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INTRODUCTION

Modern and sedentary lifestyles result in the increased prev-
alence of systemic diseases, such as diabetes and obesity. 
According to the latest International Diabetes Federation 
report, ~8.3% of the global population has diabetes, with this 
figure expected to rise to 9.9% by 2030 (S1). In addition, the 
International Diabetes Federation has also estimated that 
several million people have the condition but are unaware 
of it. Diabetes, and the complications associated with it, has 
imposed significant economic consequences and social bur-
dens on individuals, families, health systems, and countries 
(S2). Numerous studies are being carried out toward improv-
ing the quality of life for patients struck by this systemic 
disease.

Diabetes is a condition that occurs when the normal insu-
lin–glucose–glucagon regulatory mechanism is affected. 
Plasma glucose levels are normally maintained within a 
narrow range through the combined antagonistic action 
of the two pancreatic hormones, insulin and glucagon. In 
normal individuals, high blood glucose levels induce the 
release of insulin, which enables its target cells to take up 
glucose. In low-glucose conditions, glucagon induces the 
breakdown of glycogen into glucose (Figure 1a). In diabetic 
individuals, this synchronized mechanism is  disrupted, 
which results in persistent hyperglycemia (Figure 1b) (see 
 Supplementary Data online). The major concern asso-
ciated with diabetes is its multietiological and systemic 
nature. Long-term persistence of diabetes can result in 
multiple micro- and macrovascular damages, leading to 
several systemic  complications (S3).

Mathematical models play an increasingly important role 
in understanding the dynamic behavior and the mechanism 
underlying diverse and complex biological systems. Numer-
ous mathematical models, statistical methods, and computer 
algorithms are being developed, which focus on different 
aspects of diabetes, ranging from molecular and cellular 
biology through clinical science to health service research. 
The increase in the types of modeling approaches and the 

number of models generated over the past five decades are 
shown in Figure 2.

Despite the availability of numerous models that attempt 
to address the complexity of this disease, an imbalance 
still exists between the current knowledge obtained from 
experimental approaches and their mathematical represen-
tation. To overcome this, it is important to revisit the prog-
ress made so far toward diabetes modeling. In this review, 
we discuss the models that have been developed over the 
past five decades. Mathematical models of diabetes are 
grouped based on the purpose for which they are devel-
oped and the biological process they address. This clas-
sification is then used to generate a comprehensive model 
relationship map (Figure 3) for each category. Considering 
the importance of sharing and reuse of models in the field 
of diabetes research, we encoded several of these models 
using a standard model description language SBML (sys-
tems biology mark-up language) (S4). In addition, some of 
these models were also curated and annotated with terms 
from controlled vocabularies and cross-referenced to 
external data resources (S5). These models (highlighted in 
green in Figure 3) can be accessed from BioModels Data-
base,1 an online resource for storing and sharing quanti-
tative models of biological processes. Finally, we identify 
and discuss research challenges (Figure 4) in the field of 
diabetes modeling. This review aims to serve as an infor-
mation resource and concludes by addressing directions 
that need to be better understood.

MATHEMATICAL MODELS OF DIABETES

Mathematical models of diabetes available in the litera-
ture can broadly be classified into clinical and nonclini-
cal categories, based on complexity, depth of biological 
description, and the data (individual or population scale) 
used in the model. Clinical models are structurally simple 
and emulate clinical data by considering only essential 
biological description. Due to their nature, clinical models 
form an ideal candidate for evaluating diagnostic tests, 
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developing glucose controllers, understanding disease 
progression, and predicting risks for complications. Non-
clinical/knowledge-based models are more complex in 
nature and account for the mechanistic description of the 
biological systems, eventually aimed at being used for clini-
cal purposes.

Within clinical and nonclinical categories, models can be 
subclassified further based on the biological processes and 
purpose for which they are proposed. Figure 3 provides a 
complete picture of models and their relationship to each 
other (see figure legend for details), for each subclassifica-
tion. Classification of models describing systemic diseases 

cannot be definitive due to their complex nature, and hence, 
some models fit into multiple classes. Moreover, as certain 
subclasses include a plethora of models, only representative 
models are presented here.

CLINICAL MODELS

A wide range of clinical diabetes models focusing on pre-
dicting and understanding different stages of the disease, 
such as diagnostics, control, progression, and complication 
are being developed. These models are discussed in this 
section.

Figure 1 General overview of the glucose homeostasis mechanism under normal and diabetic condition. Plasma glucose level 
is maintained within a narrow range through the combined antagonistic action of two pancreatic hormones: insulin and glucagon. (a) In 
normal individuals, high plasma glucose level induces the release of insulin from pancreatic β-cells, which enables the muscle and other 
cells to take up glucose for energy or to store it as glycogen in liver. On the other hand, at low plasma glucose level, glucagon secreted from 
α-cells counterregulates the glucose level by inducing the breakdown of glycogen into glucose. (b) In diabetic individuals, the synchronized 
mechanism between insulin and glucagon secretion is disrupted. Insufficient or lack of insulin production by β-cells, or insulin sensitivity in 
muscle and other cells, leads to persistent high plasma glucose level (hyperglycemia). This condition is often accompanied by absolute or 
relative excess level of glucagon, which causes a higher rate of hepatic glucose production than utilization, favoring hyperglycemia (S123–
S125). Another defect that is seen in diabetic patients is the impaired secretory response of α-cells to release glucagon when the plasma 
glucose level drops, leading to the risk of episodes of severe hypoglycemia (S126). This often occurs due to exposure to excess insulin during 
treatment or to extreme physical activities carried out as part of self-management, accompanied with compromised glucose counterregulation 
(see Supplementary Data online, for details).
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Models for diagnostic tests
To evaluate the diabetic and prediabetic condition in an indi-
vidual, different glucose tolerance tests, such as intravenous 
glucose tolerance test (IVGTT), oral glucose tolerance test 
(OGTT), and meal glucose tolerance test have been devised. 
The aim of these tests is to obtain an estimate of insulin sen-
sitivity (SI), glucose effectiveness (SG), insulin secretion, and 
β-cell function.

Insulin sensitivity (SI) and glucose effectiveness (SG). Ear-
lier models for insulin–glucose systems are mainly focused 
at evaluating different diagnostics tests. Following the pio-
neering model of Bolie,2 a series of mathematical models 
illustrating insulin–glucose dynamics were developed (S6–
S9). However, a major breakthrough in diabetes modeling 
occurred with the development of the physiological model3 
for glucose disappearance following IVGTT. Being parsimoni-
ous and simple, this model is generally known as the “mini-
mal model.” This classical model was developed as two parts, 
namely, the glucose minimal model4 and the insulin minimal 
model (S10), which account for glucose uptake and insulin 
release, respectively. The comparison between the assess-
ment of SI using the glucose clamp technique (S11) and 
minimal models is discussed by Bergman et al.5 The struc-
tural simplicity and ability to evaluate significant physiological 
parameters has led to more than 1,000 publications related 
to minimal model.6

Despite their extensive usage, there are several limitations 
in the use of minimal models including overestimation of SG 
and underestimation of SI (S12, S13). To overcome these lim-
itations, an additional compartment for glucose kinetics was 
incorporated into the model along with labeled IVGTT (S14–
S18) experiments. Although these bicompartment models 
allow precise estimation of SI and SG, the additional cost and 
technology involved in using labeled IVGTT make it impracti-
cal to be applied to the general population. To overcome this, 
Bayesian approaches were employed in the bicompartmen-
tal model (S19). This approach improved the accuracy of the 

estimated SI and SG. Further addressing the limitations of 
Bergman minimal model,4 De Gaetano and Arino7 formulated 
a novel semi-mechanistic dynamic model by employing delay 
differential equations. The resulting model estimates glucose 
and insulin concentration simultaneously, by considering the 
feedback relationship between them. Later, Li et al. (S20) 
proposed a generalized version of ref. 7.

