented above (and a nice example for data interpreted both using the Adair-
Klotz framework and the MWC framework is given in Yonetani et al. 2002), and
simpler models arise as special cases from the more complicated ones. However,



3 Using Chemical Kinetics to Model Neuronal Signalling Pathways 115

for the purposes of computational modelling, it is important to bear in mind that the
different frameworks describing cooperativity have different scopes, drawbacks and
advantages.

The Hill function is quick and easy to implement, features few unknown
parameters that can readily be derived by fitting to experimental data, and can be
used to describe either ligand binding or activation. On the other hand, it is a purely
phenomenological description that will not offer a better mechanistic understanding
of the protein-ligand system in question and does not allow for subtle effects such
as a change of cooperativity as a function of saturation.

The Adair-Klotz framework is used widely in experimental work on ligand
binding to protein. Therefore, dissociation constants found in the literature can often
be plugged directly into an Adair-Klotz equation without the need for parameter
conversion or estimation. The Adair-Klotz framework is wider in scope than the Hill
equation and has more mechanistic relevance in that the association constants are
related to real binding events. However, the Adair-Klotz framework itself is strictly
limited to ligand binding and disregards conformational change.

The MWC framework accounts for both ligand binding and conformational
change and therefore allows for the modelling of rather subtle effects, especially
when the two do not coincide. It offers the greatest level of mechanistic detail and is
therefore very powerful. However, allosteric parameters such as L and c are rarely
found in the experimental literature and are harder to measure than the apparent
Adair constants, so the demands on data analysis and parameter estimation are
higher.

Note that while all frameworks provide an assigment rule that allows for ligand
saturation at equilibrium to be computed from concentration of free ligand, only the
Adair-Klotz framework and the MWC framework allow for a separate formulation
of forward and reverse reactions, and hence for a representation of kinetic effects.

Also note that the expressions for NY in all three frameworks and for NR in the
MWC model only hold if the concentration of free ligand equals that of total ligand,
i. e. if ligand supply is unlimited. In biological systems, this is not always the case,
which means that the real dose-response curve can differ from the theoretical one. A
discussion of this phenomenon, called ligand depletion, is given in Edelstein et al.
(2010). An explicit simulation, in which ligand supply is not unlimited and ligand
is consumed as the reactions proceed, offers a more realistic approach, although it
might be more tedious to implement.

Whatever model is used will depend on a number of factors, including data
availability, computational cost, scale of the model, and the biological question
under investigation.

3.4 Further Reading

Biophysical chemistry, James P. Allen. This is a complete and concise presentation
of the physical and chemical basis of life (Allen 2008).
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Computational Cell Biology, Christopher P. Fall, Eric S. Marland, John M. Wagner,
John J. Tyson. Also known as “the yellow book”, this is an excellent introduction
to modelling cellular processes. It contains chapters dedicated to ion channels,
transporters, biochemical oscillations, molecular motors and more (Fall et al.
2002).

Enzyme kinetics, Irwin H. Segel and Fundamentals of Enzyme Kinetics, Athel
Cornish-Bowden. Also known as “the black book” and the “the red book”, these
are the two reference books if one wants to know how to model an enzymatic
reaction, regardless of its complexity.

Solving Ordinary Differential Equations I and II, Ernst Hairer, Syvert P. Norsett,
Gerhard Wanner. Extensive coverage of the domain of ordinary differential
equations, from Newton and Leibniz to the most advanced techniques using
implicit solvers.
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