On the basis of the model by De Gaetano and Arino,7 
 Silber et al.8 proposed an integrated insulin–glucose model 
to describe IVGTT data from healthy as well as diabetic indi-
viduals, using a bidirectional insulin–glucose feedback mecha-
nism. As OGTT closely resembles the physiological condition, 
this model was extended further by incorporating the descrip-
tion for glucose absorption and incretin effects following a meal 
(S21). Further extensions were made to (S21), by including 
data from healthy individuals (S22). Subsequently,  Jauslin 
et al. (S23) developed a model describing the whole-day 
 insulin–glucose profiles following multiple meal tests.

Unlike IVGTT, OGTT accounts for slow glycemic changes 
that correspond to the rate of glucose appearance in systemic 
circulation. To gain a more realistic view of glucose dynamics, 
mixed meal and oral glucose minimal models were extended 
upon IVGTT minimal models by parametrically defining the 
rate of glucose appearance in the plasma (S24–S26). The 
oral glucose test and meal test are increasingly being used 
for their experimental simplicity and for generating the explicit 
measure of S

I under physiological conditions (S26–S28). 
Subsequently, a minimal model for labeled MOGTT was pro-
posed (S29).

To incorporate different physiological processes associ-
ated with insulin–glucose dynamics, different variations and 
extensions of the classical minimal model have been devel-
oped.9,10 Besides these, there are several physiology-based 
paradigm models available for diagnosis, such as HOMA,11 
CIGMA (S30), MATSUDA (S31), and QUICKI (S32).

Insulin secretion and β-cell function. Since the liver degrades 
more than a half of the secreted insulin before it is utilized by 
other body tissues, accurate estimation of prehepatic insu-
lin secretion, hepatic insulin extraction, and clearance are 
essential for evaluating insulin secretion and β-cell function 
under normal and diseased conditions. Plasma C-peptide, a 
part of preproinsulin peptide and therefore secreted in equi-
molar amounts as insulin by β-cell, acts as an indicator for 
insulin secretion. However, peripheral C-peptide has a longer 
half-life and can limit the accurate estimation of insulin secre-
tion. To address this problem, several mathematical models 
and model-based methods are proposed and reviewed.12 
The most commonly used methods/models for estimating the 
rate of insulin secretion include the deconvolution method13 
(S33) and combined models assuming single-(S34) and dou-
ble-(S35) compartmental disappearance kinetics of both the 
peptides. In addition, to quantify β-cell activity under different 
pathological conditions, Thomseth et al. (S36) developed a 
model to determine the peripheral concentrations of insulin, 
C-peptide, and islet amyloid polypeptide during OGTT.

Later, Hovorka et al. (S37) formulated a computational 
method, namely, Insulin SECretion, by implementing a 
constrained regularization method of deconvolution. Fur-
thermore, the Van Cauter algorithm was applied in Insulin 

Figure 2 Modeling approaches vs. the number of models 
in relation to diabetes and associated complications, over 
the past five decades. There has been a significant increase in 
the number of models, as well as in the diversity of the modeling 
approaches applied toward addressing diabetes. ANNs, artificial 
neural networks; DDEs, delay differential equations; IDEs, integro-
differential equations; ODEs, ordinary differential equations; PDEs, 
partial differential equations; SDEs, stochastic differential equations.
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SECretion to estimate C-peptide kinetic parameters (S38). 
Besides these, some minimal models that include C-peptide 
kinetics were also proposed for determining insulin secretion 
(S25, S39–S41) and hepatic insulin extraction (S42–S43). 

Investigating the relationship between the OGTT-based mini-
mal model and the subcellular events for insulin secretion, 
Pedersen et al.14 proposed a model that links the insulin 
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secretion model (S44) with the OGTT-based β-cell function 
models (S25, S45, S46).

The potentiation of insulin secretion, resulting from repeated 
glucose stimuli, is an important physiological aspect incor-
porated in early modeling studies. However, simplification of 
models resulted in the loss of this aspect. Recognizing its sig-
nificance, Mari et al. (S47) proposed a glucose control model 
to quantify β-cell function using mixed meal test. This model 
provided a good approximation to the experimental data.

Models for control
The regulation of blood glucose concentration within safer lim-
its in diabetic patients is achieved by effective dietary planning, 
physical exercise, and insulin administration. Mathematical 
models describing insulin administration and absorption kinet-
ics, subcutaneous glucose absorption and gut glucose dynam-
ics, and the effect of diet and exercise on controlling the blood 
glucose concentration are discussed in this section. Such 
simulation or virtual-patient models, representing input–output 
relationship between external inputs, such as insulin delivery, 
meal, or exercise and corresponding glucose response, forms 
an essential part of computational simulators.15

Insulin administration and absorption kinetics. Injecting 
appropriate doses of insulin based on blood glucose concen-
tration is important; failure to do so may lead to hypoglycemia 
(due to overdosage) and hyperglycemia (due to underdos-
age). Wang et al. (S48, S49) developed insulin therapy 
models for both type 1 diabetes mellitus (T1DM) and type 
2 diabetes mellitus (T2DM) and demonstrated that exoge-
nous insulin infusion can effectively mimic pancreatic insulin 
secretion. Huang et al.16 extended the model of Li et al. (S50) 
(discussed in the section on Models for β-cell insulin release) 
that illustrates physiological oscillatory insulin secretion stim-
ulated by elevated glucose, to include the effect of impulsive 
insulin injection administered either periodically or by moni-
toring the plasma glucose concentration level.

The most common control for diabetes is by subcutaneous 
injection of insulin or insulin analogues through insulin pumps. 
Several models (S51–S55) were proposed to estimate the 
plasma insulin concentration, following such administrations.

The heterogeneity associated with subcutaneous insu-
lin absorption kinetics is a major concern when administer-
ing insulin exogenously. To address this issue, Mosekilde 
et al. (S56) proposed a model elucidating the relationship 
between different insulin oligomers and their absorption kinet-
ics, and this model was simplified by Trajanoski et al. (S57). 

Subsequently, several quantitative models for subcutaneous 
insulin absorption (S58, S59) were developed. Along similar 
lines, Berger and Rodboard (S60) developed a computer pro-
gram simulating insulin–glucose dynamics after subcutaneous 
insulin injection. Models of insulin administration and absorp-
tion kinetics are plentiful and are extensively reviewed.17,18

Subcutaneous glucose absorption and gut glucose 
 dynamics. Understanding subcutaneous glucose  dynamics 
is important for continuous in vivo glucose monitoring. To 
quantify the physiological processes associated with the 
interstitial and plasma glucose dynamics, Freeland and 
Bonnecaze (S61) and Wilinska et al. (S62) have postulated 
models accounting for subcutaneous glucose kinetics. 
Apart from this, another process that significantly affects 
the whole-body glucose dynamics is the glucose absorp-
tion from the gut. Considering this, Worthington (S63) and 
Arleth et al. (S64) developed models that illustrate the rate 
of glucose absorption from the gut and its appearance in 
the systemic circulation.

Apart from the models discussed in this section, another 
broader category of models that links the input data to the out-
put results with empirical formula has evolved in the past two 
decades. Such models predict the prospective plasma glucose 
level in patients and are efficiently used in automated glucose 
controllers. Various algorithms, stochastic (S65–S67) and 
artificial neural network approaches, have been implemented 
towards devising such models and are discussed in a review 
by Balakrishnan et al.19 Furthermore, a wider range of phar-
macokinetic/pharmacodynamic models to study the effects of 
antidiabetic drugs on insulin–glucose homeostasis are avail-
able and are reviewed by Landersdorfer and Jusko.9

Meal, exercise, and free fatty acid effect on insulin–glucose 
dynamics. Hovorka et al.20 developed a nonlinear predictive 
controller model to maintain normal glucose level during fast-
ing conditions in T1DM patients, by using their previous model 
for glucose kinetics (S18) along with a Bayesian parameter 
estimation technique. On the basis of the minimal models by 
Bergman et al.3 and Cobelli et al. (S68), Fabietti et al. (S69) 
proposed a model for insulin–glucose dynamics in T1DM that 
can efficiently be used to design glucose feedback control 
algorithms for an artificial pancreas and was later validated 
using clinical data (S70).

By extending their previous model (S71), Dalla Man 
et al.21 suggested a model for whole-body insulin–glucose 
dynamics with a view to capture different physiological 
events following a meal. Later, the model was implemented 

Figure 3 Model relationship map. Models that describe diverse aspects of glucose homeostasis and diabetes are broadly classified into clinical 
(I) and nonclinical (II) models based on the data used, the level of complexity, and the biological description. Within each of these categories, 
these models are further subclassified based on the purpose for which they are developed and the physiological scale utilized in the models. 
The subclassification of models are as follows: I-a, diagnosis; I-b, control; I-c, progression; I-d, complications; II-a, whole-body insulin–glucose 
dynamics; II-b, hepatic glucose dynamics; II-c, brain glucose dynamics; II-d, beta-cell insulin release; II-e, glucagon dynamics; II-f, macrophage 
action; II-g, beta-cell electrophysiology; II-h, insulin receptor dynamics; II-i, insulin signaling; II-j, multiscale/level hierarchical models. A landscape 
of how the different models are related and evolve from each other is shown. The models are named with the first author’s surname followed 
by the year of publication and the reference number. The models that are highlighted in green are available in BioModels Database. The arrow 
(→) is used to link models that are derived/adopted from one or more parent models. In other words, these models share common structures 
or equations. The line (—) is used to link models representing similar biological phenomenon but that are not derived from any other models. 
Models that are listed without any connections belong to the corresponding subclass, but do not share significant common components. The 
models that are repeated (models that fit in more than one subclass) more than once are displayed in red fonts. Models that are boxed red belong 
to a different category but are displayed as they serve as base models in the existing category. Reference numbers with prefix S can be found 
in Supplementary Data online. The figure illustrates the importance of sharing and reuse of mathematical models, to leverage on past work.
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in the development of a simulation tool, namely, Glucose 
Insulin Model (S72). In 2009, a Glucose Insulin Model sim-
ulator developed for performing in silico preclinical trials in 
T1DM subjects, named as “UVa simulator” was accepted by 

the US Food and Drug Administration for studying insulin 
treatments on animals (S73). Similar to this, Wilinska et al. 
(S74) presented a model for evaluating insulin  delivery in 
T1DM patients.
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Following Liu and Tang (S75) (described in the section on 
Models for insulin signaling), György et al. (S76) proposed 
a Quasi model (a T1DM linear model) to develop an optimal 
design controller framework for investigating T1DM. With mini-
mal physiological states taken into account, the model was able 
to grasp the characteristic behavior and efficiently regulate the 
unbalanced glucose–glucagon–insulin system. The model was 
validated by generating the state of glucose absorption adopted 
from Dalla Man et al. (S72) and tested on models developed by 
Liu and Tang (S75) and Parker et al. (S77).

Physical exercise causes a transient increase in SI and 
glucose uptake by muscles (S78). On the basis of the model 
by Sorensen22 (discussed in the section on Models for whole-
body insulin-glucose dynamics), Parker et al. (S79) postulated 
a predicative glucose control algorithm by incorporating the 
influence of meal and exercise, while Hernández-Ordoñez and 
Campos-Delgado (S80) proposed a model to reproduce varia-
tions in the blood glucose concentration induced by exercise in 
diabetic patients. Similarly, Derouich and Boutayeb (S81) and 
Breton (S82) extended the minimal model of Bergman et al.4 
with the closed loop control systems to predict the dynamic 
changes in glucose level during exercise. Furthermore, Roy 
and Parker (S83, S84) incorporated the effect of plasma free 
fatty acid dynamics and exercise on insulin–glucose dynam-
ics, respectively, into the minimal model proposed by Bergman 
et al. in 1981.3 In addition to this, they proposed a composite 
model incorporating both effects (S85). Moreover, Kim et al. 
(S86) and Li et al. (S87) built a multiscale physiological model 
for exercise effect (discussed in the section on Multiscale/level 
hierarchical models).

Besides these models, some commercial models, namely, 
“Archimedes” (S88) and “T1DM PhysioLab” platform (S89) 
have been developed. These complex simulation models are 
aimed at predicting the long-term effects of treatments for con-
trolling the disease while evaluating the health-care strategies.

Models for progression
Most models discussed so far assume a constant state of the 
disease, which is nonrealistic in cases of chronic progressive 
diseases like diabetes. Moreover, efforts toward the devel-
opment of new antidiabetic agents are focused at the drugs 
that can alter diabetes progression. Therefore, it is impor-
tant to include disease progression in the model in order to 
study the long-term effect of antidiabetic agent at different 
stages of progression. Disease progression models specific 
for diabetes incorporating long-term population studies with 
antidiabetic agents have been developed (S90–S92) and are 
reviewed in ref. 9.

Deficits in β-cell mass have been characterized in both 
T1DM and T2DM. It is observed that chronic hyperglycemia 
can lead to the growth of the β-cell mass, whereas extreme 

hyperglycemia can lead to the reduction of the β-cell mass. 
Evaluating β-cell response and the processes involved 
in the reduction of β-cell mass under certain physiologi-
cal  conditions, Topp et al.23 developed a model by consid-
ering β-cell mass as a dynamic variable along with insulin 
and  glucose concentration. Extending this model, Ribbing 
et al. (S93) proposed a semi-mechanistic pharmacokinetic/
pharmacodynamic model, illustrating the dynamics of fast-
ing plasma glucose, fasting insulin, SI, and β-cell mass along 
with the effect of antidiabetic treatments in the heteroge-
neous population.

De Gaetano et al.24 formulated a long-term diabetes pro-
gression model that recapitulates the pathophysiological 
processes involved in T2DM. This model describes the simul-
taneous evolution of β-cell mass, pancreatic β-cell replica-
tion reserve, prevailing glycemia and prevailing insulinemia 
on the basis of parameters representing insulin-dependent 
tissue glucose uptake, hepatic net glucose output, β-cell 
insulin secreting ability, and insulin elimination from plasma. 
Recently, Hardy et al. (S94) evaluated the performance of 
this model using the results obtained from the Diabetes Pre-
vention Program Study.

Recently, Nie et al. (S95) developed a population-based 
mechanistic model for muscle pyruvate dehydrogenase 
kinase-4 mRNA changing over time, while quantifying the 
progression of the disease, and the effect of diet and plasma 
factors on pyruvate dehydrogenase kinase-4 mRNA. As 
application of epidemiological models for noncommuni-
cable diseases is rare, only few age-structured models 
(S96, S97) and population models (S98, S99) have been 
developed.

Models for complications
Individuals with T1DM or T2DM have an increased risk of 
developing micro/macrovascular complications, the underly-
ing cause of retinopathy and nephropathy, which contributes 
to the etiology of neuropathy and to the amputation of ulcer-
ated limbs. It can also lead to myocardial infarction and stroke. 
Mathematical models for predicting and understanding differ-
ent diabetes complications, such as wound healing,25,26 obe-
sity,27,28 retinopathy (S100), foot ulcer (S101), nephropathy 
(S102), and coronary heart disease (S103, S104), have been 
developed. Models for diabetes wound healing, foot ulcer, 
and obesity (described in the sections on Models for macro-
phage action and Models for whole-body insulin- glucose 
dynamics) are physiology-based models, whereas diabetic 
retinopathy, nephropathy, and coronary heart disease are 
risk-predictive population-based models. Unfortunately, due 
to range of ambiguities and complexity associated with dia-
betes complications, at present, mathematical models in this 
arena are rare.

Figure 4 Diagrammatic representation of the pathways involved in the maintenance of glucose homeostasis (a–f) and hyperglycemia-
induced tissue damage pathway (g) at different biological scales (i.e., molecular, cellular, and physiological level). (a) Whole-body 
glucose homeostasis, (b) glucose absorption from gut, (c) glucose-stimulated insulin secretion by pancreatic β-cells, (d) glucose-mediated 
glucagon secretion and regulation, (e) insulin-dependent uptake of glucose in adipocytes and myocytes, (f) utilization and storage of glucose 
as lipid and glycogen in liver, and (g) hyperglycemia-induced tissue damage pathway, which is the cause of diverse diabetic complications. The 
figure illustrates a simplified representation of the pathways involved at molecular, cellular, and physiological levels. Connectors in red indicate 
prospective pathways for mathematical modeling while green indicates the previously modeled pathways. It should be noted that pathways 
denoted in green in each box do not necessarily represent a single model. Rather, they should be seen as a collection of models aimed at 
addressing these pathways. This figure highlights pathways that need to be targeted by future modeling studies. For detailed explanation of 
this figure, see Supplementary Data online.
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NON-CLINICAL MODELS

A wide range of mathematical models illustrating the mecha-
nisms underlying insulin–glucose dynamics at different phys-
iological scales, from whole-body through to organ, cellular 
and subcellular levels are discussed in this section.

Models for whole-body insulin–glucose dynamics
In 1980, Tiran et al. (S105) developed a combined circulatory 
and organ model of glucose and insulin dynamics by building 
upon their previous glucose29 and insulin (S106) models. The 
model isolates glucose uptake in the periphery, liver, brain, 
and gut and allows a direct comparison of glucose disposal 
along various routes. An extension to this model was devel-
oped to include separate compartmentalization of red blood 
cells with vascular space (S107). Guyton et al.30 followed the 
model of Tiran et al.29 and developed a compartmental model 
for insulin–glucose metabolism in normal individuals, which 
was further used by Cobelli et al. (S108) to derive an inte-
grated whole-body model for short-term glucose regulation. 
To further test the validation technique, this model was modi-
fied to incorporate the submodels for unit processes involved 
in glucose regulation (S109).

Sorensen22 developed a physiology-based model for glu-
cose metabolism by adopting features from various models 
(see Figure 3 for details), which serves as a reference and 
starting point for several other models. With the inclusion 
of incretin effect in the model by Sorensen,22 Alvehag and 
 Martin31 proposed a model and validated it with clinical data. 
By integrating the effect of insulin resistance on glucose regu-
lation under the influence of free fatty acid, Al-Hashmi et al.27 
extended the model to incorporate the conditions of obese 
individuals. To develop a clinical based insulin– glucose inter-
action model for T1DM individuals, Lehmann et al. (S110) 
replaced the pharmacodynamic element of the model by 
Berger and Rodbard (S60) with the Guyton et al.30 glucose 
model. Recently, Toghaw et al.28 developed a model describ-
ing the dynamics of the insulin–glucose–incretin system. 
The model reproduces both known and supposed effects of 
 bariatric surgery on insulin secretion.

Models for hepatic glucose dynamics
To investigate the role of hepatic glycogen regulation, Xu et al. 
(S111) suggested a physiological model describing whole-
body bioenergetics and glycogen circuitry involved in main-
taining blood glucose homeostasis. Recently, Koenig et al.32 
presented a novel kinetic model of human hepatic glucose 
metabolism. This model includes glucose metabolic path-
ways in human hepatocytes along with the hormonal control 
of these pathways by insulin, glucagon, and epinephrine. To 
address the mechanism underlying the cause of repetitive 
episodes of hypoglycemia in patients with strict insulin treat-
ment and the role of liver in this circumstance, Koenig and 
Holzhuetter33 used their previous model32 to simulate meta-
bolic alterations in T2DM.

Models for brain glucose homeostasis
It has been established that maintenance of stable glucose 
level in the brain is more important than that in the blood 
(S112). Assuming that this regulation of brain glucose 

homeostasis is the ultimate goal of the insulin–glucose– 
glucagon regulatory system, Gaohua and Kimura34 pre-
sented a brain-centered compartment model consisting of 
both peripheral insulin–glucose–glucagon interaction as well 
as brain–endocrine cross talk. The model describes the rela-
tionship between brain glucose homeostasis and hypergly-
cemia in diabetes, and accounts for the effects of stress and 
blood–brain barrier adaptation to dysglycemia.

Models for β-cell insulin release
Besides early minimal models, a few maximal models were 
developed for evaluating β-cell function and insulin secretion, 
for use as controllers to mimic the natural phenomenon. The 
pioneering models developed by Grodsky et al.35,36 illustrated 
the detailed cellular processes involved in pancreatic insulin 
response to glucose stimuli. These models assume that, at a 
certain threshold level of glucose, insulin-filled granules are 
stored in reserved and liable pools in β-cells. These granules 
sequentially secrete insulin, which correspond to the first and 
the second phase of insulin secretion. Although the model 
agreed well with the observed data, it was confined to simula-
tion due to its complexity.

In contrast to storage-limited models, Cerasi et al. (S113) 
adopted the formulation developed by Silvers et al. (S114) 
and introduced a signal-limited model, which resulted in a 
biphasic insulin secretion that occurred due to time-depen-
dent inhibitory and potentiating signals. O’Connor et al. 
(S115) developed another signal-limited model to describe 
pancreatic insulin release from perfused rat pancreas. Com-
bining the above storage-limited35 and signal-limited (S115) 
models, Landahl and Grodsky (S116) developed a model for 
insulin secretion. Further models were developed by extend-
ing the model of Grodsky36 with updated knowledge of insulin 
secretion and β-cell function (S44, S117–S119).

Experimental studies have revealed the biphasic, i.e., 
rapid (pulsatile) and slow (ultradian), oscillatory nature of the 
insulin secretion by the β-cells. To understand the effects of 
insulin on glucose utilization and production, and vice versa, 
Sturis et al.37 proposed a nonlinear ordinary differential equa-
tion model illustrating the ultradian oscillation of insulin secre-
tion. This model was further modified by Tolic et al.38 with the 
inclusion of insulin receptor dynamics, to provide a more real-
istic view of the system. To interpret the physiological delay 
in plasma insulin secretion, Bennett et al. (S120) introduced 
an explicit time delay for glucose dynamics in the model of 
Tolic et al.38 This was followed by models with single delay 
and double explicit time delays for ultradian insulin secretory 
oscillations proposed by Drozdov et al. (S121) and Li et al. 
(S50), respectively. By adopting the mechanism of insulin 
secretion formulated by Maki and Keizer (S122), Keener39 
proposed a diffusion model to analyze in vitro insulin secre-
tion by pancreatic β-cells cultured in a flow-through reactor.

Models for glucagon dynamics
When compared with the overwhelming findings about insulin 
and β-cells, the efforts on investigating glucagon and α-cell 
functions are relatively sparse, despite their importance in 
hyperglycemia (S123–S125) and hypoglycemia (S126). As a 
result, the modeling studies in this area are also limited. The 
first set of models, exploring the glucagon counterregulation 
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mechanism, were proposed by Farhy and McCall,40 (S127, 
S128) based on rodent studies. As all the components of 
these models were clinically measurable, these models 
identify the role of delayed feedback from α-cells in gluca-
gon counterregulation mechanism.41 Furthermore, the model 
was evaluated using clinical data, illustrating the relationship 
between basal glucagon level and different aspects of gluca-
gon counterregulation responses to insulin-induced hypogly-
cemia in T1DM conditions (S129).

Recently, Gonzalez-Velez et al. (S130) proposed a simple 
model of glucagon secretion from pancreatic α-cells by con-
sidering Ca2+ dynamics in response to changes in glucose 
levels. Quantitatively reproducing the rate of glucagon secre-
tion, the model highlighted the role of Ca2+ and glucose in 
regulating glucagon release.

Models for macrophage action
Focusing on the immunological manifestation of diabetes, 
one of the earliest hypotheses dealing with initiation of T1DM 
was proposed by Nerup et al. (S131) and is popularly known 
as the “Copenhagen model.” This model was mathematically 
formulated by Freiesleben De Blasio et al.42 as a set of ordi-
nary differential equations describing the interplay between 
macrophages, β-cell proteins, and T cells leading to the 
onset of T1DM. By extending this model and addressing its 
limitations, Marée et al.43 postulated the DuCa model, which 
accounts for the effects of macrophage crowding on β-cell 
destruction. Building upon the assumptions made in the 
Copenhagen model, Magombedze et al. (S132) proposed a 
model involving β-cells, autolytic and regulatory T cells. This 
model mainly focused on helper T-cell–mediated destruc-
tion of β-cells and regulatory T-cell–mediated suppression of 
T-cell trafficking, thereby performing qualitative analysis for 
diabetes in the islets.

Focusing on the inflammatory process associated with 
wound healing, Waugh et al.25 developed a mathematical 
model to address the complex process involved in diabetic 
wound healing based on the altered distribution of macro-
phage phenotypes in normal and diabetic individuals. The 
model was extended to examine the effect of possible treat-
ments on the wound-healing process in diabetics.26 Fur-
thermore, Mi et al. (S101) proposed an agent-based model, 
focusing on the inflammation and healing processes in dia-
betic foot ulcer.

Models for β-cell electrophysiology
The sequence of events that occurs in β-cells, following an 
elevation of plasma glucose levels, includes depolarization, 
which results from the closure of ATP-sensitive K+ chan-
nels, the opening of voltage-dependent Ca2+ channels, and 
an increased intracellular Ca2+ that triggers the exocytosis of 
insulin. Subsequent repolarization of the membrane is medi-
ated by voltage-dependent K+ and Ca2+ sensitive voltage-
dependent K+ channel activation. This distinctive periodic 
pattern of electrical activity, known as bursting electrical 
activity (S133), depends on the extracellular glucose con-
centration. Recognizing the importance of β-cell membrane 
potential on glucose homeostasis, several groups attempted 
to model the mechanisms behind this process.44–47

Bursting electrical activity. Following the pioneering investi-
gation by Dean et al. (S134), Atwater et al. (S135) postulated 
the first biophysical qualitative model for bursting electrical 
activity. To understand these interactions quantitatively, Chay 
and Keizer (S136) proposed the first mathematical model of 
bursting electrical activity by modifying the classical Hodg-
kin and Huxley (S137) model designed for the squid giant 
axon. Despite the limited availability of electrophysiological 
data, the model was able to simulate bursting electrical activ-
ity successfully.

The classical Chay and Keizer (S136) model is character-
ized by five components that include three ion channels and 
two Ca2+ concentration dynamics. This model was reduced 
by replacing the equations for voltage-dependent Ca2+ chan-
nels activation and inactivation with corresponding steady-
state values, along with minor changes in the parameter 
values to reproduce the essential results.48 In 1986, Chay 
(S138) modified their reduced model48 by removing the low-
conductance ATP-inhibited K+ channel and demonstrated 
that the bursting activity in β-cells results from the activation 
of the K+ channel along with voltage-dependent Ca2+ chan-
nels. Subsequently, Himmel et al. (S139) tested this hypoth-
esis and discovered that under low glucose concentrations, 
the current generated by the low-conductance ATP-inhibited 
K+ channel dominates; whereas during bursting, the current 
generated by the high-conductance K+ channel (s) domi-
nates the silent phase.

Due to limited availability of data, all the models discussed 
so far were based on the classical Hodgkin Huxley (S137) 
model for the squid giant axon. Overcoming this limitation, 
the data obtained from voltage clamp studies by Rorsman 
and Trube (S140), led to the development of more realistic 
models incorporating the properties of the voltage-gated 
K+ and Ca2+ channels. One such model, proposed by Chay 
(S141) used an inward voltage-activated Ca2+ current that 
was activated by intracellular Ca2+ ions and an outward K+ 
current that was activated by the membrane potential and 
described the burst activity of the pancreatic β-cell. Sherman 
et al.49 modified the channel kinetics of the model of Chay 
(S138) by incorporating voltage clamp data from Rorsman 
and Trube (S140), and extended it by including stochasticity 
in Ca2+-activated K+ channels to study the effects of channel 
sharing between cells, and to describe irregularities in the 
electrical activities of single cells and those in small clusters. 
Following this, Sherman and Rinzel (S142) suggested a mul-
ticell model with a finite gap junctional conductance. Later 
using the model of Sherman et al.,49 De Vries and Sherman50 
performed a stochastic simulation to understand the emer-
gent bursting phenomenon in β-cells, concluding that this 
phenomenon scaled up with cluster size, being more robust 
with larger numbers of cells.

Adopting the model of Sherman et al.,49 Keizer and  Magnus 
(S143) proposed a mixed model of bursting electrical activity in 
β-cells by considering both ATP-sensitive as well as Ca2+-acti-
vated K+ conductance. On the other hand, Magnus and Keizer51 
developed a minimal model to illustrate Ca2+ management by 
mitochondria in β-cells and later integrated it with the model of 
Keizer and Magnus (S143), describing the interaction of mito-
chondrial Ca2+ control and electrical activity in β-cells (S144, 
S145). The latter model was extended further and re-evaluated 
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by Fridlyand and Philipson52 (S146), using the experimental 
characterizations of the processes involved. This comprehen-
sive model for β-cell glucose sensitivity elucidates the role of 
cytoplasmic and mitochondrial processes involved in insulin 
secretion and reactive oxygen species generation mechanism 
in β-cells. This model can be envisioned to provide an elaborate 
overview of glucose-sensing mechanisms, which are central to 
the physiology and pathology of pancreatic β-cells.

In early 1990s, the reduced model of Chay and Keizer48 
was upgraded by replacing the slow process with the 
 voltage-dependent inactivation of the Ca2+ current (S147, 
S148). These models assume that the intracellular Ca2+ con-
centration varies rapidly and in synchrony with the rapidly 
oscillating membrane potential. Observing the incompatibility 
between the slow voltage-dependent inactivation hypothesis 
and the available data, Smolen and Keizer (S149) suggested 
a model and concluded that the slow process depends on ATP 
or ADP concentrations.

It has been suggested that depolarization of the plasma 
membrane by acetylcholine is mediated by a Ca2+ release–
activated current. Examining this hypothesis, Bertram et al.53 
developed a model of muscarinic effects, which successfully 
illustrated the biphasic electrical response of β-cell to the 
change in glucose levels and accounted for the effect of ace-
tylcholine on pancreatic β-cells. The model was marginally 
modified by Mears et al.54 to further validate the hypothesis. It 
was concluded that Ca2+ depletion in the endoplasmic reticu-
lum at a basal glucose level initiates Ca2+ release–activated 
nonselective currents, while stimulatory glucose results 
in endoplasmic reticulum filling deactivation of the current. 
This eventually leads to a biphasic electrical response as the 
result of altered glucose concentration.

In 1996, Chay (S150) introduced a second slow variable in 
his previous reduced model,48 to represent Ca2+ concentration 
in the endoplasmic reticulum. This dramatically influences the 
electrical activity, Ca2+ oscillations, and insulin secretion. In 
addition, the model demonstrates the role of acetylcholine in 
the neuronal control of insulin secretion. The model was later 
extended to study the role of extracellular Ca2+ on the electri-
cal activity in β-cells.55 Furthermore, Giugliano et al. (S151) 
developed a detailed model illustrating glucose-induced 
insulin secretion by including four dynamic subsystems rep-
resenting glucose transport, insulin secretion, cytosolic Ca2+ 
kinetics, and the excitable electrophysical behavior of β-cells. 
This model was insightful in studying the behavior of single 
β-cells as well as the population of coupled cells and suc-
cessfully described various dynamic phenomena.

Later, Bertram et al.56 generalized the concept of two slow 
variables with the proposal of the phantom burster model, 
showing that a strong electrical coupling between a fast 
burster and a slow burster produces synchronized medium 
bursting. This suggests that islets may be composed of cells 
that are intrinsically either fast or slow, with few or none that 
are intrinsically medium. The phantom burst model,56 in asso-
ciation with the model of Chay (S150), was later implemented 
to illustrate the control of oscillations by cytosolic Ca2+ through 
both direct and indirect feedback pathways (S152).

Examining an alternative hypothesis, to investigate the 
role of slow glycolytic oscillations in controlling electrical 
activity in β-cells, Weirschem and Bertram (S153) coupled 

the minimal models of glycolytic oscillation (S154) and 
electrical bursting in islets (S136). Following this, Bertram 
postulated a more realistic model by incorporating the con-
tribution of mitochondria in regulating glycolysis and the 
feedback mechanism representing the action of Ca2+ on 
metabolism.57 Extending this model, Bertram et al. (S155) 
proposed the dual oscillator model for β-cell activity, which 
included more details on mitochondrial metabolism. Later, 
Chew et al. (S156) integrated this dual oscillatory model 
(S155) with the whole-body glucose regulation model pro-
posed by (S108). The model provided a deeper understand-
ing of the oscillatory electrical activity in β-cells, which play 
an important role in insulin secretion and is lost or distrib-
uted in diabetes patients. As a unique approach, Nittala 
et al. (S157) proposed a hexagonal closed packing model 
to quantitatively investigate the role of islet cytoarchitecture 
in the synchronization of β-cell bursting.

Basic metabolism in β-cell. Focusing on the glycolytic com-
ponent of β-cells, Aslanidi et al. (S158) developed a reaction-
diffusion model to describe the spatiotemporal dynamics of the 
intracellular species involved in initiating insulin secretion from 
β-cells. Developed by incorporating glucose diffusion equa-
tions from the model of Bertram et al. (S159) into their previous 
work (S160), it mainly focused on the  electrical/Ca2+ activity in 
the islets. Moreover, revising the model developed by Smo-
len et al. (S161) on the gycolytic oscillations in skeletal mus-
cle, Westermark and Lansner58 proposed a similar model for 
β-cells, predicting the oscillatory behavior of β-cell glycolysis. 
Furthermore, employing the phosphofructokinase-1–mediated 
glycolytic oscillation model (S161) alongside β-cell glycolytic 
oscillation models,57 (S155), Merrin et al. (S162) presented 
a mathematical model to study the role of the bifunctional 
enzyme 6-phosphofructokinase-2-kinase/fructose-2,6-bispho-
sphatase in altering islet bursting oscillations.

In 2007, Jiang et al.59 postulated a detailed kinetic model 
of the core processes involved in glucose-stimulated insulin 
secretion by considering the complete insulin secretion path-
way starting from glycolysis and through to ATP production. 
This model highlighted the relationship between ATP output 
and glucose input concentrations, as well as the oscillations 
of metabolite concentration in the glycolysis pathway.

The vastness of available models for β-cell electrophysi-
ology is beyond the limit of this review. However, we have 
extensively discussed the models starting from the evolution 
of the classical model by Chay and Keizer (S136) to the most 
updated model by Fridlyand and Philipson (S146).

Models for insulin receptor dynamics
Studies have revealed that under pathological conditions, 
such as obesity and diabetes, there is a deficit in cell sur-
face insulin receptor levels, as well as in their functionality. To 
complement experimental studies on insulin receptor dynam-
ics, several models were proposed. Quon and Campfield60 
proposed a mathematical model that describes the molecu-
lar processes involved in insulin receptor dynamics, such as 
receptor binding, endocytosis, and recycling. Later, Wanant 
and Quon61 suggested a model for insulin receptor binding 
kinetics by explicitly representing both divalent insulin recep-
tor and receptor aggregation.
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To gain further insight into insulin receptor dynamics, Hori et 
al. (S163) postulated a model specifically focusing on intracel-
lular insulin receptor trafficking dynamics. This model involves 
all the known kinetics processes, from the activation to deacti-
vation of the extracellular insulin receptors by intracellular pro-
teins and hence played a productive role in investigating insulin 
action at different steps involved in endosomal trafficking. On 
the basis of in vivo studies on human hepatocytes, Koschorreck 
et al.62 suggested a model that explicitly described the molecu-
lar processes involved in insulin receptor dynamics, along with 
those associated with insulin degradation and clearance.

In addition, Kiselyov et al.63 proposed a mathematical model 
that describes the kinetic properties of insulin and insulin-like 
growth factor 1 receptor binding and activation, by considering 
the combinatorial complexity arising from multivalent binding 
to multiple receptor conformations. Brännmark et al.64 devel-
oped a framework by integrating experimental and math-
ematical modeling approaches to characterize the complex 
signaling networks involved in the early phase of insulin sig-
naling in human adipocytes. Using this modeling framework, 
Nyman et al. (S164) tested the time courses for insulin receptor 
and insulin receptor substrate-1 phosphorylation upon insulin 
simulation in murine primary adipocytes and compared it to 
that of human adipocytes. Recently, Brännmark et al. (S194) 
developed a dynamic model based on experimental data from 
human adipocytes, which yielded a molecular basis of insulin 
resistance in T2DM individuals.

Models for insulin signaling
Insulin regulates essential physiological functions by binding 
to its cell surface receptors, thereby activating signal trans-
duction pathways that mediate cellular responses. Therefore, 
initial receptor dynamics are important to gain a complete 
overview of the insulin-signaling pathway. Most models dis-
cussed in this section use the insulin receptor dynamic mod-
els (discussed in the section on Models for insulin receptor 
dynamics) as a foundation.

Quon et al. (S165, S166) proposed two models that 
describe the molecular processes regulating insulin-sensitive 
glucose transporter dynamics in adipocytes and myocytes. 
Integrating these models, along with those representing insu-
lin receptor binding kinetics61 and receptor recycling,60 Sed-
aghat et al.65 proposed a mechanistic model illustrating the 
post–receptor signaling pathway. Furthermore, Chew et al. 
(S167) integrated the model proposed by Sedaghat et al.65 
with the simple whole-body glucose homeostasis model 
(S109). Luni et al. (S168) built a multiscale model by incorpo-
rating the detailed insulin receptor interaction model63 into the 
phenomenological insulin-signaling model.65

Subsequently, a simplified version of the Sedaghat model,65 
representing insulin and glucagon receptors dynamics, was 
developed by Liu and Tang (S75). This model involves only 
two components, insulin and glucose, and ignores the cross 
talk and feedback between multiple signaling pathways. 
Despite such simplification, the model was able to reproduce 
liver glucose and glycogen kinetics, as well as insulin and glu-
cagon receptors dynamics, at the molecular level. The model 
was then elaborated as a compartmental model describing 
glucose transporter kinetics, glucose mobilization processes 
in liver, and insulin-signaling pathway.66

Multiscale/level hierarchical models
As models become more complete and realistic, detailed mod-
ules for crucial cellular processes, exemplified by subsystem 
models, can potentially be merged into whole-body physiol-
ogy-based models. The result of such a merge is a multilevel 
or hierarchical model, where the same submodel or module 
may be described at different levels of complexity. This model-
ing approach provides a link between different model systems 
and in vivo human conditions, thereby allowing evaluation of 
the relevance of in vitro data at physiological levels.67

Taking this into consideration, a “whole-body” hierarchical 
model was developed by Nyman et al.,68 linking the insulin/
insulin receptor dynamics models63,64 to the glucose trans-
port-insulin signaling model65 and subsequently incorporating 
this dynamic module in a whole-body glucose homeostasis21 
model. The model successfully describes the relationship 
between in vitro insulin signaling in primary human adipo-
cytes and in vivo whole-body glucose homeostasis. Remark-
ably, the Nyman model is an ideal example representing a 
modular modeling approach.

Hetherington et al.69 developed a composite model for 
glucagon/insulin-driven liver glucose homeostasis by linking 
together a series of subsystem models corresponding to dif-
ferent aspects of physiology. This model has been used fur-
ther to explore the behavior of glucose homeostasis systems 
by modulating the liver SI and diet glucose level (S169).

Kim et al. (S86) developed a multiscale model illustrat-
ing hormonal control of whole-body glucose homeostasis 
during exercise. Moreover, extending their previous model 
(S170), Li et al. (S87) proposed a multiscale cellular model 
to investigate the intracellular metabolic responses of skel-
etal muscle to insulin, corresponding to human glucose 
clamp studies.

Although multiscale, hierarchical, and composite modeling 
approaches are new, they can be envisioned as a roadmap 
toward achieving a holistic mechanistic view of the glucose 
homeostasis system from subcellular to a “whole-body” level, 
which could eventually lead to better control and treatment 
methods for diabetes.

DISCUSSION AND FUTURE DIRECTIONS

To improve the clinical diagnosis and treatment of systemic 
diseases, a complete understanding of the complex net-
work underlying the onset and progression of the disease 
is  essential. Such an understanding would enable the iden-
tification of fragile points that exist within the network, which 
can then be targeted for further studies. Since the devel-
opment of the first mathematical model of insulin-glucose 
dynamics in the early 1960s,2 there has been a massive 
breakthrough, both in the number and complexity of models, 
and in the modeling approaches developed to understand 
the underlying mechanisms in glucose homeostasis, dia-
betic conditions, and associated complications. The model 
relationship map (Figure 3) provides a complete overview 
of the evolution of most diabetes models available in the lit-
erature to-date and highlights the significance of sharing and 
reuse of models. Reviews about diabetes models, with their 
coverage of the different biological categories, are listed in 
Table 1.5,6,9–12,15,17–19,41,44–47,67,70–75 As can be seen from Table 1, 



CPT: Pharmacometrics & Systems Pharmacology

12

Understanding diabetes via mathematical modeling
Ajmera et al.

models in the nonclinical category are not reviewed exhaus-
tively in comparison to clinical models, with the exception of 
models on complications.

Although modeling studies related to diabetes and its asso-
ciated complications are abundant, not all aspects of diabetes 
are mathematically represented, and of those that are, not all 
are represented equally. This is reflected in Figure 3, where 
certain model categories are densely populated, while others 
are sparse. This is presumably due to the lack of experimen-
tal data and/or effort in that domain, or the lack of integration 
with existing experimental knowledge. The following sections 
attempt to highlight the research opportunities in understand-
ing the mechanism underlying the pathogenesis of diabetes, 
involving more components and compartments.

Need of more mathematical models to represent the 
existing knowledge
Immense experimental research over the past decades on 
diabetes and associated complications led to our current 
understanding that the ultimate clinical presentation of the 
disease results from the interaction of multiple cell types 
and organ systems (S171). To determine the molecular 
basis of the abnormal secretion of insulin and glucagon, and 
on insulin resistance in the poor maintenance of glucose 
homeostasis, it is important to understand the relative con-
tribution of liver, muscle, adipose tissue, α-cell, and β-cell in 
the onset and progression of diabetes. The role of multiple 
cell types and organ systems in the maintenance of glucose 

homeostasis is represented in Figure 4a–f. In addition, the 
mechanisms underlying hyperglycemia-induced tissue dam-
age is illustrated in Figure 4g. The aim of this figure is to iden-
tify the mechanism underlying glucose homeostasis and the 
pathogenesis of diabetes that needs to be targeted by future 
modeling studies. Connectors in red indicate prospective 
pathways for mathematical modeling, whereas green indi-
cates the  previously modeled pathways that are discussed 
in this review, under different subclasses. It should be noted 
that pathways represented by green connectors in each box 
do not necessarily represent a single model. Rather, they 
should be seen as the collection of models aimed at address-
ing these pathways. Each box with details of the interactions 
involved is explained in the Supplementary Data online.

Apart from pancreatic hormones, glucose homeosta-
sis is also controlled by various mechanisms involving the 
autonomic nervous system (S172–S174), genetics (S175, 
S176), mitochondrial (S177), and endoplasmic reticulum 
(S178) functions. These are further influenced by environ-
mental factors, such as diet, chronic stress, micronutrient 
deficiency, and sedentary life style, which offer further areas 
for modeling.

Genetic studies in simple organisms have convincingly 
shown the link between aging and insulin (S179, S180). 
When insulin levels are kept low, cells are stronger, stav-
ing off infection and age-related diseases such as cancer, 
dementia, and stroke. Higher intake of insulin can cause 
faster aging and accumulate the diseases associated with 

Table 1 List of reviews with their coverage of different subclasses under clinical (I) and nonclinical (II) categories

Study (year) Clinical (I) Nonclinical (II)

a b c d a b c d e f g h i j

Bergman et al. (1989)5 3

Nucci and Cobelli (2000)17 3

Bertram and Sherman (2000)44 3

Kjems et al. (2001)12 3

Mari (2002c)10 3 3 3

Kansal (2004)70 3 3 3

Wallace et al. (2004)11 3

Makroglou (2006)71 3 3 3

Boutayeb and Chetouani (2006)72 3 3 3 3

Bertram et al. (2007)45 3

Landersdorfer and Jusko (2008)9 3 3 3 3 3 3

Pattaranit and van den Berg (2008)73 3 3 3 3 3

Pedersen (2009)46 3

Cobelli et al. (2009)6 3 3

Li and Johnson (2009)18 3

Wilinska and Hovorka (2008)15 3 3 3

Cedersund and Strålfors (2009)67 3

Smith et al. (2009)74 3 3 3 3

Farhy and McCall (2011)41 3

Balakrishnan et al. (2011)19 3 3 3 3 3 3 3

Nyman et al. (2012b)75 3 3

Han et al. (2012)47 3

I-a, diagnosis; I-b, control; I-c, progression; I-d, complications; II-a, whole-body insulin–glucose dynamics; II-b, hepatic glucose dynamics; II-c, brain glucose 
homeostasis; II-d, β-cell insulin release; II-e, glucagon dynamics; II-f, macrophage action; II-g, β-cell electrophysiology; II-h, insulin receptor dynamics; II-I, 
insulin signaling; II-j, multiscale/level hierarchical models. Models in the nonclinical category (mechanistic models) are not reviewed exhaustively in comparison 
to clinical models, with the exception of models on complications.
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aging. This happens in most diabetic patients due to over-
exposure to insulin. Moreover, the mammalian target of 
rapamycin (mTOR) signaling pathway is also found to con-
trol cell growth and tissue aging and has a potential impact 
on lifespan, insulin resistance, and metabolic adaptation to 
hyperglycemia in T2DM (S181). These findings could act as 
a foundation to investigate the integral role of insulin in diabe-
tes and aging through modeling.

Obesity represents a major risk factor in insulin resistance 
(S182, S183) via inflammation, and it is important to under-
stand the molecular basis by which obesity drives insulin 
resistance. Several experimental works along this line have 
been carried out and have determined the role of leptin (S184, 
S185), resistin (S186), and other proinflammatory cytokines 
(S187–S189). Although there are a few models that account 
for obesity and diabetes, the numbers are negligible.

Clinical investigations have identified a strong relationship 
between hyperglycemia and micro- and macrovascular com-
plications (S3, S190, S191) via inflammation. This results in 
several secondary diseases causing irreversible damage to 
various organs. Moreover, diabetes, being a chronic disease, 
requires efficient self-management strategies, which spe-
cifically include lifestyle modifications, through diet (S192), 
physical activity (S78), and smoking cessation (S193). Con-
ducting modeling studies describing the mechanisms behind 
the onset and progression of these complications, as well 
as possible intervention points to prevent acute and chronic 
complications and that limit risk through self-management, 
would have a significant impact.

Need of standards in modeling
The usage and implementation of existing mathematical models 
could become impractical if they are not available in standard 
formats. Utilizing resources like BioModels Database1 for shar-
ing and reusing models can simplify the development of holistic 
models. Another recently launched effort, Drug Disease Model 
Resources (DDMoRe; www.ddmore.eu) (S195), a pioneer 
innovative medicines initiative founded effort, aims to design a 
mark-up language for encoding drug and disease models with 
associated metadata and ensuring interoperability between 
existing tools along with the development of novel disease mod-
els, for instance, diabetes.

CONCLUSIONS

The ultimate aim of developing models of diabetes is to 
understand the dynamics of the complex network underlying 
its etiology and to use that knowledge to efficiently identify 
potential therapeutic targets for its control and treatment. In 
the past five decades of modeling in this field, how far have 
we advanced? Do we know all the interacting components 
and intermediates? What could be the role of unknown com-
ponents, if such exists? How far are we from the complete 
description of a perturbed network leading to the disease? 
Regarding the complications associated with diabetes, what 
is less understood is the consequence of prolonged hypergly-
cemia acting differently in different individuals, i.e., the types 
of complications associated with diabetes differs between 
individuals. What are the reasons? Genetics studies along 
this line would play a critical role.

So far, mathematical modeling tightly linked to experi-
ments had a great impact in our understanding of diabetes. 
Efforts on merging subsystem models,68,69 although tricky, 
could pave the way toward discovering the entire regulatory 
network. We anticipate that this review would enable further 
studies and development in diabetes research.
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